

4-Channel I²C Switch with Interrupt and Reset

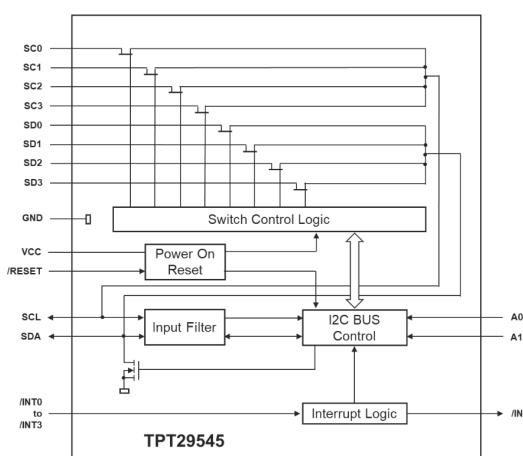
Features

- Bidirectional Translator of 1:4 I²C Switch
- Four Active-Low Interrupt Inputs
- Active-Low Interrupt Output and Active-Low Reset Input
- Two Address Terminals, Allowing Up to Four Devices on the I²C Bus
- Operating Power-Supply Voltage Range from 2.3 V to 5.5 V
- Allow Voltage-Level Translation among 2.5-V, 3.3-V, and 5-V Buses
- Support Standard Mode and Fast Mode I²C Devices, 0 to 400-kHz Clock Frequency
- Low R_{ON} Switches
- Latch-up Performance Exceeds 200 mA per JESD 78
- ESD Protection Exceeds JESD 22
 - ±4,000-V Human Body Model
 - ±1,500-V Charged-Device Model

Applications

- Servers/Storages
- Routers (Telecom Switching Equipment)
- Factory Automation
- Products with I²C Slave Address Conflicts (e.g. Multiple, Identical Temp Sensors)

Description


The TPT29545 is a 1:4 bidirectional translating I²C switch. The SCL/SDA upstream pair fans out to four downstream channels. Any single SCn/SDn channel or combination of channels can be selected, determined by the programmable control register. Four interrupt inputs (INT0 to INT3) are designed as one for each of the downstream pairs. One interrupt (INT) output acts as an AND of the four interrupt inputs.

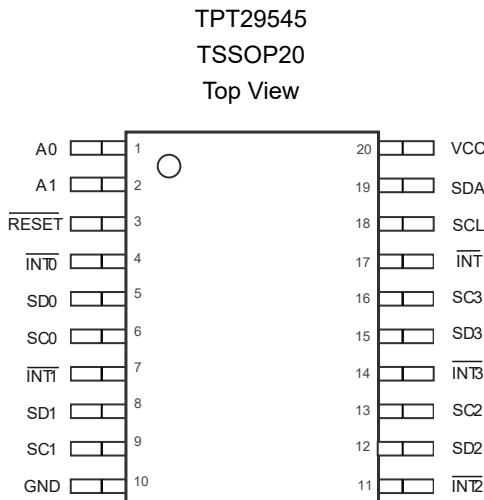
If one of the downstream I²C buses is stuck in a low state, then an active-low reset (RESET) input helps the TPT29545 recover. Pulling RESET low resets the I²C state machine and causes all the channels to be deselected, as does the internal power-on reset function.

The pass gates of the switches are constructed so that the V_{CC} terminal can be used to limit the maximum high voltage which is passed by the TPT29545. This allows the use of different bus voltages on each pair, so that 2.5-V or 3.3-V parts can communicate with 5-V parts, without any additional protection. External pull-up resistors pull the bus up to the desired voltage level for each channel. All I/O terminals are 5.5 V tolerant.

The TPT29545 is available in the TSSOP20 package and is characterized from -40°C to +85°C.

Typical Application Circuit

4-Channel I²C Switch with Interrupt and Reset**Table of Contents**


Features.....	1
Applications.....	1
Description.....	1
Typical Application Circuit.....	1
Revision History.....	3
Pin Configuration and Functions.....	4
Specifications.....	5
Absolute Maximum Ratings ⁽¹⁾	5
ESD, Electrostatic Discharge Protection.....	5
Recommended Operating Conditions.....	5
Thermal Information.....	6
Electrical Characteristics-DC Parameters.....	7
Electrical Characteristics-DC Parameters (Continued).....	9
Electrical Characteristics-AC Parameters.....	10
Switching Characteristics.....	10
Parameter Measurement Waveforms.....	12
Detailed Description.....	13
Overview.....	13
Functional Block Diagram.....	13
Application and Implementation.....	14
Application Information	14
Tape and Reel Information.....	16
Package Outline Dimensions.....	17
TSSOP20.....	17
Order Information.....	18
IMPORTANT NOTICE AND DISCLAIMER.....	19

4-Channel I²C Switch with Interrupt and Reset**Revision History**

Date	Revision	Notes
2020-03-04	Rev.Pre.0	Initial version.
2021-06-29	Rev.Pre.1	Preliminary version. Added the typical electrical data.
2021-06-30	Rev.Pre.2	Updated the Tape and Reel Information.
2021-07-16	Rev.Pre.3	Updated the electrical data.
2021-08-27	Rev.Pre.4	Updated the Order Information.
2022-08-05	Rev.A.0	Released version.
2024-12-24	Rev.A.1	Updated to a new datasheet format. Updated the POD.

4-Channel I²C Switch with Interrupt and Reset

Pin Configuration and Functions

Table 1. Pin Functions

Pin No.	Name	I/O	Description
1	A0	I	Address input 0. Connect directly to V _{cc} or ground.
2	A1	I	Address input 1. Connect directly to V _{cc} or ground.
3	RESET	I	Active-low reset input. Connect to V _{cc} or V _{DPU1} ⁽¹⁾ through a pull-up resistor if not used.
4	INT0	I	Active-low interrupt input 0. Connect to V _{DPU0} ⁽¹⁾ through a pull-up resistor.
5	SD0	I/O	Serial data 0. Connect to the power of slave channel 0 through a pull-up resistor.
6	SC0	I/O	Serial clock 0. Connect to the power of slave channel 0 through a pull-up resistor.
7	INT1	I	Active-low interrupt input 1. Connect to V _{DPU1} ⁽¹⁾ through a pull-up resistor.
8	SD1	I/O	Serial data 1. Connect to the power of slave channel 1 through a pull-up resistor.
9	SC1	I/O	Serial clock 1. Connect to the power of slave channel 1 through a pull-up resistor.
10	GND	GND	Ground.
11	INT2	I	Active-low interrupt input 2. Connect to V _{DPU2} ⁽¹⁾ through a pull-up resistor.
12	SD2	I/O	Serial data 2. Connect to the power of slave channel 0 through a pull-up resistor.
13	SC2	I/O	Serial clock 2. Connect to the power of slave channel 0 through a pull-up resistor.
14	INT3	I	Active-low interrupt input 3. Connect to V _{DPU3} ⁽¹⁾ through a pull-up resistor.
15	SD3	I/O	Serial data 3. Connect to the power of slave channel 0 through a pull-up resistor.
16	SC3	I/O	Serial clock 3. Connect to the power of slave channel 0 through a pull-up resistor.
17	INT	O	Active-low interrupt output. Connect to V _{DPU1} ⁽¹⁾ through a pull-up resistor.
18	SCL	I/O	Clock bus. Connect to V _{cc} through a pull-up resistor.
19	SDA	I/O	Data bus. Connect to V _{cc} through a pull-up resistor.
20	Vcc	Supply	Supply power.

4-Channel I²C Switch with Interrupt and Reset

Specifications

Absolute Maximum Ratings (1)

Parameter		Condition	Min	Max	Unit
V _{CC}	Supply Voltage		-0.5	7	V
V _I	Input Voltage		-0.5	7	V
I _{IK}	Input Clamp Current	V _I < 0	-20	20	mA
I _{OK}	Output Clamp Current	V _O < 0	-25	25	mA
I _{CC}	Continuous Current through GND		-100	100	mA
T _J	Maximum Junction Temperature			125	°C
T _A	Operating Temperature Range		-45	85	°C
T _{STG}	Storage Temperature		-60	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

ESD, Electrostatic Discharge Protection

Symbol	Parameter	Condition	Minimum Level	Unit
HBM	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001 (1)	±4	kV
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002 (2)	±1.5	kV

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

Parameter		Condition	Min	Max	Unit
V _{CC}	Supply Voltage		2.3	5.5	V
V _{IH}	High-Level Input Voltage	SCL, SDA	0.7 × V _{CC}	5.5	V
		A1, A0, <u>RESET</u> , <u>INTx</u>	0.7 × V _{CC}	5.5	V
V _{IL}	Low-Level Input Voltage	SCL, SDA	-0.5	0.3 × V _{CC}	mA
		A1, A0, <u>RESET</u> , <u>INTx</u>	-0.5	0.3 × V _{CC}	mA
T _A	Operating Temperature Range		-40	85	°C

4-Channel I²C Switch with Interrupt and Reset**Thermal Information**

Package Type	θ_{JA}	θ_{JC}	Unit
TSSOP20	120	50	°C/W

4-Channel I²C Switch with Interrupt and Reset
Electrical Characteristics-DC Parameters

All test conditions: $V_{CC} = 2.3$ V to 3.6 V, $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Supply						
I_{DD}	Supply Current in Operating Mode	$V_{CC} = 3.6$ V; no load; $V_I = V_{CC}$ or GND; $f_{SCL} = 100$ kHz	-	2.4	20	μA
		$V_{CC} = 3.6$ V; no load; $V_I = V_{CC}$ or GND; $f_{SCL} = 400$ kHz	-	6.5	30	μA
I_{STB}	Standby Current	$V_{CC} = 3.6$ V; no load; $V_I = V_{CC}$ or GND	-	0.9	3	μA
V_{POR}	Power-on Reset Voltage, V_{CC} Rising	No load; $V_I = V_{CC}$ or GND	-	1.2	1.45	V
	Power-on Reset Voltage, V_{CC} Falling		0.8	1.2		V
Input SCLx; Input/Output SDAx						
V_{IL}	Low-Level Input Voltage	$V_{CC} = 2.3$ V			$0.3 V_{CC}$	V
V_{IH}	High-Level Input Voltage	$V_{CC} = 2.3$ V	0.7 V_{CC}			V
I_{OL}	Low-Level Output Current	$V_{CC} = 2.3$ V, $V_{OL} = 0.4$ V	3	10		mA
	Low-Level Output Current, INT	$V_{CC} = 2.3$ V, $V_{OL} = 0.6$ V	6	13		mA
I_L	Leakage Current	$V_{CC} = 2.3$ V, $V_I = V_{CC}$ or GND	-1	0.1	1	μA
C_I	Input Capacitance ⁽¹⁾	$V_I = \text{GND}$		15		pF
Select Inputs A0, A1, RESET						
V_{IL}	Low-Level Input Voltage	$V_{CC} = 2.3$ V			$0.3 V_{CC}$	V
V_{IH}	High-Level Input Voltage	$V_{CC} = 2.3$ V	0.7 V_{CC}			V
I_{LI}	Input Leakage Current	$V_{CC} = 2.3$ V, pin at V_{CC} or GND	-1	0.1	1	μA
C_I	Input Capacitance ⁽¹⁾	$V_I = \text{GND}$		3		pF
Pass Gate						
R_{ON}	On-State Resistance	$V_{CC} = 3.0$ V to 3.6 V; $V_O = 0.4$ V; $I_O = 15$ mA	2	4.8	25	Ω
		$V_{CC} = 2.3$ V to 2.7 V; $V_O = 0.4$ V; $I_O = 10$ mA	4	6.5	30	Ω
$V_{O(sw)}$	Switch Output Voltage ⁽¹⁾	$V_{I(sw)} = V_{CC} = 3.3$ V; $I_{O(sw)} = -100$ μA	-	2.1	-	V
		$V_{I(sw)} = V_{CC} = 3.0$ V to 3.6 V; $I_{O(sw)} = -100$ μA	1.6		2.8	V
		$V_{I(sw)} = V_{CC} = 2.5$ V; $I_{O(sw)} = -100$ μA	-	1.5	-	V
		$V_{I(sw)} = V_{CC} = 2.3$ V to 2.7 V; $I_{O(sw)} = -100$ μA	1		2	V
I_L	Leakage Current	$V_I = V_{CC}$ or GND	-1	0.1	1	μA

4-Channel I²C Switch with Interrupt and Reset

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
C_{IO}	Input/Output Capacitance ⁽¹⁾	$V_I = GND$		3		pF
Output, \overline{INT}						
I_{OL}	Low-Level Output Current	$V_{OL} = 0.4 \text{ V}$	3			mA
I_{OH}	High-Level Output Current				10	μA

(1) Parameters are provided by lab bench tests and design simulation.

4-Channel I²C Switch with Interrupt and Reset
Electrical Characteristics-DC Parameters (Continued)

All test conditions: $V_{CC} = 4.5$ V to 5.5 V, $T_A = -40$ °C to +85°C, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Supply						
I_{DD}	Supply Current in Operating Mode	$V_{CC} = 5.5$ V; no load; $V_I = V_{CC}$ or GND; $f_{SCL} = 100$ kHz	-	5	20	µA
		$V_{CC} = 5.5$ V; no load; $V_I = V_{CC}$ or GND; $f_{SCL} = 400$ kHz		14	30	µA
I_{STB}	Standby Current	$V_{CC} = 5.5$ V; no load; $V_I = V_{CC}$ or GND	-	1.8	3	µA
V_{POR}	Power-on Reset Voltage, V_{CC} Rising	No load; $V_I = V_{CC}$ or GND	-	1.25	1.45	V
	Power-on Reset Voltage, V_{CC} Falling		0.8	1.2		V
Input SCL; Input/Output SDA						
V_{IL}	Low-Level Input Voltage ⁽¹⁾	$V_{CC} = 5.5$ V			$0.3 V_{CC}$	V
V_{IH}	High-Level Input Voltage	$V_{CC} = 5.5$ V	0.7 V_{CC}			V
I_{OL}	Low-Level Output Current	$V_{CC} = 5.5$ V, $V_{OL} = 0.4$ V	3	22		mA
	Low-Level Output Current, INT	$V_{CC} = 5.5$ V, $V_{OL} = 0.6$ V	6	32		mA
I_L	Leakage Current	$V_I = V_{CC}$ or GND	-1	0.1	1	µA
C_I	Input Capacitance ⁽¹⁾	$V_I = GND$		15		pF
Select Inputs A0 to A2, RESET, INTx						
V_{IL}	Low-Level Input Voltage	$V_{CC} = 5.5$ V			$0.3 V_{CC}$	V
V_{IH}	High-Level Input Voltage	$V_{CC} = 5.5$ V	0.7 V_{CC}			V
I_{LI}	Input Leakage Current	Pin at V_{CC} or GND	-1	0.1	1	µA
C_I	Input Capacitance ⁽¹⁾	$V_I = GND$		3		pF
Pass Gate						
R_{ON}	On-State Resistance	$V_{CC} = 4.5$ V to 5.5 V; $V_O = 0.4$ V; $I_O = 15$ mA	1	3.3	20	Ω
$V_{O(SW)}$	Switch Output Voltage ⁽¹⁾	$V_{I(SW)} = V_{CC} = 5.0$ V; $I_{O(SW)} = -100$ µA	-	3.55	-	V
		$V_{I(SW)} = V_{CC} = 4.5$ V to 5.5 V; $I_{O(SW)} = -100$ µA	2.6		4.5	V
I_L	Leakage Current	$V_I = V_{CC}$ or GND	-1	0.1	1	µA
C_{IO}	Input/Output Capacitance ⁽¹⁾	$V_I = GND$		3		pF
Output, INT						
I_{OL}	Low-Level Output Current	$V_{OL} = 0.4$ V	3			mA
I_{OH}	High-Level Output Current				10	µA

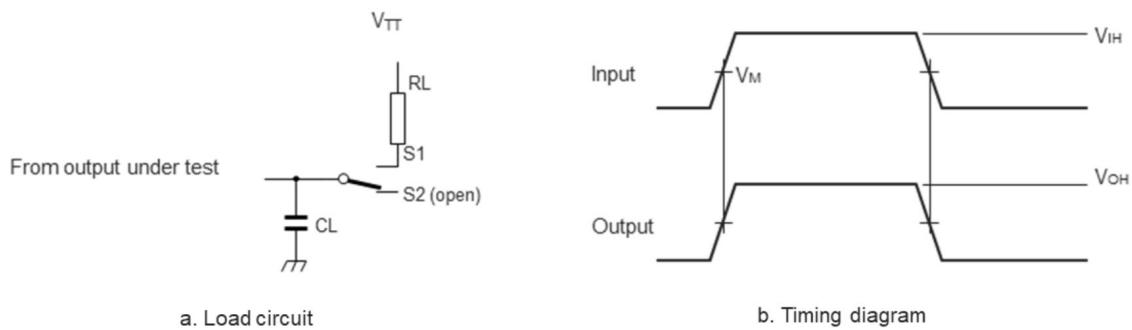
(1) Parameters are provided by lab bench tests and design simulation.

4-Channel I²C Switch with Interrupt and Reset
Electrical Characteristics-AC Parameters
I²C Interface Timing Requirements

All test conditions: over recommended operating free-air temperature range, unless otherwise noted.

Parameter	Condition	Min	Max	Unit
I²C BUS—Fast Mode				
f _{SCL}	I ² C Clock Frequency	0	400	kHz
t _{SCH}	I ² C Clock High Time	0.6		μs
t _{SLC}	I ² C Clock Low Time	1.3		μs
t _{SP}	I ² C Spike Time		50	ns
t _{SDS}	I ² C Serial Data Setup Time	100		ns
t _{SDH}	I ² C Serial Data Hold Time	0		ns
t _{ICR}	I ² C Input Rise Time	20	300	ns
t _{ICF}	I ² C Input Fall Time	20 + 0.1 C _B	300	ns
t _{OCF}	I ² C Output Fall Time ⁽¹⁾	20 + 0.1 C _B	300	ns
t _{BUF}	I ² C Bus Free Time between Stop and Start	1.3		μs
t _{STS}	I ² C Start or Repeated Start Condition Setup	0.6		μs
t _{STH}	I ² C Start or Repeated Start Condition Hold	0.6		μs
t _{SPS}	I ² C Stop Condition Setup	0.6		μs
t _{VD(DATA)}	Valid Data Time	SCL Low to SDA output valid	0.9	μs
t _{VD(ACK)}	Valid Data Time of ACK Condition	ACK signal from SCL Low to SDA (out) Low	0.9	μs
t _{SP}	Pulse Width of Spikes that Must Be Suppressed by the Input Filter		50	ns
t _{PD}	Propagation Delay ⁽¹⁾	From SDA to SD _x , or SCL to SC _x	0.3	ns
C _B	I ² C Bus Capacitive Load		400	pF

(1) The propagation delay is calculated from the 20 typical R_{ON} and the 15-pF load capacitance.


Switching Characteristics

All test conditions: over recommended operating free-air temperature range, C_L ≤ 100 pF, unless otherwise noted.

Symbol	Description	Condition	Min	Max	Unit
T _{VD; DAT}	Data Valid Time	High to Low		1	μs
		Low to High		0.55	μs

4-Channel I²C Switch with Interrupt and Reset

Symbol	Description	Condition	Min	Max	Unit
$T_{VD; DAT}$	Data Valid Time Acknowledge Time			1	ns
RESET					
$t_{W(RST)_{L}}$	Low-Level Reset Time		4		ns
t_{RST}	Reset Time	SDA clear		500	ns
$t_{REC;STA}$	Recovery Time to START Condition		0		ns

4-Channel I²C Switch with Interrupt and Reset**Parameter Measurement Waveforms****Figure 1. Load Circuit for Outputs**

4-Channel I²C Switch with Interrupt and Reset

Detailed Description

Overview

The TPT29545 is a 1:4 bidirectional translating I²C switch. The SCL/SDA upstream pair fans out to four downstream channels. Any single SC_n/SD_n channel or combination of channels can be selected, determined by the programmable control register. Four interrupt inputs (INT0 to INT3) are designed as one for each of the downstream pairs. One interrupt (INT) output acts as an AND of the four interrupt inputs.

If one of the downstream I²C buses is stuck in a low state, then an active-low reset (RESET) input helps the TPT29545 recover. Pulling RESET low resets the I²C state machine and causes all the channels to be deselected, as does the internal power-on reset function.

Functional Block Diagram

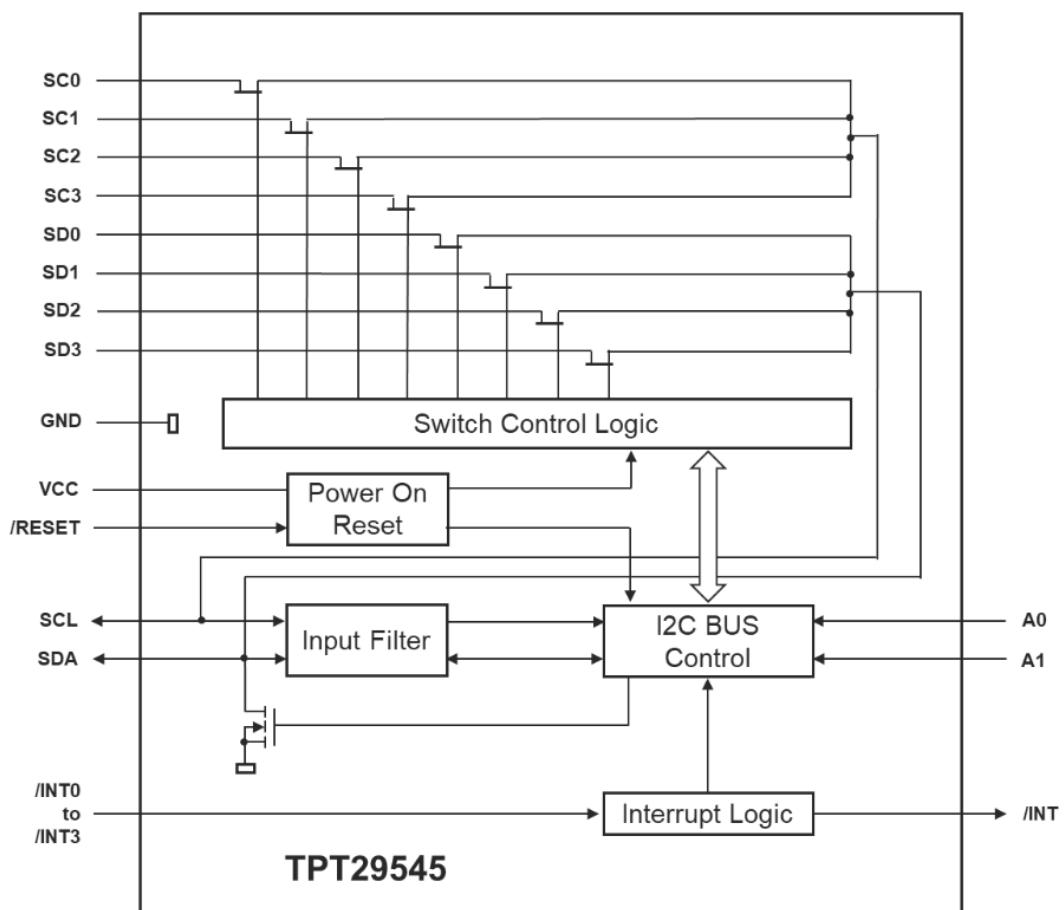


Figure 2. Functional Block Diagram

4-Channel I²C Switch with Interrupt and Reset

Application and Implementation

Note

Information in the following application sections is not part of the 3PEAK's component specification and 3PEAK does not warrant its accuracy or completeness. 3PEAK's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

Application Information

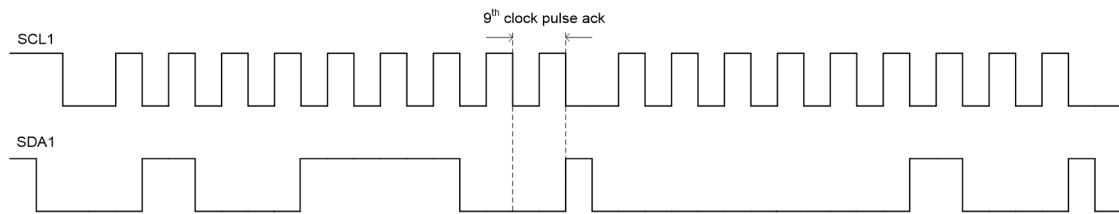


Figure 3. I²C Bus (2.3 V to 5.5 V) Waveform

Device Address

Following a START condition, the bus master must output the address of the slave when it is accessing. To conserve power, no internal pull-up resistor is incorporated on the hardware selectable address pins, and they must be pulled high or low. The address of the TPT29545 is shown below.

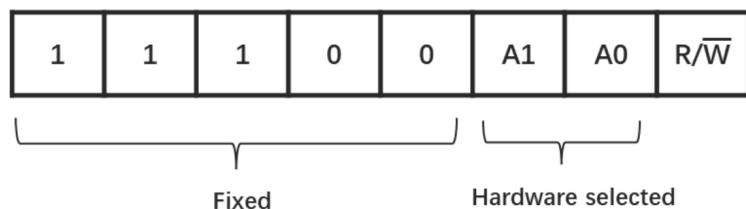
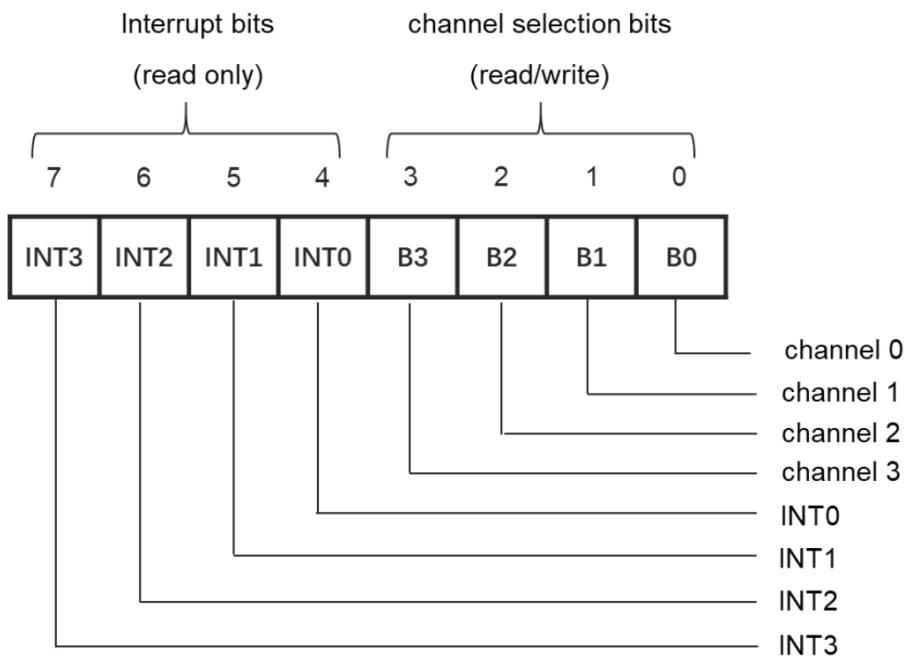



Figure 4. Slave Device Address

Control Register

Following the successful acknowledgement of the slave address, the bus master sends a byte to the TPT29545 which is stored in the control register. If multiple bytes are received by the TPT29545, it saves the last byte received. This register can be written and read via the I²C bus.

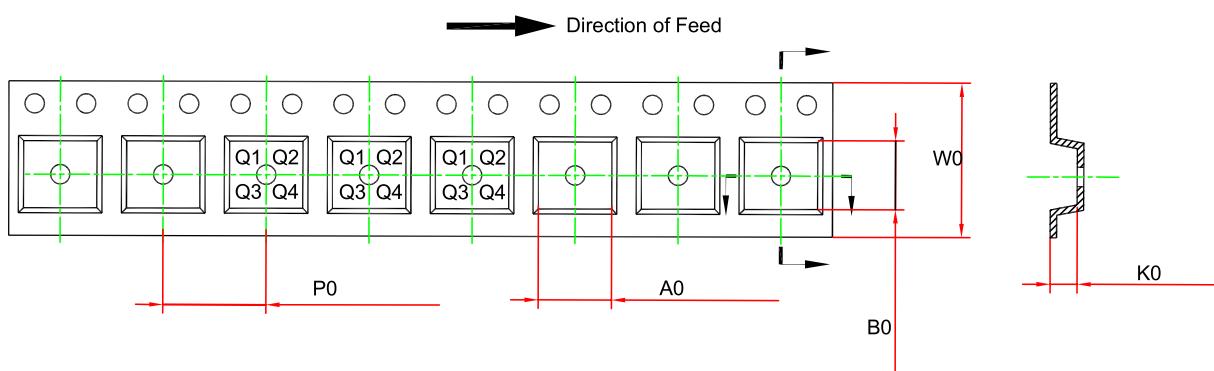
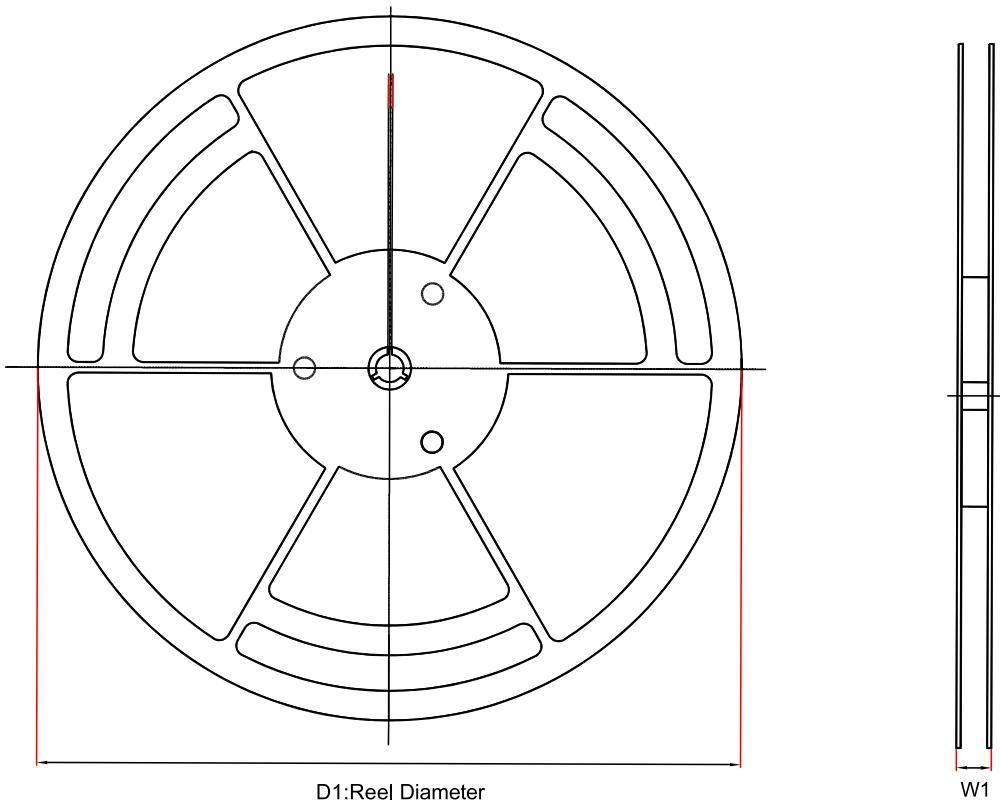


4-Channel I²C Switch with Interrupt and Reset

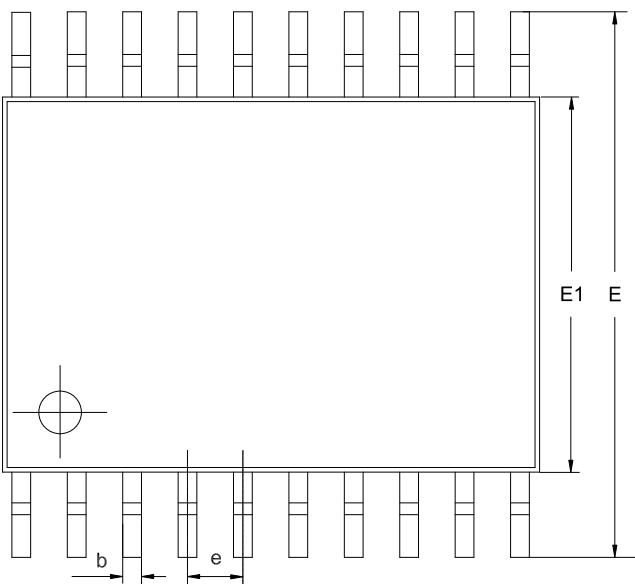
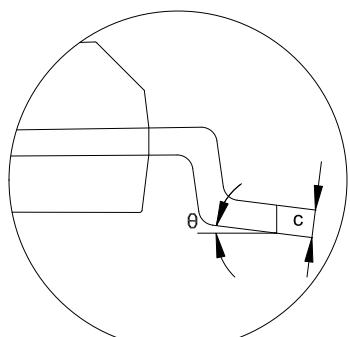
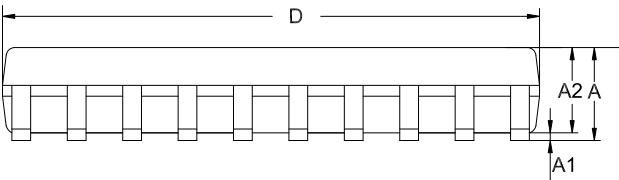
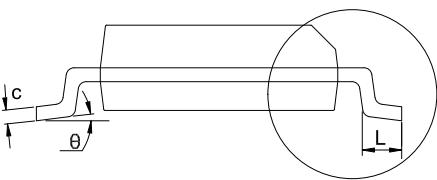
Figure 5. Control Register
Control Register Definition

One or several SCx/SDx downstream pair(s), or channel(s), are selected by the contents of the control register. This register is written after the TPT29545. The 4 LSBs of the control byte are used to determine which channel is to be selected. When a channel is selected, the channel becomes active after a STOP condition has been placed on the I²C bus. This ensures that all SCx/SDx lines are in a high state when the channel is made active so that no false conditions are generated during the connection.

Table 2. Control Register: Write—Channel Selection; Read—Channel Status

B7	B6	B5	B4	B3	B2	B1	B0	Command
x	x	x	x	x	x	x	0	Channel 0 disable
x	x	x	x	x	x	x	1	Channel 0 enable
x	x	x	x	x	x	0	x	Channel 1 disable
x	x	x	x	x	x	1	x	Channel 1 enable
x	x	x	x	x	0	x	x	Channel 2 disable
x	x	x	x	x	1	x	x	Channel 2 enable
x	x	x	x	0	x	x	x	Channel 3 disable
x	x	x	x	1	x	x	x	Channel 3 enable
0	0	0	0	0	0	0	0	No channel selected; power-up/reset default state

(1) Multiple channels can be enabled at the same time. Example: B3 = 0, B2 = 1, B1 = 1, B0 = 0, which means that channel 0 and channel 3 are disabled while channel 1 and channel 2 are enabled. Should not exceed the maximum bus capacitance.





4-Channel I²C Switch with Interrupt and Reset
Tape and Reel Information

Order Number	Package	D1 (mm)	W1 (mm)	A0 (mm) ⁽¹⁾	B0 (mm) ⁽¹⁾	K0 (mm) ⁽¹⁾	P0 (mm)	W0 (mm)	Pin1 Quadrant
TPT29545-TS4R	TSSOP20	330	22.4	6.8	6.9	1.5	8.0	16.0	Q1

(1) The value is for reference only. Contact the 3PEAK factory for more information.

Package Outline Dimensions

TSSOP20

Package Outline Dimensions		TS4(TSSOP-20-A)			
Symbol	Dimensions In Millimeters		Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	0.900	1.200	0.035	0.047	
A1	0.050	0.150	0.002	0.006	
A2	0.800	1.050	0.031	0.041	
b	0.190	0.300	0.007	0.012	
c	0.090	0.200	0.004	0.008	
D	6.400	6.600	0.252	0.260	
E	6.200	6.600	0.244	0.260	
E1	4.300	4.500	0.169	0.177	
e	0.650 BSC		0.026 BSC		
L	0.450	0.750	0.018	0.030	
θ	0	8°	0	8°	

NOTES

1. Do not include mold flash or protrusion.
2. This drawing is subject to change without notice.

4-Channel I²C Switch with Interrupt and Reset**Order Information**

Order Number	Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity	Eco Plan
TPT29545-TS4R	-40 to 85°C	TSSOP20	29545	3	Tape and Reel, 3,000	Green

Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

IMPORTANT NOTICE AND DISCLAIMER

Copyright© 3PEAK 2012-2024. All rights reserved.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.

This page intentionally left blank