

16-Bit Digital Signal Controller with High-Speed PWM, Op Amps, Advanced Analog and MOSFET Driver

Operating Conditions

- Host dsPIC® DSC Core:
 - 3.0V to 3.6V, -40°C to +85°C, DC to 70 MIPS
 - 3.0V to 3.6V, -40°C to +125°C, DC to 60 MIPS
 - 3.0V to 3.6V, -40°C to +150°C, DC to 40 MIPS
- MOSFET Gate Driver module:
 - 6.5V to 29.0V, -40°C to +150°C
 - Fixed output linear regulator, 3.3V @ 70 mA

Host dsPIC DSC Features (based on dsPIC33EP64MC206 device):

Core: 16-Bit dsPIC33E CPU

- Code Efficient (C and Assembly) Architecture
- Two 40-Bit Wide Accumulators
- Single-Cycle (MAC/MPY) with Dual Data Fetch
- Single-Cycle Mixed-Sign MUL plus Hardware Divide
- 32-Bit Multiply Support

Clock Management

- 1.0% Internal Oscillator
- Programmable PLLs and Oscillator Clock Sources
- Fail-Safe Clock Monitor (FSCM)
- Independent Watchdog Timer (WDT)
- Fast Wake-up and Start-up

Power Management

- Low-Power Management modes (Sleep, Idle, Doze)
- Integrated Power-on Reset and Brown-out Reset
- 0.6 mA/MHz Dynamic Current (typical)
- 30 µA IPD Current (typical)

High-Speed PWM

- Three PWM Pairs with Independent Timing
- Dead Time for Rising and Falling Edges
- 7.14 ns PWM Resolution
- PWM with Support for BLDC and PMSM Control
- Programmable Fault Inputs
- Flexible Trigger Configurations for ADC Conversions

Input/Output

- Sink/Source: 12 mA or 6 mA, Pin-Specific for Standard VOH/VOL, up to 22 or 14 mA, respectively, for Non-Standard VOH1
- 5V Tolerant Pins
- Peripheral Pin Select (PPS) to allow Digital Function Remapping
- Selectable Open-Drain Pull-ups and Pull-Downs
- Up to 5 mA Overvoltage Clamp Current
- Change Notification Interrupts on All I/O Pins

Advanced Analog Features

- ADC module:
 - Configurable as 10-bit, 1.1 Msps with four S&H or 12-bit, 500 ksps with one S&H
 - Nine ADC inputs
- Flexible and Independent ADC Trigger Sources
- Three Op Amp/Comparators with Direct Connection to the ADC module:
 - Additional dedicated comparator
 - Programmable references with 32 voltage points
- Charge Time Measurement Unit (CTMU):
 - Supports mTouch® capacitive touch sensing
 - Provides high-resolution time measurement (1 ns)
 - On-chip temperature measurement

Timers/Output Compare/Input Capture

- 12 General Purpose Timers:
 - Five 16-bit and up to two 32-bit timers/counters
 - Four Output Compare (OC) modules, configurable as timers/counters
 - PTG module with two configurable timers/counters
 - 32-bit Quadrature Encoder Interface (QEI) module, configurable as a timer/counter
- Four Input Capture (IC) modules
- Peripheral Pin Select (PPS) to allow Function Remap
- Peripheral Trigger Generator (PTG) for Scheduling Complex Sequences

Communication Interfaces

- Two UART modules (17.5 Mbps):
 - With support for LIN/J2602 protocols and IrDA®
- Two Four-Wire SPI modules (15 Mbps)
- Two I²C modules (up to 1 Mbaud) with SMBus Support
- PPS to allow Function Remap
- Programmable Cyclic Redundancy Check (CRC)

Direct Memory Access (DMA)

- 4-Channel DMA with User-Selectable Priority Arbitration
- UART, SPI, ADC, IC, OC and Timers

Debugger Development Support

- In-Circuit and In-Application Programming
- Two Program and Two Complex Data Breakpoints
- Trace and Run-Time Watch

dsPIC33EDV64MC205

MOSFET Gate Driver Module (based on MCP8021 device):

Motor Control Unit

- Three Half-Bridge Drivers Configured to Drive External High-Side NMOS and Low-Side NMOS MOSFETs:
 - Peak output current: 0.5A @ 12V
 - Shoot-through protection
 - Overcurrent and short-circuit protection

Fixed Output Linear Regulator

- 3.3V @ 70 mA
- True Current Foldback

Protection Features

- Gate Drive Undervoltage Lockout: 4.5V
- Supply Voltage Undervoltage Shutdown: 4.5V
- Supply Voltage Undervoltage Lockout (UVLO): 6.25V
- Ovvervoltage Lockout (OVLO): 32V
- Transient (100 ms) Voltage Tolerance: 40V
- Power Module Thermal Shutdown

General Device Features:

Qualification and Class B Support

- AEC-Q100 Rev G (Grade 1, -40°C to +125°C) Compliant
- AEC-Q100 Rev G (Grade 0, -40°C to +150°C) Compliant
- Class B Safety Library, IEC 60730

dsPIC33EDV64MC205

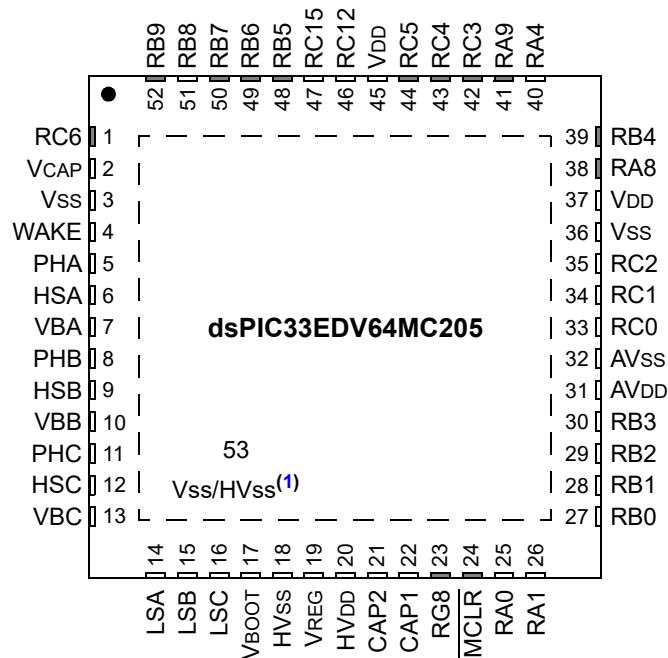
The dsPIC33EDV64MC205 device features are listed in [Table 1](#).

TABLE 1: dsPIC33EDV64MC205 DEVICE FEATURES

Device	Page Erase Size (Instructions)	Program Flash Memory (Kbytes)	RAM (Kbytes)	Remappable Peripherals												I ² C	CRC Generator	10-Bit/12-Bit ADC (Channels)	Op Amps/Comparators	CTMU	PTG	MOSFET Gate Driver	I/O Pins	Pins	Packages
				16-Bit/32-Bit Timers				Input Capture		Output Compare		Motor Control PWM ⁽³⁾ (Channels)		Quadrature Encoder Interface		UART		SPI ⁽¹⁾		External Interrupts ⁽²⁾					
dsPIC33EDV64MC205	1024	64	8	5	4	4	6	1	2	2	3	2	1	9	3/4	Yes	Yes	1	24	52	VQFN				

Note 1: Only SPI2 is remappable.

2: INT0 is not remappable.


3: Only the PWM Faults are remappable.

dsPIC33EDV64MC205

Pin Diagram

52-Pin VQFN

■ = 5.5 VDC Tolerant

Note 1: Pin 53 exposed pad is bonded to both Vss and HVss.

dsPIC33EDV64MC205

TABLE 2: COMPLETE PIN FUNCTION DESCRIPTIONS FOR THE dsPIC33EDV64MC205 DEVICE

Pin	Function	Pin	Function
1	RP54 /RC6	28	PGEC3/VREF+/AN3/ RPI33 /OA1OUT/CTED1/RB1
2	VCAP	29	PGEC1/C1IN1+/AN4/ RPI34 /RB2
3	Vss	30	PGED1/C1IN1-/AN5/ RP35 /RB3
4	WAKE ⁽¹⁾	31	AVDD
5	PHA ⁽¹⁾	32	AVss
6	HSA ⁽¹⁾	33	AN6/C4IN1+/OA3OUT/OCFB/RC0
7	VBA ⁽¹⁾	34	C3IN1-/C4IN1-/AN7/C4INB/RC1
8	PHB ⁽¹⁾	35	C3IN1+/AN8/BCLK1/FLT3/RC2
9	HSB ⁽¹⁾	36	Vss
10	VBB ⁽¹⁾	37	VDD
11	PHC ⁽¹⁾	38	RPI24 /SDA2/RA8
12	HSC ⁽¹⁾	39	RP36 /SCL2/RB4
13	VBC ⁽¹⁾	40	CVREF20/ RP20 /T1CK/SDO1/RA4
14	LSA ⁽¹⁾	41	RPI25 /SDI1/RA9
15	LSB ⁽¹⁾	42	RPI51 /SCK1/RC3
16	LSC ⁽¹⁾	43	RPI52 /SDA1/RC4
17	VBOOT ⁽¹⁾	44	RPI53 /SCL1/RC5
18	HVSS ⁽¹⁾	45	VDD
19	VREG ⁽¹⁾	46	OSC1/CLKI/RC12
20	HVDD ⁽¹⁾	47	OSC2/CLKO/RC15
21	CAP2 ⁽¹⁾	48	PGED2/ RP37 /ASDA2/RB5
22	CAP1 ⁽¹⁾	49	PGEC2/ RP38 /ASCL2/RB6
23	RP120 /RG8	50	RP39 /FLT32/INT0/RB7
24	<u>MCLR</u>	51	CVREF10/ RP40 /ASCL1/T4CK/RB8
25	AN0/OA2OUT/RA0	52	RP41 /ASDA1/RB9
26	AN1/C2IN1+/RA1	53	Vss/HVss
27	PGED3/VREF-/C2IN1-/AN2/ RPI32 /SS1/CTED2/RB0		

Legend: RPn and RPIn represent remappable pins for the Peripheral Pin Select (PPS) function.

Note 1: These pins are specific to the MOSFET Gate Driver module.

dsPIC33EDV64MC205

Table of Contents

1.0	Device Overview	11
2.0	Guidelines for Getting Started with 16-Bit Digital Signal Controllers	17
3.0	CPU	21
4.0	Memory Organization	31
5.0	Flash Program Memory	73
6.0	Resets	77
7.0	Interrupt Controller	81
8.0	Direct Memory Access (DMA)	93
9.0	Oscillator Configuration	107
10.0	Power-Saving Features	117
11.0	I/O Ports	127
12.0	Timer1	151
13.0	Timer2/3 and Timer4/5	155
14.0	Input Capture	161
15.0	Output Compare	167
16.0	High-Speed PWM Module	173
17.0	MOSFET Gate Driver Module	195
18.0	Quadrature Encoder Interface (QEI) Module	227
19.0	Serial Peripheral Interface (SPI)	245
20.0	Inter-Integrated Circuit (I ² C)	253
21.0	Universal Asynchronous Receiver Transmitter (UART)	261
22.0	Charge Time Measurement Unit (CTMU)	267
23.0	10-Bit/12-Bit Analog-to-Digital Converter (ADC)	273
24.0	Peripheral Trigger Generator (PTG) Module	289
25.0	Op Amp/Comparator Module	307
26.0	Programmable Cyclic Redundancy Check (CRC) Generator	325
27.0	Special Features	331
28.0	Instruction Set Summary	341
29.0	Development Support	351
30.0	Electrical Characteristics	353
31.0	High-Temperature Electrical Characteristics	419
32.0	MOSFET Gate Driver Electrical Characteristics	427
33.0	DC and AC Device Characteristics Graphs	435
34.0	Packaging Information	439
	Appendix A: Revision History	443
	Index	445
	The Microchip Website	451
	Customer Change Notification Service	451
	Customer Support	451
	Product Identification System	453

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

<http://www.microchip.com>

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; <http://www.microchip.com>
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

dsPIC33EDV64MC205

Referenced Sources

This device data sheet is based on the following individual chapters of the “dsPIC33/PIC24 Family Reference Manual”. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note: To access the documents listed below, browse to the documentation section of the dsPIC33EDV64MC205 product page of the Microchip website (www.microchip.com) or select a family reference manual section from the following list.

In addition to parameters, features and other documentation, the resulting page provides links to the related family reference manual sections.

- “Introduction” ([DS70573](#))
- “CPU” ([DS70359](#))
- “Data Memory” ([DS70595](#))
- “dsPIC33/PIC24 Program Memory” ([DS70000613](#))
- “Flash Programming” ([DS70000609](#))
- “Reset” ([DS70602](#))
- “Interrupts” ([DS70000600](#))
- “Direct Memory Access (DMA)” ([DS70348](#))
- “Oscillator” ([DS70580](#))
- “Watchdog Timer and Power-Saving Modes” ([DS70615](#))
- “I/O Ports” ([DS70000598](#))
- “Timers” ([DS70362](#))
- “Input Capture with Dedicated Timer” ([DS70000352](#))
- “Output Compare” ([DS70000358](#))
- “High-Speed PWM” ([DS70645](#))
- “Quadrature Encoder Interface (QEI)” ([DS70000601](#))
- “Serial Peripheral Interface (SPI)” ([DS70005185](#))
- “Inter-Integrated Circuit (I²C)” ([DS70000195](#))
- “Universal Asynchronous Receiver Transmitter (UART)” ([DS70000582](#))
- “Charge Time Measurement Unit (CTMU) and CTMU Operation with Threshold Detect” ([DS30009743](#))
- “Analog-to-Digital Converter (ADC)” ([DS70621](#))
- “Peripheral Trigger Generator (PTG)” ([DS70000669](#))
- “Op Amp/Comparator” ([DS70000357](#))
- “32-Bit Programmable Cyclic Redundancy Check (CRC)” ([DS70346](#))
- “CodeGuard™ Intermediate Security” ([DS70005182](#))
- “Programming and Diagnostics” ([DS70608](#))
- “Device Configuration” ([DS70000618](#))

Terminology Cross Reference

[Table 3](#) provides updated terminology for deprecated naming conventions. Register and bit names remain unchanged, however, descriptions and usage guidance have been updated.

TABLE 3: TERMINOLOGY CROSS REFERENCES

Use Case	Deprecated Term	New Term
CPU	Master	Initiator
DMA	Master	Initiator
I ² C	Master	Host
	Slave	Client
SPI	Master	Host
	Slave	Client
PMP	Master	Host
	Slave	Client
UART, LIN mode	Master	Commander
	Slave	Responder
PWM	Master	Host
	Slave	Client

dsPIC33EDV64MC205

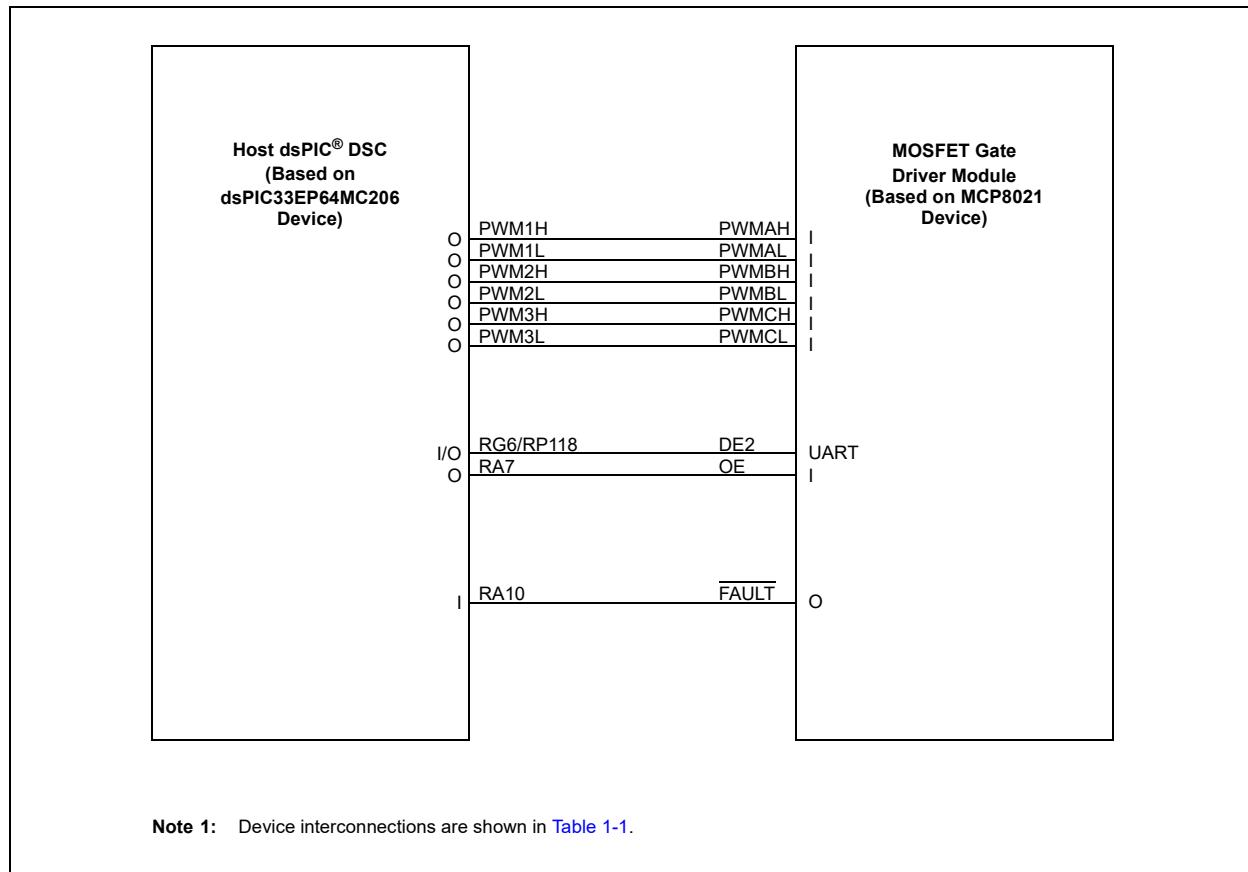
NOTES:

1.0 DEVICE OVERVIEW

Note: This data sheet summarizes the features of the dsPIC33EDV64MC205 device. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the “[Referenced Sources](#)” section. The “*dsPIC33/PIC24 Family Reference Manual*” sections listed are available from the Microchip website (www.microchip.com).

The dsPIC33EDV64MC205 device consists of a dsPIC33 Digital Signal Controller (DSC) based on the dsPIC33EP64MC206 device, combined with an in-package MOSFET Gate Driver module based on the MCP8021 device.

Several I/Os on the host dsPIC33 DSC are not brought to external pins on the device package.


Some I/Os are used as interconnects between the host DSC and the MOSFET Gate Driver module. These interconnects include dedicated PWM connections, as well as control and communication connections, which are to be configured as shown in [Table 1-1](#).

Other I/Os are unavailable due to pin count limitations, and need to be configured as digital outputs and driven to a logic low level. The PORT register maps of the I/Os are available in [Table 4-26](#) to [Table 4-32](#).

[Figure 1-1](#) shows a general block diagram of the dsPIC33EDV64MC205 device.

[Figure 1-2](#) shows an overview of the host dsPIC33 DSC. [Table 1-1](#) lists the interconnects between the dsPIC33 DSC and the MOSFET Driver module, and describes the function of each. [Table 1-2](#) lists and describes the various multiplexed functions of the external I/Os shown in the pin diagram and pin function table.

FIGURE 1-1: dsPIC33EDV64MC205 DEVICE INTERNAL CONNECTIONS BLOCK DIAGRAM

dsPIC33EDV64MC205

TABLE 1-1: dsPIC33EDV64MC205 DEVICE INTERCONNECTIONS

Host dsPIC® DSC Connection	MOSFET Gate Driver Connection	External Pin
RB14/PWM1H	PWM _{AH}	No
RB15/PWM1L	PWM _{AL}	No
RB12/PWM2H	PWM _{BH}	No
RB13/PWM2L	PWM _{BL}	No
RB10/PWM3H	PWM _{CH}	No
RB11/PWM3L	PWM _{CL}	No
RA10	FAULT	No
RG6	DE2	No
RA7	OE	No

FIGURE 1-2: dsPIC33EDV64MC205 HOST dsPIC® DSC BLOCK DIAGRAM

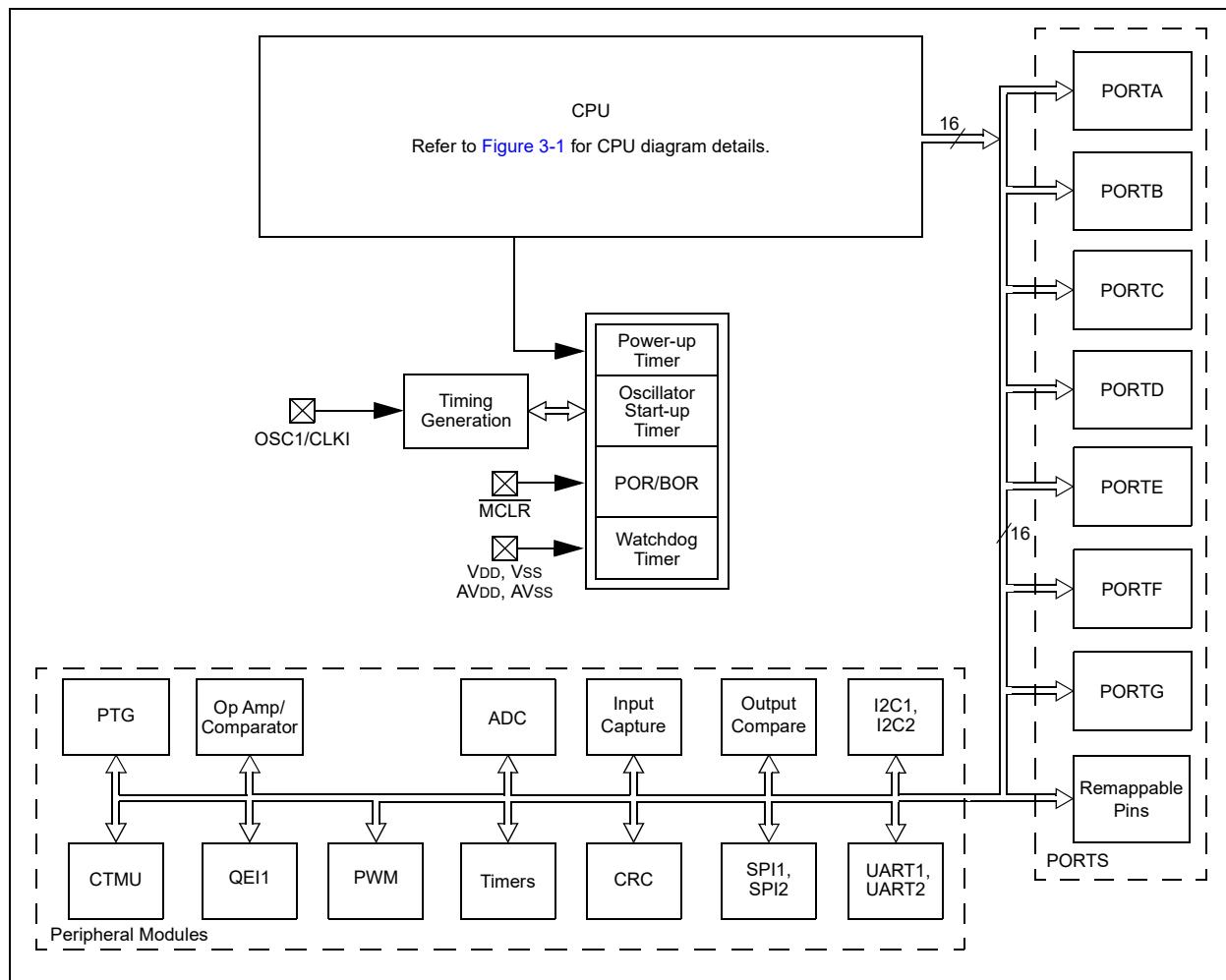


TABLE 1-2: PINOUT I/O DESCRIPTIONS

Pin Name	Pin Type	Buffer Type	PPS	Description
dsPIC® DSC Functions				
AN0-AN8	I	Analog	No	Analog input channels.
CLKI	I	ST/CMOS	No	External clock source input. Always associated with OSC1 pin function.
CLKO	O	—	No	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
OSC1	I	ST/CMOS	No	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.
OSC2	I/O	—	No	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
REFCLKO	O	—	Yes	Reference clock output.
IC1-IC4	I	ST	Yes	Capture Inputs 1 through 4.
OCFA	I	ST	Yes	Compare Fault A input (for compare channels).
OCFB	I	ST	No	Compare Fault B input (for compare channels).
OC1-OC4	O	—	Yes	Compare Outputs 1 through 4.
INT0	I	ST	No	External Interrupt 0.
INT1	I	ST	Yes	External Interrupt 1.
INT2	I	ST	Yes	External Interrupt 2.
RA0-RA1, RA4, RA8-RA9	I/O	ST	No	PORTA is a bidirectional I/O port.
RB0-RB9	I/O	ST	No	PORTB is a bidirectional I/O port.
RC0-RC6, RC12, RC15	I/O	ST	No	PORTC is a bidirectional I/O port.
RG8	I/O	ST	No	PORTG is a bidirectional I/O port.
T1CK	I	ST	No	Timer1 external clock input.
T2CK	I	ST	Yes	Timer2 external clock input.
T4CK	I	ST	No	Timer4 external clock input.
CTED1	I	ST	No	CTMU External Edge Input 1.
CTED2	I	ST	No	CTMU External Edge Input 2.
U1RX	I	ST	Yes	UART1 receive.
U1TX	O	—	Yes	UART1 transmit.
BCLK1	O	ST	No	UART1 IrDA® baud clock output.
U2RX	I	ST	Yes	UART2 receive.
U2TX	O	—	Yes	UART2 transmit.
SCK1	I/O	ST	No	Synchronous serial clock input/output for SPI1.
SDI1	I	ST	No	SPI1 data in.
SDO1	O	—	No	SPI1 data out.
SS1	I/O	ST	No	SPI1 Client synchronization or frame pulse I/O.

Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power
 ST = Schmitt Trigger input with CMOS levels O = Output I = Input
 PPS = Peripheral Pin Select TTL = TTL input buffer

Note 1: This is the default Fault on Reset for the dsPIC33EDV64MC205 device. See [Section 16.0 “High-Speed PWM Module”](#) for more information.

2: A Schottky diode between the CAP1 pin and HVss is recommended to ensure that the CAP1 pin absolute minimum voltage specification of -0.3V is maintained.

3: Pin is connected to a device interconnect; see [Table 1-1](#) for more information.

dsPIC33EDV64MC205

TABLE 1-2: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Type	Buffer Type	PPS	Description
SCK2 SDI2 SDO2 SS2	I/O I O I/O	ST ST — ST	Yes Yes Yes Yes	Synchronous serial clock input/output for SPI2. SPI2 data in. SPI2 data out. SPI2 Client synchronization or frame pulse I/O.
SCL1 SDA1 ASCL1 ASDA1	I/O I/O I/O I/O	ST ST ST ST	No No No No	Synchronous serial clock input/output for I2C1. Synchronous serial data input/output for I2C1. Alternate synchronous serial clock input/output for I2C1. Alternate synchronous serial data input/output for I2C1.
SCL2 SDA2 ASCL2 ASDA2	I/O I/O I/O I/O	ST ST ST ST	No No No No	Synchronous serial clock input/output for I2C2. Synchronous serial data input/output for I2C2. Alternate synchronous serial clock input/output for I2C2. Alternate synchronous serial data input/output for I2C2.
FLT1, FLT2 FLT3 FLT32 ⁽¹⁾ DTCMP1-DTCMP3 SYNC1 SYNCO1	I I I I I O	ST ST ST ST ST —	Yes No No Yes Yes Yes	PWM Fault Inputs 1 and 2. PWM Fault Input 3. PWM Fault Input 32 (Class B Fault). PWM Dead-Time Compensation Inputs 1 through 3. PWM Synchronization Input 1. PWM Synchronization Output 1.
INDX1 HOME1 QEA1 QEB1 CNTCMP1	I I I I O	ST ST ST ST —	Yes Yes Yes Yes Yes	Quadrature Encoder Index 1 pulse input. Quadrature Encoder Home 1 pulse input. Quadrature Encoder Phase A input in QEI1 mode. Auxiliary timer external clock/gate input in Timer mode. Quadrature Encoder Phase B input in QEI1 mode. Auxiliary timer external clock/gate input in Timer mode. Quadrature Encoder 1 compare output.
C1IN1- C1IN1+ OA1OUT C1OUT	I I O O	Analog Analog Analog —	No No No Yes	Op Amp/Comparator 1 Negative Input 1. Op Amp/Comparator 1 Positive Input 1. Op Amp 1 output. Comparator 1 output.
C2IN1- C2IN1+ OA2OUT C2OUT	I I O O	Analog Analog Analog —	No No No Yes	Op Amp/Comparator 2 Negative Input 1. Op Amp/Comparator 2 Positive Input 1. Op Amp 2 output. Comparator 2 output.
C3IN1- C3IN1+ OA3OUT C3OUT	I I O O	Analog Analog Analog —	No No No Yes	Op Amp/Comparator 3 Negative Input 1. Op Amp/Comparator 3 Positive Input 1. Op Amp 3 output. Comparator 3 output.
C4IN1- C4IN1+ C4OUT	I I O	Analog Analog —	No No Yes	Comparator 4 Negative Input 1. Comparator 4 Positive Input 1. Comparator 4 output.
CVREF1O CVREF2O	O O	Analog Analog	No No	Op amp/comparator voltage reference divided by 1 output. Op amp/comparator voltage reference divided by 2 output.

Legend: CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels

PPS = Peripheral Pin Select

Analog = Analog input

O = Output

TTL = TTL input buffer

P = Power

I = Input

Note 1: This is the default Fault on Reset for the dsPIC33EDV64MC205 device. See [Section 16.0 “High-Speed PWM Module”](#) for more information.

2: A Schottky diode between the CAP1 pin and HVss is recommended to ensure that the CAP1 pin absolute minimum voltage specification of -0.3V is maintained.

3: Pin is connected to a device interconnect; see [Table 1-1](#) for more information.

TABLE 1-2: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Type	Buffer Type	PPS	Description
PGED1	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 1.
PGEC1	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 1.
PGED2	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 2.
PGEC2	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 2.
PGED3	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 3.
PGEC3	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 3.
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.
AVDD	P	P	No	Positive supply for analog modules. This pin must be connected at all times.
AVss	P	P	No	Ground reference for analog modules. This pin must be connected at all times.
VDD	P	—	No	Positive supply for peripheral logic and I/O pins.
VCAP	P	—	No	CPU logic filter capacitor connection.
Vss	P	—	No	Ground reference for logic and I/O pins.
VREF+	I	Analog	No	Analog voltage reference (high) input.
VREF-	I	Analog	No	Analog voltage reference (low) input.

Legend: CMOS = CMOS compatible input or output
 ST = Schmitt Trigger input with CMOS levels
 PPS = Peripheral Pin Select

Analog = Analog input
 O = Output
 TTL = TTL input buffer

P = Power
 I = Input

Note 1: This is the default Fault on Reset for the dsPIC33EDV64MC205 device. See [Section 16.0 “High-Speed PWM Module”](#) for more information.

- 2: A Schottky diode between the CAP1 pin and HVss is recommended to ensure that the CAP1 pin absolute minimum voltage specification of -0.3V is maintained.
- 3: Pin is connected to a device interconnect; see [Table 1-1](#) for more information.

dsPIC33EDV64MC205

TABLE 1-2: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Type	Buffer Type	PPS	Description
MOSFET Gate Driver Module Functions				
WAKE	I			HV digital edge input, device wake-up from Sleep with internal pull-down resistor.
PHA	I/O			Phase A high-side MOSFET Driver reference, Back-EMF sense input.
HSA	O			Phase A high-side N-channel MOSFET Driver, active-high.
VBA	P			Phase A high-side MOSFET Driver bias.
PHB	I/O			Phase B high-side MOSFET Driver reference, Back-EMF sense input.
HSB	O			Phase B high-side N-channel MOSFET Driver, active-high.
VBB	P			Phase B high-side MOSFET Driver bias.
PHC	I/O			Phase C high-side MOSFET Driver reference, Back-EMF sense input.
HSC	O			Phase C high-side N-channel MOSFET Driver, active-high.
VBC	P			Phase C high-side MOSFET driver bias.
LSA	O			Phase A low-side N-channel MOSFET Driver, active-high.
LSB	O			Phase B low-side N-channel MOSFET Driver, active-high.
LSL	O			Phase C low-side N-channel MOSFET Driver, active-high.
VBOOT	P			External bootstrap circuit supply voltage output.
CAP1 ⁽²⁾	P			Charge Pump Flying Capacitor Input 1.
CAP2	P			Charge Pump Flying Capacitor Input 2.
HVDD	P			Input supply.
VREG	P			Linear Regulator Output: 3.3V.
HVss	P			MOSFET Driver Ground Reference
PWM _{AH} ⁽³⁾	I			Phase A high-side control, internal 47 kΩ pull-down
PWM _{AL} ⁽³⁾	I			Phase A low-side control, internal 47 kΩ pull-down
PWM _{BH} ⁽³⁾	I			Phase B high-side control, internal 47 kΩ pull-down
PWM _{BL} ⁽³⁾	I			Phase B low-side control, internal 47 kΩ pull-down
PWM _{CH} ⁽³⁾	I			Phase C high-side control, internal 47 kΩ pull-down
PWM _{CL} ⁽³⁾	I			Phase C low-side control, internal 47 kΩ pull-down
FAULT ⁽³⁾	O			Digital output, active-low Fault, open-drain
DE2 ⁽³⁾	UART			Digital communications port, open-drain
OE ⁽³⁾	I			Digital input, output enable, Fault clearing, internal 47 kΩ pull-down

Legend: CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels

PPS = Peripheral Pin Select

Analog = Analog input

O = Output

TTL = TTL input buffer

P = Power

I = Input

Note 1: This is the default Fault on Reset for the dsPIC33EDV64MC205 device. See [Section 16.0 “High-Speed PWM Module”](#) for more information.

2: A Schottky diode between the CAP1 pin and HVss is recommended to ensure that the CAP1 pin absolute minimum voltage specification of -0.3V is maintained.

3: Pin is connected to a device interconnect; see [Table 1-1](#) for more information.

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

Note 1: This data sheet summarizes the features of the dsPIC33EDV64MC205 device. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the “dsPIC33/PIC24 Family Reference Manual”, which is available from the Microchip website (www.microchip.com).

- 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 “Memory Organization”** in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33EDV64MC205 device requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins
(see **Section 2.3 “Decoupling Capacitors”**)
- All AVDD and AVss pins (regardless if ADC module is not used)
(see **Section 2.3 “Decoupling Capacitors”**)
- VCAP (see **Section 2.4 “CPU Logic Filter Capacitor Connection (VCAP)”**)
- MCLR pin
(see **Section 2.5 “Master Clear (MCLR) Pin”**)
- PGECx/PGEDx pins used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes
(see **Section 2.6 “ICSP Pins”**)
- OSC1 and OSC2 pins when external oscillator source is used (see **Section 2.7 “External Oscillator Pins”**)

Additionally, the following pins may be required:

- VREF+/VREF- pins are used when the external voltage reference for the ADC module is implemented

Note: The AVDD and AVss pins must be connected, independent of the ADC voltage reference source.

- HVDD pin is used to supply 6V to 28V to the MOSFET Driver module
- This pin also supplies the on-chip 3.3V regulator and must be connected if the regulator output, VREG, is being used
- VREG pin is the 3.3V regulator output which may be used to power VDD inputs if desired

2.2 Power Requirements

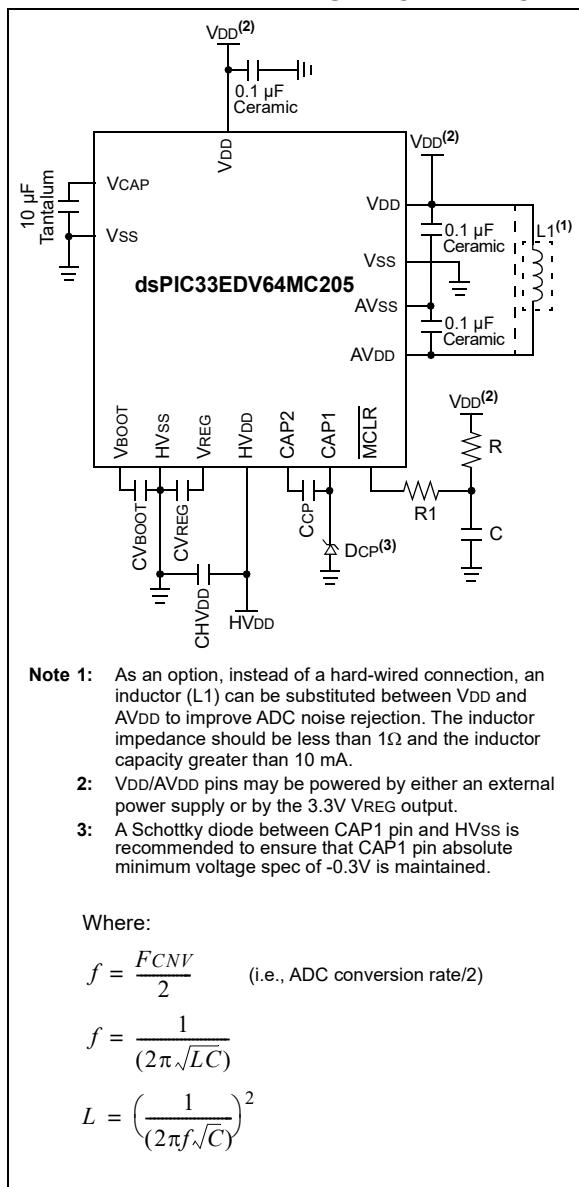
The dsPIC33EDV64MC205 device powers its core digital logic at a nominal 1.8V. An internal 1.8V regulator is incorporated to allow the device to run its core logic from VDD.

The internal 1.8V regulator provides power to the core from the VDD pins. A low-ESR capacitor (such as ceramic or tantalum) must be connected to the VCAP pin to maintain the stability of the 1.8V regulator.

The dsPIC33EDV64MC205 MOSFET Driver module incorporates an on-chip 3.3V regulator. This regulator outputs 3.3V on the VREG pin when 6V to 28V are supplied to the HVDD pin.

VDD pins may be powered by either an external power supply or the VREG output pin. If an external power supply is used to power the VDD pins directly, the HVDD pin does not need to be powered to program the dsPIC33EDV64MC205 device.

2.3 Decoupling Capacitors


The use of decoupling capacitors on every pair of power supply pins, such as VDD, Vss, AVDD and AVss, is required.

Consider the following criteria when using decoupling capacitors:

- **Value and type of capacitor:** Recommendation of 0.1 μ F (100 nF), 10V to 20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors.
- **Placement on the Printed Circuit Board:** The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- **Handling high-frequency noise:** If the board is experiencing high-frequency noise, above tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

dsPIC33EDV64MC205

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.3.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits, including DSCs, to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μF to 47 μF.

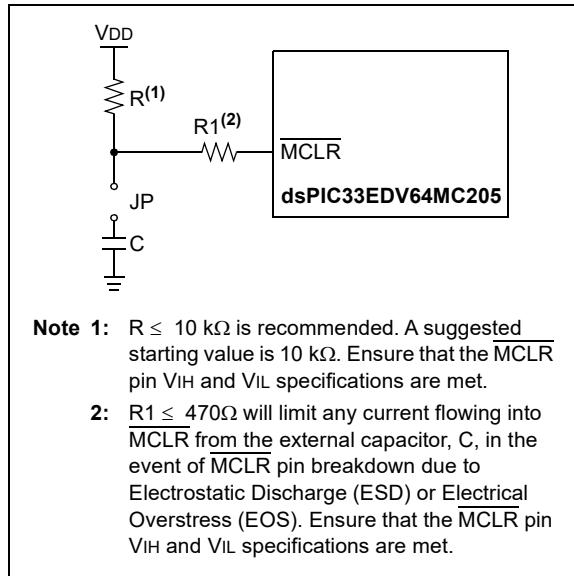
2.4 CPU Logic Filter Capacitor Connection (VCAP)

A low-ESR (<1 Ohm) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output to the internal 1.8V regulator voltage used to supply the dsPIC® DSC core logic. A capacitor greater than 4.7 μF (10 μF is recommended) must be connected between the VCAP pin and Vss. The type can be ceramic or tantalum. See [Section 30.0 “Electrical Characteristics”](#) for additional information.

The placement of this capacitor should be close to the VCAP pin. It is recommended that the trace length not exceed one-quarter inch (6 mm). See [Section 27.4 “Internal 1.8V Core Voltage Regulator”](#) for details.

2.5 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions:


- Device Reset
- Device Programming and Debugging

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (ViH and ViL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in [Figure 2-2](#), it is recommended that the capacitor, C, be isolated from the MCLR pin during programming and debugging operations.

Place the components, as shown in [Figure 2-2](#), within one-quarter inch (6 mm) from the MCLR pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

2.6 ICSP Pins

The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the “Communication Channel Select” (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB® PICkit™ 3, MPLAB ICD 3 or MPLAB REAL ICE™.

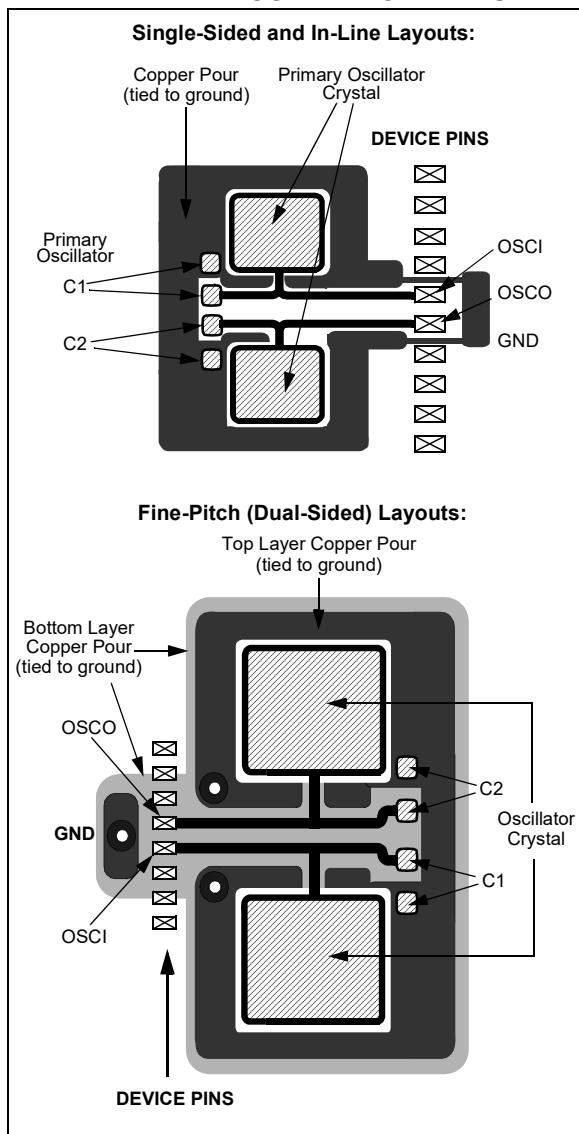
For more information on MPLAB ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip website.

- “*Using MPLAB® ICD 3*” (poster) (DS51765)
- “*MPLAB® ICD 3 Design Advisory*” (DS51764)
- “*MPLAB® REAL ICE™ In-Circuit Emulator User’s Guide*” (DS51616)
- “*Using MPLAB® REAL ICE™ In-Circuit Emulator*” (poster) (DS51749)

2.7 External Oscillator Pins

When the Primary Oscillator (POSC) circuit is used to connect a crystal oscillator, special care and consideration is needed to ensure proper operation. The POSC circuit should be tested across the environmental conditions that the end product is intended to be used. The load capacitors specified in the crystal oscillator data sheet can be used as a starting point, however, the parasitic capacitance from the PCB traces can affect the circuit, and the values may need to be altered to ensure proper start-up and operation. Excessive trace length and other physical interaction

can lead to poor signal quality. Poorly tuned oscillator circuits can have reduced amplitude, incorrect frequency (runt pulses), distorted waveforms and long start-up times that may result in unpredictable application behavior, such as instruction misexecution, illegal op code fetch, etc. Ensure that the crystal oscillator circuit is at full amplitude and correct frequency before the system begins to execute code. In planning the application’s routing and I/O assignments, ensure that adjacent port pins, and other signals in close proximity to the oscillator do not have high frequencies, short rise and fall times and other similar noise.


2.8 External Oscillator Layout Guidance

Use best practices during PCB layout to ensure robust start-up and operation. The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. If using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. Suggested layouts are shown in [Figure 2-3](#). With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the Microchip website (www.microchip.com):

- AN943, “*Practical PICmicro® Oscillator Analysis and Design*”
- AN949, “*Making Your Oscillator Work*”
- AN1798, “*Crystal Selection for Low-Power Secondary Oscillator*”

FIGURE 2-3: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

2.9 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to a certain frequency (see [Section 9.0 “Oscillator Configuration”](#)) to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

2.10 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a Logic Low state.

Alternatively, connect a 1k to 10k resistor between Vss and unused pins, and drive the output to logic low.

3.0 CPU

Note 1: This data sheet summarizes the features of the dsPIC33EDV64MC205 device. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to “**CPU**” (www.microchip.com/DS70359) in the “*dsPIC33/PIC24 Family Reference Manual*”.

- 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 “Memory Organization”** in this data sheet for device-specific register and bit information.

The dsPIC33EDV64MC205 CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for Digital Signal Processing (DSP). The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space.

An instruction prefetch mechanism helps maintain throughput and provides predictable execution. Most instructions execute in a single-cycle effective execution rate, with the exception of instructions that change the program flow, the double-word move (**MOV.D**) instruction, PSV accesses and the table instructions. Overhead-free program loop constructs are supported using the **DO** and **REPEAT** instructions, both of which are interruptible at any point.

3.1 Registers

The dsPIC33EDV64MC205 device has sixteen, 16-bit Working registers in the programmer’s model. Each of the Working registers can act as a data, address or address offset register. The 16th Working register (W15) operates as a Software Stack Pointer (SSP) for interrupts and calls.

3.2 Instruction Set

The instruction set for the dsPIC33EDV64MC205 device has two classes of instructions: the MCU class of instructions and the DSP class of instructions. These two instruction classes are seamlessly integrated into the architecture and execute from a single execution unit. The instruction set includes many addressing modes and was designed for optimum C compiler efficiency.

3.3 Data Space Addressing

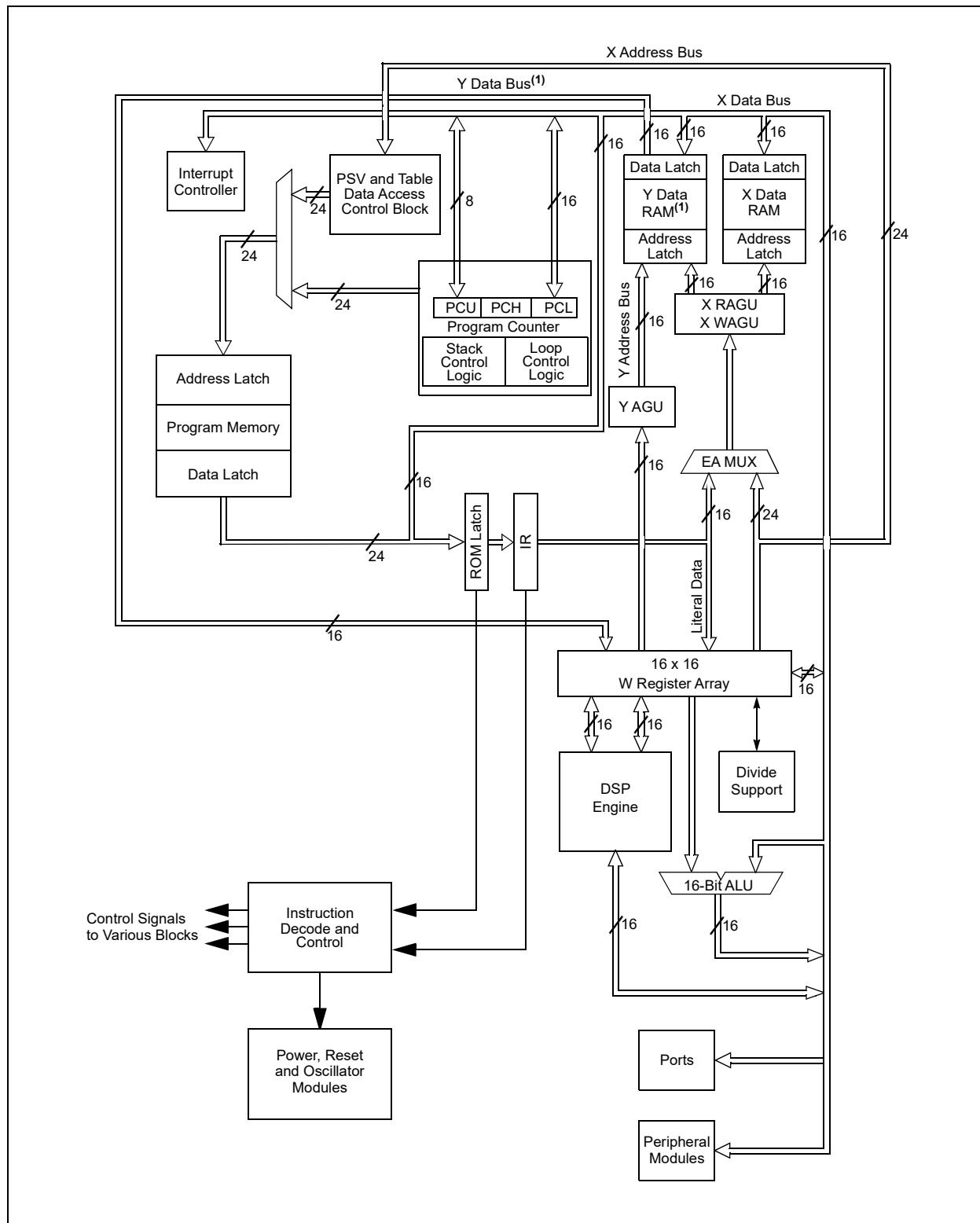
The base Data Space can be addressed as 64 Kbytes (32K words).

The Data Space includes two ranges of memory, referred to as X and Y data memory. Each memory range is accessible through its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear Data Space. On the dsPIC33EDV64MC205 device, certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y Data Spaces have memory locations that are device-specific, and are described further in the data memory maps in **Section 4.2 “Data Address Space”**.

The upper 32 Kbytes of the Data Space memory map can optionally be mapped into Program Space (PS) at any 32-Kbyte aligned program word boundary. The Program-to-Data Space mapping feature, known as Program Space Visibility (PSV), lets any instruction access Program Space as if it were Data Space. Moreover, the Base Data Space address is used in conjunction with a Data Space Read or Write Page register (DSRPAG or DSWPAG) to form an Extended Data Space (EDS) address. The EDS can be addressed as 8M words or 16 Mbytes. Refer to the “**Data Memory**” (DS70595) and “**dsPIC33/PIC24 Program Memory**” (DS70000613) sections in the “*dsPIC33/PIC24 Family Reference Manual*” for more details on EDS, PSV and table accesses.

On the dsPIC33EDV64MC205 device, overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. The X AGU Circular Addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data re-ordering for radix-2 FFT algorithms.

3.4 Addressing Modes


The CPU supports these addressing modes:

- Inherent (no operand)
- Relative
- Literal
- Memory Direct
- Register Direct
- Register Indirect

Each instruction is associated with a predefined addressing mode group, depending upon its functional requirements. As many as six addressing modes are supported for each instruction.

dsPIC33EDV64MC205

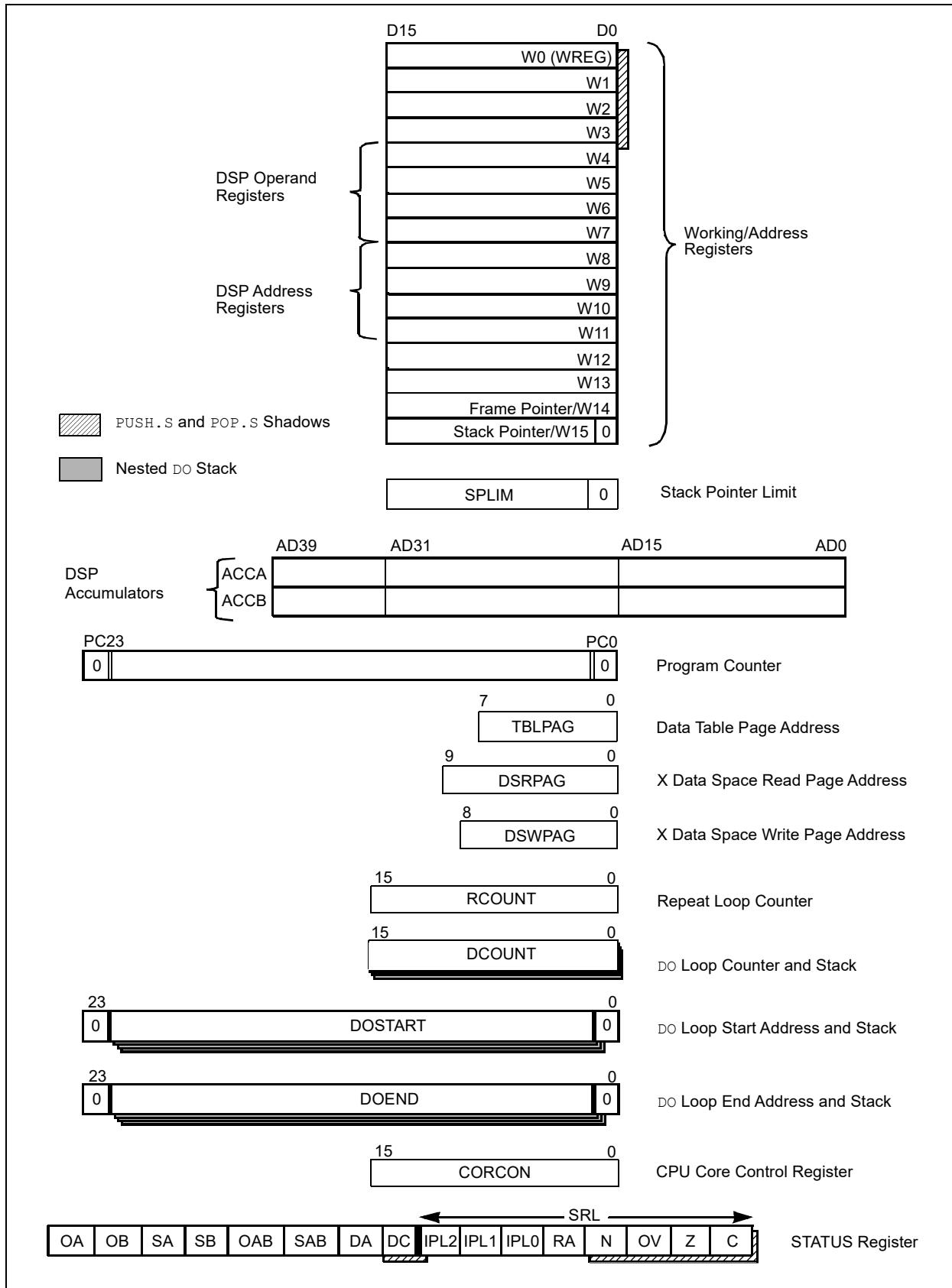
FIGURE 3-1: dsPIC33EDV64MC205 CPU BLOCK DIAGRAM

3.5 Programmer's Model

The programmer's model for the dsPIC33EDV64MC205 device is shown in [Figure 3-2](#). All registers in the programmer's model are memory-mapped and can be manipulated directly by instructions. [Table 3-1](#) lists a description of each register.

In addition to the registers contained in the programmer's model, the dsPIC33EDV64MC205 device contains control registers for Modulo Addressing, Bit-Reversed Addressing and interrupts. These registers are described in subsequent sections of this document.

All registers associated with the programmer's model are memory-mapped, as shown in [Table 4-1](#).


TABLE 3-1: PROGRAMMER'S MODEL REGISTER DESCRIPTIONS

Register(s) Name	Description
W0 through W15	Working Register Array
ACCA, ACCB	40-Bit DSP Accumulators
PC	23-Bit Program Counter
SR	ALU and DSP Engine STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
DSRPAG	Extended Data Space (EDS) Read Page Register
DSWPAG	Extended Data Space (EDS) Write Page Register
RCOUNT	REPEAT Loop Count Register
DCOUNT	DO Loop Count Register
DOSTARTH ⁽¹⁾ , DOSTARTL ⁽¹⁾	DO Loop Start Address Register (High and Low)
DOENDH, DOENDL	DO Loop End Address Register (High and Low)
CORCON	Contains DSP Engine, DO Loop Control and Trap Status bits

Note 1: The DOSTARTH and DOSTARTL registers are read-only.

dsPIC33EDV64MC205

FIGURE 3-2: PROGRAMMER'S MODEL

3.6 CPU Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this [link](#), contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser:
<http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en555464>

3.6.1 KEY RESOURCES

- “CPU” (DS70359) in the “*dsPIC33/PIC24 Family Reference Manual*”
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related “*dsPIC33/PIC24 Family Reference Manual*” Sections
- Development Tools

dsPIC33EDV64MC205

3.7 CPU Control and Status Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
OA	OB	SA ⁽³⁾	SB ⁽³⁾	OAB	SAB	DA	DC
bit 15							bit 8

R/W-0 ^(1,2)	R/W-0 ^(1,2)	R/W-0 ^(1,2)	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2	IPL1	IPL0	RA	N	OV	Z	C
bit 7							bit 0

Legend:	C = Clearable bit
R = Readable bit	W = Writable bit
-n = Value at POR	U = Unimplemented bit, read as '0' '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15	OA: Accumulator A Overflow Status bit 1 = Accumulator A has overflowed 0 = Accumulator A has not overflowed
bit 14	OB: Accumulator B Overflow Status bit 1 = Accumulator B has overflowed 0 = Accumulator B has not overflowed
bit 13	SA: Accumulator A Saturation 'Sticky' Status bit ⁽³⁾ 1 = Accumulator A is saturated or has been saturated at some time 0 = Accumulator A is not saturated
bit 12	SB: Accumulator B Saturation 'Sticky' Status bit ⁽³⁾ 1 = Accumulator B is saturated or has been saturated at some time 0 = Accumulator B is not saturated
bit 11	OAB: OA OB Combined Accumulator Overflow Status bit 1 = Accumulators A or B have overflowed 0 = Neither Accumulators A or B have overflowed
bit 10	SAB: SA SB Combined Accumulator 'Sticky' Status bit 1 = Accumulators A or B are saturated or have been saturated at some time 0 = Neither Accumulators A or B are saturated
bit 9	DA: DO Loop Active bit 1 = DO loop is in progress 0 = DO loop is not in progress
bit 8	DC: MCU ALU Half Carry/Borrow bit 1 = A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred 0 = No carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred

Note 1: The IPL[2:0] bits are concatenated with the IPL[3] bit (CORCON[3]) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL[3] = 1. User interrupts are disabled when IPL[3] = 1.

2: The IPL[2:0] Status bits are read-only when the NSTDIS bit (INTCON1[15]) = 1.

3: A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL[2:0]: CPU Interrupt Priority Level Status bits ^(1,2) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)
bit 4	RA: REPEAT Loop Active bit 1 = REPEAT loop is in progress 0 = REPEAT loop is not in progress
bit 3	N: MCU ALU Negative bit 1 = Result was negative 0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit This bit is used for signed arithmetic (two's complement). It indicates an overflow of the magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1	Z: MCU ALU Zero bit 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred

Note 1: The IPL[2:0] bits are concatenated with the IPL[3] bit (CORCON[3]) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL[3] = 1. User interrupts are disabled when IPL[3] = 1.

2: The IPL[2:0] Status bits are read-only when the NSTDIS bit (INTCON1[15]) = 1.

3: A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

dsPIC33EDV64MC205

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US1	US0	EDT ⁽¹⁾	DL2	DL1	DL0
bit 15							bit 8

R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA ⁽¹⁾	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7							bit 0

Legend:

R = Readable bit
-n = Value at POR

C = Clearable bit

W = Writable bit

'1' = Bit is set

U = Unimplemented bit, read as '0'

'0' = Bit is cleared

x = Bit is unknown

bit 15 **VAR:** Variable Exception Processing Latency Control bit
1 = Variable exception processing latency is enabled
0 = Fixed exception processing latency is enabled

bit 14 **Unimplemented:** Read as '0'

bit 13-12 **US[1:0]:** DSP Multiply Unsigned/Signed Control bits
11 = Reserved
10 = DSP engine multiplies are mixed-sign
01 = DSP engine multiplies are unsigned
00 = DSP engine multiplies are signed

bit 11 **EDT:** Early DO Loop Termination Control bit⁽¹⁾
1 = Terminates executing DO loop at end of current loop iteration
0 = No effect

bit 10-8 **DL[2:0]:** DO Loop Nesting Level Status bits
111 = Seven DO loops are active
•
•
•
001 = One DO loop is active
000 = Zero DO loops are active

bit 7 **SATA:** ACCA Saturation Enable bit⁽¹⁾
1 = Accumulator A saturation is enabled
0 = Accumulator A saturation is disabled

bit 6 **SATB:** ACCB Saturation Enable bit
1 = Accumulator B saturation is enabled
0 = Accumulator B saturation is disabled

bit 5 **SATDW:** Data Space Write from DSP Engine Saturation Enable bit
1 = Data Space write saturation is enabled
0 = Data Space write saturation is disabled

bit 4 **ACCSAT:** Accumulator Saturation Mode Select bit
1 = 9.31 saturation (super saturation)
0 = 1.31 saturation (normal saturation)

bit 3 **IPL3:** CPU Interrupt Priority Level Status bit 3⁽²⁾
1 = CPU Interrupt Priority Level is greater than 7
0 = CPU Interrupt Priority Level is 7 or less

Note 1: These bits are always read as '0'.

2: The IPL3 bit is concatenated with the IPL[2:0] bits (SR[7:5]) to form the CPU Interrupt Priority Level.

REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)

bit 2	SFA: Stack Frame Active Status bit 1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG and DSWPAG values 0 = Stack frame is not active; W14 and W15 address of EDS or Base Data Space
bit 1	RND: Rounding Mode Select bit 1 = Biased (conventional) rounding is enabled 0 = Unbiased (convergent) rounding is enabled
bit 0	IF: Integer or Fractional Multiplier Mode Select bit 1 = Integer mode is enabled for DSP multiply 0 = Fractional mode is enabled for DSP multiply

Note 1: These bits are always read as '0'.

2: The IPL3 bit is concatenated with the IPL[2:0] bits (SR[7:5]) to form the CPU Interrupt Priority Level.

3.8 Arithmetic Logic Unit (ALU)

The dsPIC33EDV64MC205 ALU is 16 bits wide, and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the “16-Bit MCU and DSC Programmer’s Reference Manual” (DS70000157) for information on the SR bits affected by each instruction.

The core CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.8.1 MULTIPLIER

Using the high-speed 17-bit x 17-bit multiplier, the ALU supports unsigned, signed, or mixed-sign operation in several MCU Multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit signed x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.8.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.9 DSP Engine

The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a 40-bit barrel shifter and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic).

The DSP engine can also perform inherent accumulator-to-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or integer DSP multiply (IF)
- Signed, unsigned or mixed-sign DSP multiply (US)
- Conventional or convergent rounding (RND)
- Automatic saturation on/off for ACCA (SATA)
- Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACCSAT)

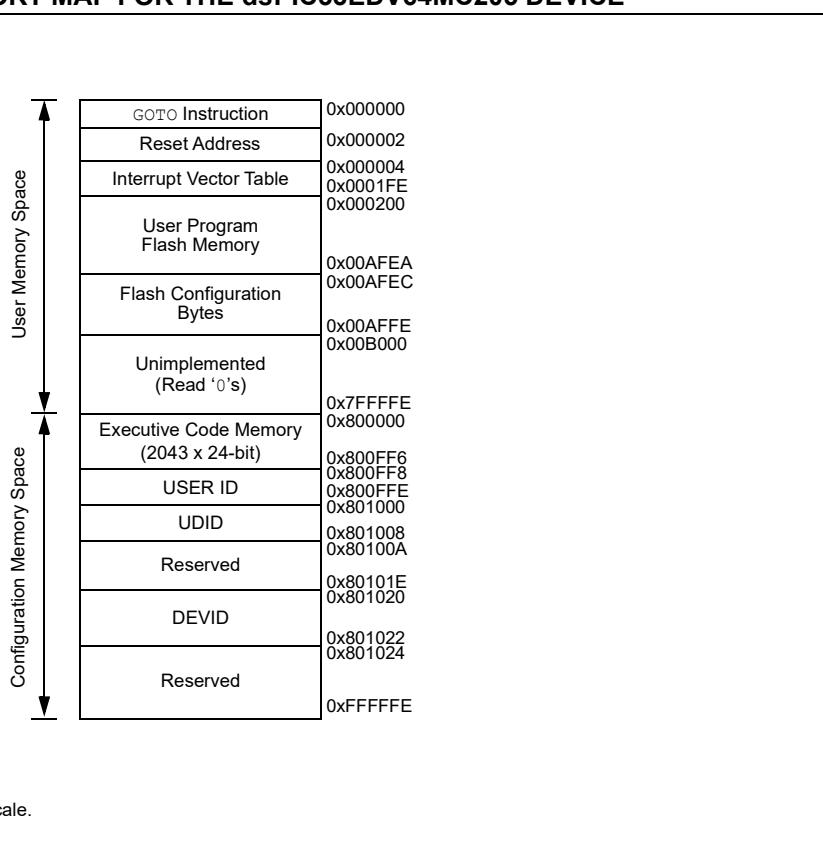
TABLE 3-2: DSP INSTRUCTIONS SUMMARY

Instruction	Algebraic Operation	ACC Write-Back
CLR	$A = 0$	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	$A = A + (x \cdot y)$	Yes
MAC	$A = A + x^2$	No
MOVSAC	No change in A	Yes
MPY	$A = x \cdot y$	No
MPY	$A = x^2$	No
MPY.N	$A = -x \cdot y$	No
MSC	$A = A - x \cdot y$	Yes

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33EDV64MC205 device. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to “**dsPIC33/PIC24 Program Memory**” (www.microchip.com/DS70000613) in the “*dsPIC33/PIC24 Family Reference Manual*”.

The dsPIC33EDV64MC205 device architecture features separate program and data memory spaces, and buses. This architecture also allows the direct access of program memory from the Data Space (DS) during code execution.


4.1 Program Address Space

The program address memory space of the dsPIC33EDV64MC205 device is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit PC during program execution, or from a table operation or Data Space remapping, as described in [Section 4.8 “Interfacing Program and Data Memory Spaces”](#).

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFFF). The exception is the use of TBLRD operations, which use TBLPAG[7] to read Device ID sections of the configuration memory space.

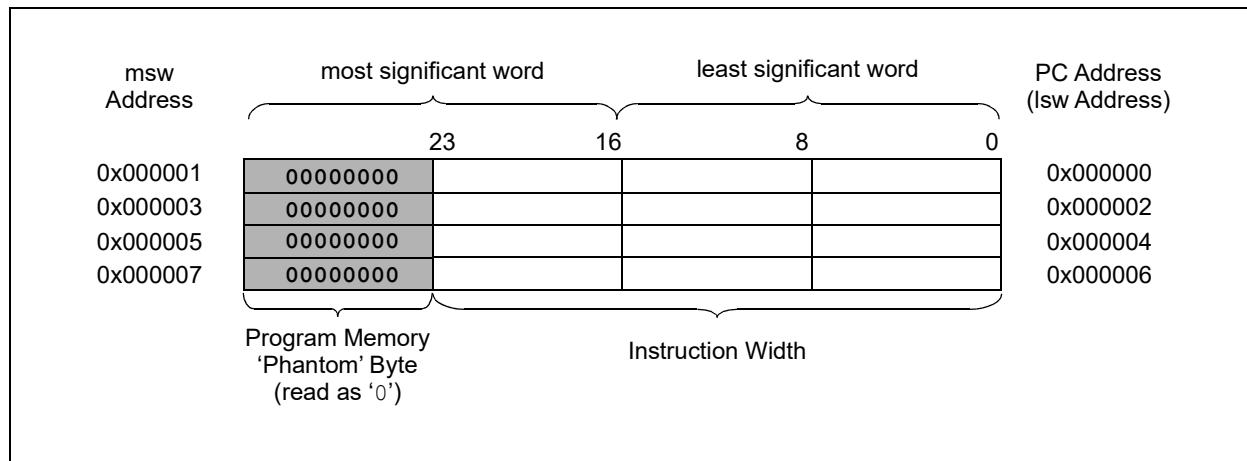
[Figure 4-1](#) shows the memory map for the dsPIC33EDV64MC205 device.

FIGURE 4-1: PROGRAM MEMORY MAP FOR THE dsPIC33EDV64MC205 DEVICE⁽¹⁾

dsPIC33EDV64MC205

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).


Program memory addresses are always word-aligned on the lower word and addresses are incremented, or decremented by two, during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

The dsPIC33EDV64MC205 device reserves the addresses between 0x000000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A `GOTO` instruction is programmed by the user application at address, 0x000000, of Flash memory, with the actual address for the start of code at address, 0x000002, of Flash memory.

A more detailed discussion of the Interrupt Vector Tables (IVTs) is provided in **Section 7.1 “Interrupt Vector Table”**.

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

4.2 Data Address Space

The dsPIC33EDV64MC205 device CPU has a separate 16-bit wide data memory space. The Data Space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory map is shown in [Figure 4-3](#).

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the Data Space. This arrangement gives a base Data Space address range of 64 Kbytes (32K words).

The base Data Space address is used in conjunction with a Data Space Read or Write Page register (DSRPAG or DSWPAG) to form an Extended Data Space, which has a total address range of 16 Mbytes.

The dsPIC33EDV64MC205 device implements up to 52 Kbytes of data memory (4 Kbytes of data memory for Special Function Registers (SFRs) and up to 48 Kbytes of data memory for RAM). If an EA points to a location outside of this area, an all-zero word or byte is returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte-addressable, 16-bit wide blocks. Data are aligned in data memory and registers as 16-bit words, but all Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC® MCU devices and improve Data Space memory usage efficiency, the dsPIC33EDV64MC205 device instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

A data byte read, reads the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address.

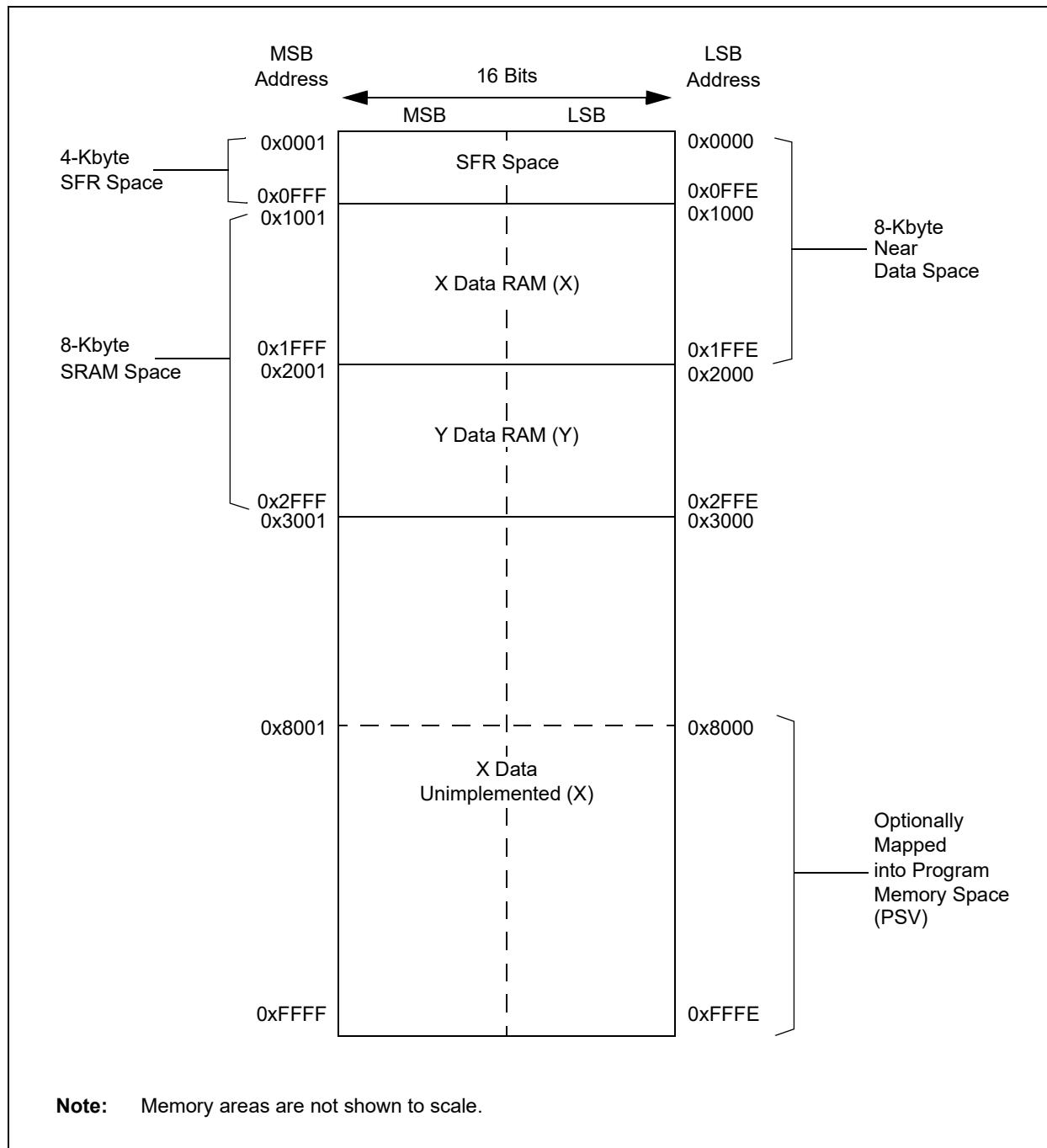
All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB; the MSB is not modified.

A Sign-Extend (SE) instruction is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first 4 Kbytes of the Near Data Space, from 0x0000 to 0x0FFF, is primarily occupied by SFRs. These are used by the dsPIC33EDV64MC205 device core and peripheral modules for controlling the operation of the device.


SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

4.2.4 NEAR DATA SPACE

The 8-Kbyte area, between 0x0000 and 0x1FFF, is referred to as the Near Data Space. Locations in this space are directly addressable through a 13-bit absolute address field within all memory direct instructions. Additionally, the whole Data Space is addressable using `MOV` instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a Working register as an Address Pointer.

dsPIC33EDV64MC205

FIGURE 4-3: DATA MEMORY MAP FOR THE dsPIC33EDV64MC205 DEVICE

4.2.5 X AND Y DATA SPACES

The dsPIC33EDV64MC205 device core has two Data Spaces, X and Y. These Data Spaces can be considered either separate (for some DSP instructions) or as one unified linear address range (for MCU instructions). The Data Spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X Data Space is used by all instructions and supports all addressing modes. X Data Space has separate read and write data buses. The X read data bus is the read data path for all instructions that view Data Space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (**MAC** class).

The Y Data Space is used in concert with the X Data Space by the **MAC** class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y Data Spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X Data Space.

All data memory writes, including in DSP instructions, view Data Space as combined X and Y address space. The boundary between the X and Y Data Spaces is device-dependent and is not user-programmable.

4.3 Memory Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this [link](#), contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser:
<http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en555464>

4.3.1 KEY RESOURCES

- “**dsPIC33/PIC24 Program Memory**” (DS70000613) in the “*dsPIC33/PIC24 Family Reference Manual*”
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related “*dsPIC33/PIC24 Family Reference Manual*” Sections
- Development Tools

4.4 Special Function Register Maps

TABLE 4-1: CPU CORE REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
W0	0000																	xxxx
W1	0002																	xxxx
W2	0004																	xxxx
W3	0006																	xxxx
W4	0008																	xxxx
W5	000A																	xxxx
W6	000C																	xxxx
W7	000E																	xxxx
W8	0010																	xxxx
W9	0012																	xxxx
W10	0014																	xxxx
W11	0016																	xxxx
W12	0018																	xxxx
W13	001A																	xxxx
W14	001C																	xxxx
W15	001E																	xxxx
SPLIM	0020																	0000
ACCAL	0022																	0000
ACCAH	0024																	0000
ACCAU	0026																	0000
ACCBL	0028																	0000
ACCBH	002A																	0000
ACCBU	002C																	0000
PCL	002E																	0000
PCH	0030	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
DSRPAG	0032	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0001
DSWPAG	0034	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0001
RCOUNT	0036																	0000
DCOUNT	0038																	0000
DOSTARTL	003A																	0000
DOSTARTH	003C	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
DOENDL	003E																	0000
DOENDH	0040	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-1: CPU CORE REGISTER MAP (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets							
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL[2:0]			RA	N	OV	Z	C	0000							
CORCON	0044	VAR	—	US[1:0]		EDT	DL[2:0]		SATA	SATB	SATDW	ACCSAT	IPL3	SFA	RND	IF	0020								
MODCON	0046	XMODEN	YMODEN	—	—	BWM[3:0]			YWM[3:0]			XWM[3:0]					0000								
XMODSRT	0048	XMODSRT[15:0]														—	0000								
XMODEND	004A	XMODEND[15:0]														—	0001								
YMODSRT	004C	YMODSRT[15:0]														—	0000								
YMODEND	004E	YMODEND[15:0]														—	0001								
XBREV	0050	BREN	XBREV[14:0]														0000								
DISICNT	0052	—	—	DISICNT[13:0]														0000							
TBLPAG	0054	—	—	—	—	—	—	—	—	—	—	—	TBLPAG[7:0]					0000							
MSTRPR	0058	MSTRPR[15:0]														—	0000								

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-2: INTERRUPT CONTROLLER REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	—	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	—	—	—	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	—	—	—	—	—	—	—	—	—	IC4IF	IC3IF	DMA3IF	—	—	SPI2IF	SPI2EIF	0000
IFS3	0806	—	—	—	—	—	QE1IF	PSEMIF	—	—	—	—	—	—	—	MI2C2IF	SI2C2IF	—
IFS4	0808	—	—	CTMUIF	—	—	—	—	—	—	—	—	—	CRCIF	U2EIF	U1EIF	—	0000
IFS5	080A	PWM2IF	PWM1IF	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
IFS6	080C	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	PWM3IF	0000
IFS8	0810	r ⁽¹⁾	ICDIF	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
IFS9	0812	—	—	—	—	—	—	—	—	—	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF	—	0000
IEC0	0820	—	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	—	—	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	—	—	—	—	—	—	—	—	—	IC4IE	IC3IE	DMA3IE	—	—	SPI2IE	SPI2EIE	0000
IEC3	0826	—	—	—	—	—	QE1IE	PSEMIE	—	—	—	—	—	—	MI2C2IE	SI2C2IE	—	0000
IEC4	0828	—	—	CTMUIE	—	—	—	—	—	—	—	—	CRCIE	U2EIE	U1EIE	—	0000	
IEC5	082A	PWM2IE	PWM1IE	—	—	—	—	—	—	—	—	—	—	—	—	—	0000	
IEC6	082C	—	—	—	—	—	—	—	—	—	—	—	—	—	—	PWM3IE	0000	
IEC8	0830	r ⁽¹⁾	ICDIE	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
IEC9	0832	—	—	—	—	—	—	—	—	—	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	—	0000
IPC0	0840	—	T1IP[2:0]			—	OC1IP[2:0]			—	IC1IP[2:0]			—	INT0IP[2:0]			4444
IPC1	0842	—	T2IP[2:0]			—	OC2IP[2:0]			—	IC2IP[2:0]			—	DMA0IP[2:0]			4444
IPC2	0844	—	U1RXIP[2:0]			—	SPI1IP[2:0]			—	SPI1EIP[2:0]			—	T3IP[2:0]			4444
IPC3	0846	—	—	—	—	—	DMA1IP[2:0]			—	AD1IP[2:0]			—	U1TXIP[2:0]			0444
IPC4	0848	—	CNIP[2:0]			—	CMIP[2:0]			—	MI2C1IP[2:0]			—	SI2C1IP[2:0]			4444
IPC5	084A	—	—	—	—	—	—	—	—	—	—	—	—	—	INT1IP[2:0]			0004
IPC6	084C	—	T4IP[2:0]			—	OC4IP[2:0]			—	OC3IP[2:0]			—	DMA2IP[2:0]			4444
IPC7	084E	—	U2TXIP[2:0]			—	U2RXIP[2:0]			—	INT2IP[2:0]			—	T5IP[2:0]			4444
IPC8	0850	—	—	—	—	—	C1RXIP[2:0]			—	SPI2IP[2:0]			—	SPI2EIP[2:0]			0444
IPC9	0852	—	—	—	—	—	IC4IP[2:0]			—	IC3IP[2:0]			—	DMA3IP[2:0]			0444
IPC12	0858	—	—	—	—	—	MI2C2IP[2:0]			—	SI2C2IP[2:0]			—	—	—	—	0440
IPC14	085C	—	PSEMIP[2:0]			—	QE1IP[2:0]			—	PSEMIP[2:0]			—	—	—	—	0440
IPC16	0860	—	CRCIP[2:0]			—	U2EIP[2:0]			—	U1EIP[2:0]			—	—	—	—	4440
IPC19	0866	—	—	—	—	—	—	—	—	—	CTMUIP[2:0]			—	—	—	—	0040
IPC23	086E	—	PWM2IP[2:0]			—	PWM1IP[2:0]			—	—	—	—	—	PWM3IP[2:0]			4400
IPC24	0870	—	—	—	—	—	—	—	—	—	—	—	—	—	PWM3IP[2:0]			0004

Legend: — = unimplemented, read as '0'; r = reserved. Reset values are shown in hexadecimal.

Note 1: Reserved, maintain as default.

TABLE 4-2: INTERRUPT CONTROLLER REGISTER MAP (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
IPC35	0886	—	r ⁽¹⁾	r ⁽¹⁾	r ⁽¹⁾	—	ICDIP[2:0]				—	—	—	—	—	—	—	4400	
IPC36	0888	—	PTG0IP[2:0]				—	PTGWDTIP[2:0]				—	PTGSTEPIP[2:0]				—	—	4440
IPC37	088A	—	—	—	—	—	PTG3IP[2:0]				—	PTG2IP[2:0]				—	PTG1IP[2:0]		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000	
INTCON2	08C2	GIE	DISI	SWTRAP	—	—	—	—	—	—	—	—	—	INT2EP	INT1EP	INT0EP	8000		
INTCON3	08C4	—	—	—	—	—	—	—	—	—	—	DAE	DOOVR	—	—	—	—	0000	
INTCON4	08C6	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	SGHT	0000	
INTTREG	08C8	—	—	—	—	—	ILR[3:0]				VECNUM[7:0]				—	—	—	—	0000

Legend: — = unimplemented, read as '0'; r = reserved. Reset values are shown in hexadecimal.

Note 1: Reserved, maintain as default.

TABLE 4-3: TIMER1 THROUGH TIMER5 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100																xxxx	
PR1	0102																FFFF	
T1CON	0104	TON	—	TSIDL	—	—	—	—	—	—	TGATE	TCKPS[1:0]	—	TSYNC	TCS	—	0000	
TMR2	0106																xxxx	
TMR3HLD	0108																xxxx	
TMR3	010A																xxxx	
PR2	010C																FFFF	
PR3	010E																FFFF	
T2CON	0110	TON	—	TSIDL	—	—	—	—	—	—	TGATE	TCKPS[1:0]	T32	—	TCS	—	0000	
T3CON	0112	TON	—	TSIDL	—	—	—	—	—	—	TGATE	TCKPS[1:0]	—	—	TCS	—	0000	
TMR4	0114																xxxx	
TMR5HLD	0116																xxxx	
TMR5	0118																xxxx	
PR4	011A																FFFF	
PR5	011C																FFFF	
T4CON	011E	TON	—	TSIDL	—	—	—	—	—	—	TGATE	TCKPS[1:0]	T32	—	TCS	—	0000	
T5CON	0120	TON	—	TSIDL	—	—	—	—	—	—	TGATE	TCKPS[1:0]	—	—	TCS	—	0000	

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-4: INPUT CAPTURE 1 THROUGH INPUT CAPTURE 4 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets					
IC1CON1	0140	—	—	ICSIDL	ICTSEL[2:0]			—	—	—	ICI[1:0]		ICOV	ICBNE	ICM[2:0]		0000						
IC1CON2	0142	—	—	—	—	—	—	—	IC32	ICTRIG	TRIGSTAT	—	SYNCSEL[4:0]				000D						
IC1BUF	0144	Input Capture 1 Buffer Register															xxxx						
IC1TMR	0146	Input Capture 1 Timer															0000						
IC2CON1	0148	—	—	ICSIDL	ICTSEL[2:0]			—	—	—	ICI[1:0]		ICOV	ICBNE	ICM[2:0]		0000						
IC2CON2	014A	—	—	—	—	—	—	—	IC32	ICTRIG	TRIGSTAT	—	SYNCSEL[4:0]				000D						
IC2BUF	014C	Input Capture 2 Buffer Register															xxxx						
IC2TMR	014E	Input Capture 2 Timer															0000						
IC3CON1	0150	—	—	ICSIDL	ICTSEL[2:0]			—	—	—	ICI[1:0]		ICOV	ICBNE	ICM[2:0]		0000						
IC3CON2	0152	—	—	—	—	—	—	—	IC32	ICTRIG	TRIGSTAT	—	SYNCSEL[4:0]				000D						
IC3BUF	0154	Input Capture 3 Buffer Register															xxxx						
IC3TMR	0156	Input Capture 3 Timer															0000						
IC4CON1	0158	—	—	ICSIDL	ICTSEL[2:0]			—	—	—	ICI[1:0]		ICOV	ICBNE	ICM[2:0]		0000						
IC4CON2	015A	—	—	—	—	—	—	—	IC32	ICTRIG	TRIGSTAT	—	SYNCSEL[4:0]				000D						
IC4BUF	015C	Input Capture 4 Buffer Register															xxxx						
IC4TMR	015E	Input Capture 4 Timer															0000						

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-5: OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 4 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets								
OC1CON1	0900	—	—	OCSIDL	OCTSEL[2:0]			—	ENFLTB	ENFLTA	—	OCFLTB	OCFLTA	TRIGMODE	OCM[2:0]			0000								
OC1CON2	0902	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL[4:0]					000C								
OC1RS	0904	Output Compare 1 Secondary Register																								
OC1R	0906	Output Compare 1 Register																								
OC1TMR	0908	Timer Value 1 Register																								
OC2CON1	090A	—	—	OCSIDL	OCTSEL[2:0]			—	ENFLTB	ENFLTA	—	OCFLTB	OCFLTA	TRIGMODE	OCM[2:0]			0000								
OC2CON2	090C	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL[4:0]					000C								
OC2RS	090E	Output Compare 2 Secondary Register																								
OC2R	0910	Output Compare 2 Register																								
OC2TMR	0912	Timer Value 2 Register																								
OC3CON1	0914	—	—	OCSIDL	OCTSEL[2:0]			—	ENFLTB	ENFLTA	—	OCFLTB	OCFLTA	TRIGMODE	OCM[2:0]			0000								
OC3CON2	0916	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL[4:0]					000C								
OC3RS	0918	Output Compare 3 Secondary Register																								
OC3R	091A	Output Compare 3 Register																								
OC3TMR	091C	Timer Value 3 Register																								
OC4CON1	091E	—	—	OCSIDL	OCTSEL[2:0]			—	ENFLTB	ENFLTA	—	OCFLTB	OCFLTA	TRIGMODE	OCM[2:0]			0000								
OC4CON2	0920	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL[4:0]					000C								
OC4RS	0922	Output Compare 4 Secondary Register																								
OC4R	0924	Output Compare 4 Register																								
OC4TMR	0926	Timer Value 4 Register																								

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-6: PTG REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets		
PTGCST	0AC0	PTGEN	—	PTGSIDL	PTGTOGL	—	PTGSWT	PTGSSEN	PTGIVIS	PTGSTRT	PTGWDTO	—	—	—	—	PTGITM[1:0]	0000			
PTGCON	0AC2	PTGCLK[2:0]			PTGDIV[4:0]				PTGPWD[3:0]				—	PTGWDWT[2:0]			0000			
PTGBTE	0AC4	ADCTS[4:1]				IC4TSS	IC3TSS	IC2TSS	IC1TSS	OC4CS	OC3CS	OC2CS	OC1CS	OC4TSS	OC3TSS	OC2TSS	OC1TSS	0000		
PTGHOLD	0AC6	PTGHOLD[15:0]															0000			
PTGT0LIM	0AC8	PTGT0LIM[15:0]															0000			
PTGT1LIM	0ACA	PTGT1LIM[15:0]															0000			
PTGSDLIM	0ACC	PTGSDLIM[15:0]															0000			
PTGC0LIM	0ACE	PTGC0LIM[15:0]															0000			
PTGC1LIM	0AD0	PTGC1LIM[15:0]															0000			
PTGADJ	0AD2	PTGADJ[15:0]															0000			
PTGL0	0AD4	PTGL0[15:0]															0000			
PTGQPTR	0AD6	—	—	—	—	—	—	—	—	—	—	—	—	—	PTGQPTR[4:0]		0000			
PTGQUE0	0AD8	STEP1[7:0]								STEP0[7:0]								0000		
PTGQUE1	0ADA	STEP3[7:0]								STEP2[7:0]								0000		
PTGQUE2	0ADC	STEP5[7:0]								STEP4[7:0]								0000		
PTGQUE3	0ADE	STEP7[7:0]								STEP6[7:0]								0000		
PTGQUE4	0AE0	STEP9[7:0]								STEP8[7:0]								0000		
PTGQUE5	0AE2	STEP11[7:0]								STEP10[7:0]								0000		
PTGQUE6	0AE4	STEP13[7:0]								STEP12[7:0]								0000		
PTGQUE7	0AE6	STEP15[7:0]								STEP14[7:0]								0000		

Legend: \times = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-7: PWM REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTCON	0C00	PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU	SYNCOL	SYNCOEN	SYNCEN	SYNCSRC[2:0]	SEVTPS[3:0]	SEVTPS[3:0]	SEVTPS[3:0]	SEVTPS[3:0]	SEVTPS[3:0]	SEVTPS[3:0]	0000
PTCON2	0C02	—	—	—	—	—	—	—	—	—	—	—	—	—	—	PCLKDIV[2:0]	0000	
PTPER	0C04	—	—	—	—	—	—	—	—	—	—	—	—	—	—	PTPER[15:0]	00F8	
SEVTCMP	0C06	—	—	—	—	—	—	—	—	—	—	—	—	—	—	SEVTCMP[15:0]	0000	
MDC	0C0A	—	—	—	—	—	—	—	—	—	—	—	—	—	—	MDC[15:0]	0000	
CHOP	0C1A	CHPCLKEN	—	—	—	—	—	—	—	—	—	—	—	—	—	CHOPCLK[9:0]	0000	
PWMKEY	0C1E	—	—	—	—	—	—	—	—	—	—	—	—	—	—	PWMKEY[15:0]	0000	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-8: PWM GENERATOR 1 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON1	0C20	FLTSTAT	CLSTAT	TRGSTAT	FLTEN	CLIEN	TRGIEN	ITB	MDCS	DTC[1:0]	DTCP	—	MTBS	CAM	XPRES	IUE	0000	
IOCON1	0C22	PENH	PENL	POLH	POLL	PMOD[1:0]	—	OVRENH	OVRENL	OVRDAT[1:0]	FLTDAT[1:0]	CLDAT[1:0]	SWAP	OSYNC	CO00	CO00	CO00	
FCLCON1	0C24	—	—	—	—	CLSRC[4:0]	—	CLPOL	CLMOD	—	FLTSRC[4:0]	—	FLTPOL	—	FLTMOD[1:0]	—	0000	
PDC1	0C26	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	FFF8	
PHASE1	0C28	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000	
DTR1	0C2A	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000	
ALTDTR1	0C2C	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000	
TRIG1	0C32	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000	
TRGCON1	0C34	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000	
LEBCON1	0C3A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	—	—	—	—	—	—	BCH	BCL	BPHH	BPHL	BPLL
LEBDLY1	0C3C	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000	
AUXCON1	0C3E	—	—	—	—	—	—	BLANKSEL[3:0]	—	—	—	—	—	—	—	—	0000	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-9: PWM GENERATOR 2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets										
PWMCON2	0C40	FLTSTAT	CLSTAT	TRGSTAT	FLTEN	CLEN	TRGEN	ITB	MDCS	DTC[1:0]	DTCP	—	MTBS	CAM	XPRES	IUE	0000											
IOCON2	0C42	PENH	PENL	POLH	POLL	PMOD[1:0]		OVRENH	OVRENL	OVRDAT[1:0]	FLTDAT[1:0]	CLDAT[1:0]		SWAP	OSYNC	C000												
FCLCON2	0C44	—	CLSRC[4:0]				CLPOL	CLMOD	FLTSRC[4:0]				FLTPOL	FLTMOD[1:0]			00F8											
PDC2	0C46	PDC2[15:0]															0000											
PHASE2	0C48	PHASE2[15:0]															0000											
DTR2	0C4A	—	—	DTR2[13:0]														0000										
ALTDTR2	0C4C	—	—	ALTDTR2[13:0]														0000										
TRIG2	0C52	TRGCM[15:0]																0000										
TRGCON2	0C54	TRGDIV[3:0]				—	—	—	—	—	—	—	TRGSTRT[5:0]					0000										
LEBCON2	0C5A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	—	—	—	—	—	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000									
LEBDLY2	0C5C	—	—	—	—	LEB[11:0]															0000							
AUXCON2	0C5E	—	—	—	—	BLANKSEL[3:0]				—	—	CHOPSEL[3:0]			CHOPHEN	CHOPLEN	0000											

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-10: PWM GENERATOR 3 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets											
PWMCON3	0C60	FLTSTAT	CLSTAT	TRGSTAT	FLTEN	CLEN	TRGEN	ITB	MDCS	DTC[1:0]	DTCP	—	MTBS	CAM	XPRES	IUE	0000												
IOCON3	0C62	PENH	PENL	POLH	POLL	PMOD[1:0]		OVRENH	OVRENL	OVRDAT[1:0]	FLTDAT[1:0]	CLDAT[1:0]		SWAP	OSYNC	C000													
FCLCON3	0C64	—	CLSRC[4:0]				CLPOL	CLMOD	FLTSRC[4:0]				FLTPOL	FLTMOD[1:0]			00F8												
PDC3	0C66	PDC3[15:0]																0000											
PHASE3	0C68	PHASE3[15:0]																0000											
DTR3	0C6A	—	—	DTR3[13:0]															0000										
ALTDTR3	0C6C	—	—	ALTDTR3[13:0]															0000										
TRIG3	0C72	TRGCM[15:0]																0000											
TRGCON3	0C74	TRGDIV[3:0]				—	—	—	—	—	—	—	TRGSTRT[5:0]					0000											
LEBCON3	0C7A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	—	—	—	—	—	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000										
LEBDLY3	0C7C	—	—	—	—	LEB[11:0]															0000								
AUXCON3	0C7E	—	—	—	—	BLANKSEL[3:0]				—	—	CHOPSEL[3:0]			CHOPHEN	CHOPLEN	0000												

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: QEI1 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
QEI1CON	01C0	QEIEN	—	QEISIDL	PIMOD[2:0]			IMV[1:0]		—	INTDIV[2:0]			CNTPOL	GATEN	CCM[1:0]		0000	
QEI1IOC	01C2	QCAPEN	FLTREN	QFDIV[2:0]				OUTFNC[1:0]		SWPAB	HOMPOL	IDXPOL	QEBCPOL	QEAPOL	HOME	INDEX	QEBC	QEAP	000x
QEI1STAT	01C4	—	—	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN	PCIIRQ	PCIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN	0000	
POS1CNTL	01C6	POSCNT[15:0]															0000		
POS1CNTH	01C8	POSCNT[31:16]															0000		
POS1HLD	01CA	POSHLD[15:0]															0000		
VEL1CNT	01CC	VELCNT[15:0]															0000		
INT1TMRLL	01CE	INTTMR[15:0]															0000		
INT1TMRH	01D0	INTTMR[31:16]															0000		
INT1HLDL	01D2	INTHLD[15:0]															0000		
INT1HLDH	01D4	INTHLD[31:16]															0000		
INDX1CNTL	01D6	INDXCNT[15:0]															0000		
INDX1CNTH	01D8	INDXCNT[31:16]															0000		
INDX1HLD	01DA	INDXHLD[15:0]															0000		
QEI1GECL	01DC	QEIGEC[15:0]															0000		
QEI1ICL	01DC	QEIIIC[15:0]															0000		
QEI1GECH	01DE	QEIGEC[31:16]															0000		
QEI1ICH	01DE	QEIIIC[31:16]															0000		
QEI1LECL	01E0	QEILEC[15:0]															0000		
QEI1LECH	01E2	QEILEC[31:16]															0000		

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: I2C1 AND I2C2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
I2C1RCV	0200	—	—	—	—	—	—	—	—	I2C1 Receive Register									0000
I2C1TRN	0202	—	—	—	—	—	—	—	—	I2C1 Transmit Register									00FF
I2C1BRG	0204	—	—	—	—	—	—	—	—	I2C1 Baud Rate Generator									0000
I2C1CON	0206	I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000	
I2C1STAT	0208	ACKSTAT	TRSTAT	—	—	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	P	S	R_W	RBF	TBF	0000	
I2C1ADD	020A	—	—	—	—	—	—	—	—	I2C1 Address Register									0000
I2C1MSK	020C	—	—	—	—	—	—	—	—	I2C1 Client Mode Address Mask									0000
I2C2RCV	0210	—	—	—	—	—	—	—	—	I2C2 Receive Register									0000
I2C2TRN	0212	—	—	—	—	—	—	—	—	I2C2 Transmit Register									00FF
I2C2BRG	0214	—	—	—	—	—	—	—	—	I2C2 Baud Rate Generator									0000
I2C2CON	0216	I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000	
I2C2STAT	0218	ACKSTAT	TRSTAT	—	—	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	P	S	R_W	RBF	TBF	0000	
I2C2ADD	021A	—	—	—	—	—	—	—	—	I2C2 Address Register									0000
I2C2MSK	021C	—	—	—	—	—	—	—	—	I2C2 Client Mode Address Mask									0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-13: UART1 AND UART2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	—	UEN[1:0]		WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL[1:0]		STSEL	0000	
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL[1:0]		ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110	
U1TXREG	0224	—	—	—	—	—	—	—	—	UART1 Transmit Register									xxxx
U1RXREG	0226	—	—	—	—	—	—	—	—	UART1 Receive Register									0000
U1BRG	0228	UART1 Baud Rate Generator Prescaler															0000		
U2MODE	0230	UARTEN	—	USIDL	IREN	RTSMD	—	UEN[1:0]		WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL[1:0]		STSEL	0000	
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL[1:0]		ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110	
U2TXREG	0234	—	—	—	—	—	—	—	—	UART2 Transmit Register									xxxx
U2RXREG	0236	—	—	—	—	—	—	—	—	UART2 Receive Register									0000
U2BRG	0238	UART2 Baud Rate Generator Prescaler															0000		

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-14: SPI1 AND SPI2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	—	SPISIDL	—	—	SPIBEC[2:0]			SRMPT	SPIROV	SRXMPT	SISEL[2:0]			SPITBF	SPIRBF	0000
SPI1CON1	0242	—	—	—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE[2:0]			PPRE[1:0]		0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	—	—	—	—	—	—	—	—	—	—	—	FRMDLY	SPIBEN	0000
SPI1BUF	0248	SPI1 Transmit and Receive Buffer Register															0000	
SPI2STAT	0260	SPIEN	—	SPISIDL	—	—	SPIBEC[2:0]			SRMPT	SPIROV	SRXMPT	SISEL[2:0]			SPITBF	SPIRBF	0000
SPI2CON1	0262	—	—	—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE[2:0]			PPRE[1:0]		0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	—	—	—	—	—	—	—	—	—	—	—	FRMDLY	SPIBEN	0000
SPI2BUF	0268	SPI2 Transmit and Receive Buffer Register															0000	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-15: ADC1 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300																	xxxx
ADC1BUF1	0302																	xxxx
ADC1BUF2	0304																	xxxx
ADC1BUF3	0306																	xxxx
ADC1BUF4	0308																	xxxx
ADC1BUF5	030A																	xxxx
ADC1BUF6	030C																	xxxx
ADC1BUF7	030E																	xxxx
ADC1BUF8	0310																	xxxx
ADC1BUF9	0312																	xxxx
ADC1BUFA	0314																	xxxx
ADC1BUFB	0316																	xxxx
ADC1BUFC	0318																	xxxx
ADC1BUFD	031A																	xxxx
ADC1BUFE	031C																	xxxx
ADC1BUFF	031E																	xxxx
AD1CON1	0320	ADON	—	ADSIDL	ADDMABM	—	AD12B	FORM[1:0]		SSRC[2:0]	SSRCG	SIMSAM	ASAM	SAMP	DONE		0000	
AD1CON2	0322	VCFG[2:0]		—	—	CSCNA	CHPS[1:0]	BUFS	SMPI[4:0]		BUFM	ALTS					0000	
AD1CON3	0324	ADRC	—	—			SAMC[4:0]			ADCS[7:0]							0000	
AD1CHS123	0326	—	—	—	—	—	CH123NB[1:0]	CH123SB	—	—	—	—	CH123NA[1:0]	CH123SA			0000	
AD1CHS0	0328	CH0NB	—	—			CH0SB[4:0]	CH0NA	—	—	CH0SA[4:0]						0000	
AD1CSSH	032E	CSS[31:30]	—	—	—		CSS[26:24]	—	—	—	—	—	—	—	—		0000	
AD1CSSL	0330						CSS[15:0]										0000	
AD1CON4	0332	—	—	—	—	—	—	—	ADDMAEN	—	—	—	—	—	DMABL[2:0]		0000	

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-16: CRC REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON1	0640	CRCEN	—	CSIDL	VWORD[4:0]					CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	—	—	—	0000
CRCCON2	0642	—	—	—	DWIDTH[4:0]					—	—	—	PLEN[4:0]					0000
CRCXORL	0644	X[15:1]													—	0000		
CRCXORH	0646	X[31:16]													0000			
CRCDATL	0648	CRC Data Input Low Word													0000			
CRCDATH	064A	CRC Data Input High Word													0000			
CRCWDATL	064C	CRC Result Low Word													0000			
CRCWDATH	064E	CRC Result High Word													0000			

Legend: — = unimplemented, read as '0'. Shaded bits are not used in the operation of the programmable CRC module.

TABLE 4-17: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680	—	—	RP35R[5:0]					—	—	RP20R[5:0]					0000		
RPOR1	0682	—	—	RP37R[5:0]					—	—	RP36R[5:0]					0000		
RPOR2	0684	—	—	RP39R[5:0]					—	—	RP38R[5:0]					0000		
RPOR3	0686	—	—	RP41R[5:0]					—	—	RP40R[5:0]					0000		
RPOR4	0688	—	—	Reserved					—	—	Reserved					0000		
RPOR5	068A	—	—	Reserved					—	—	RP54R[5:0]					0000		
RPOR6	068C	—	—	Reserved					—	—	Reserved					0000		
RPOR7	068E	—	—	Reserved					—	—	—	—	—	—	—	—	0000	
RPOR8	0690	—	—	Reserved					—	—	—	—	—	—	—	—	0000	
RPOR9	0692	—	—	—	—	—	—	—	—	—	—	RP120R[5:0]					0000	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: PERIPHERAL PIN SELECT INPUT REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	—								—	—	—	—	—	—	—	0000	
RPINR1	06A2	—	—	—	—	—	—	—	—	—							0000	
RPINR3	06A6	—	—	—	—	—	—	—	—	—							0000	
RPINR7	06AE	—								—							0000	
RPINR8	06B0	—								—							0000	
RPINR11	06B6	—	—	—	—	—	—	—	—	—							0000	
RPINR12	06B8	—								—							0000	
RPINR14	06BC	—								—							0000	
RPINR15	06BE	—								—							0000	
RPINR18	06C4	—	—	—	—	—	—	—	—	—							0000	
RPINR19	06C6	—	—	—	—	—	—	—	—	—							0000	
RPINR22	06CC	—								—							0000	
RPINR23	06CE	—	—	—	—	—	—	—	—	—							0000	
RPINR37	06EA	—								—	—	—	—	—	—	—	0000	
RPINR38	06EC	—								—	—	—	—	—	—	—	0000	
RPINR39	06EE	—								—							0000	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19: NVM REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0728	WR	WREN	WRERR	NVMSIDL	—	—	—	—	—	—	—	—	—	—	NVMOP[3:0]	0000	
NVMADR	072A															NVMADR[15:0]	0000	
NVMADR	072C	—	—	—	—	—	—	—	—							NVMADR[23:16]	0000	
NVMKEY	072E	—	—	—	—	—	—	—	—	—						NVMKEY[7:0]	0000	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-20: SYSTEM CONTROL REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	—	—	VREGSF	—	CM	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	—		COSC[2:0]		—		NOSC[2:0]		CLKLOCK	IOLOCK	LOCK	—	CF	—	—	OSWEN	Note 2
CLKDIV	0744	ROI		DOZE[2:0]		DOZEN		FRCDIV[2:0]		PLLPOST[1:0]	—			PLLPRE[4:0]			3040	
PLLFB	0746	—	—	—	—	—	—	—			PLLDIV[8:0]						0030	
OSCTUN	0748	—	—	—	—	—	—	—	—	—	—	—	—	TUN[5:0]			0000	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on the Configuration fuses.

TABLE 4-21: REFERENCE CLOCK REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
REFOCON	074E	ROON	—	ROSSLP	ROSEL			RODIV[3:0]		—	—	—	—	—	—	—	0000	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-22: PMD REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QE1MD	PWMMD	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	—	AD1MD	0000	
PMD2	0762	—	—	—	—	IC4MD	IC3MD	IC2MD	IC1MD	—	—	—	—	OC4MD	OC3MD	OC2MD	OC1MD	0000	
PMD3	0764	—	—	—	—	—	CMPMD	—	—	CRCMD	—	—	—	—	—	—	I2C2MD	—	0000
PMD4	0766	—	—	—	—	—	—	—	—	—	—	—	—	REFOMD	CTMUMD	—	—	0000	
PMD6	076A	—	—	—	—	—	PWM3MD	PWM2MD	PWM1MD	—	—	—	—	—	—	—	—	0000	
PMD7	076C	—	—	—	—	—	—	—	—	—	—	—	—	DMA0MD	PTGMD	—	—	0000	
														DMA1MD		—	—		
														DMA2MD		—	—		
														DMA3MD		—	—		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-23: OP AMP/COMPARATOR REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0A80	PSIDL	—	—	—	C4EVT	C3EVT	C2EVT	C1EVT	—	—	—	—	C4OUT	C3OUT	C2OUT	C1OUT	0000
CVRCON	0A82	—	CVR2OE	—	—	—	VREFSEL	—	—	CVREN	CVR1OE	CVR2	CVRSS	CVR[3:0]				0000
CM1CON	0A84	CON	COE	CPOL	—	—	OPMODE	CEVT	COUT	EVPOL[1:0]		—	CREF	—	—	r	r	0000
CM1MSKSRC	0A86	—	—	—	—	SELSRCC[3:0]				SELSRCB[3:0]				SELSRCA[3:0]				0000
CM1MSKCON	0A88	HLMS	—	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM1FLTR	0A8A	—	—	—	—	—	—	—	—	—	CFSEL[2:0]		CFLTREN	CFDIV[2:0]				0000
CM2CON	0A8C	CON	COE	CPOL	—	—	OPMODE	CEVT	COUT	EVPOL[1:0]		—	CREF	—	—	r	r	0000
CM2MSKSRC	0A8E	—	—	—	—	SELSRCC[3:0]				SELSRCB[3:0]				SELSRCA[3:0]				0000
CM2MSKCON	0A90	HLMS	—	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM2FLTR	0A92	—	—	—	—	—	—	—	—	—	CFSEL[2:0]		CFLTREN	CFDIV[2:0]				0000
CM3CON	0A94	CON	COE	CPOL	—	—	OPMODE	CEVT	COUT	EVPOL[1:0]		—	CREF	—	—	r	r	0000
CM3MSKSRC	0A96	—	—	—	—	SELSRCC[3:0]				SELSRCB[3:0]				SELSRCA[3:0]				0000
CM3MSKCON	0A98	HLMS	—	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM3FLTR	0A9A	—	—	—	—	—	—	—	—	—	CFSEL[2:0]		CFLTREN	CFDIV[2:0]				0000
CM4CON	0A9C	CON	COE	CPOL	—	—	—	CEVT	COUT	EVPOL[1:0]		—	CREF	—	—	r	r	0000
CM4MSKSRC	0A9E	—	—	—	—	SELSRCC[3:0]				SELSRCB[3:0]				SELSRCA[3:0]				0000
CM4MSKCON	0AA0	HLMS	—	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM4FLTR	0AA2	—	—	—	—	—	—	—	—	—	CFSEL[2:0]		CFLTREN	CFDIV[2:0]				0000

Legend: — = unimplemented, read as '0'; r = reserved. Reset values are shown in hexadecimal.

TABLE 4-24: CTMU REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CTMUCON1	033A	CTMUEN	—	CTMUSIDL	r	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	—	—	—	—	—	—	—	—	0000
CTMUCON2	033C	EDG1MOD	EDG1POL	EDG1SEL[3:0]				EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL	EDG2SEL[3:0]				—	—	0000
CTMUICON	033E	ITRIM[5:0]						IRNG[1:0]			—	—	—	—	—	—	—	0000

Legend: — = unimplemented, read as '0'; r = reserved. Reset values are shown in hexadecimal.

TABLE 4-25: DMAC REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA0CON	0B00	CHEN	SIZE	DIR	HALF	NULLW	—	—	—	—	—	AMODE[1:0]	—	—	—	—	0000	
DMA0REQ	0B02	FORCE	—	—	—	—	—	—	—	—	—	IRQSEL[7:0]	—	—	—	—	00FF	
DMA0STAL	0B04	—	—	—	—	—	—	—	—	—	—	STA[15:0]	—	—	—	—	0000	
DMA0STAH	0B06	—	—	—	—	—	—	—	—	—	—	STA[23:16]	—	—	—	—	0000	
DMA0STBL	0B08	—	—	—	—	—	—	—	—	—	—	STB[15:0]	—	—	—	—	0000	
DMA0STBH	0B0A	—	—	—	—	—	—	—	—	—	—	STB[23:16]	—	—	—	—	0000	
DMA0PAD	0B0C	—	—	—	—	—	—	—	—	—	—	PAD[15:0]	—	—	—	—	0000	
DMA0CNT	0B0E	—	—	—	—	—	—	—	—	—	—	CNT[13:0]	—	—	—	—	0000	
DMA1CON	0B10	CHEN	SIZE	DIR	HALF	NULLW	—	—	—	—	—	AMODE[1:0]	—	—	—	—	0000	
DMA1REQ	0B12	FORCE	—	—	—	—	—	—	—	—	—	IRQSEL[7:0]	—	—	—	—	00FF	
DMA1STAL	0B14	—	—	—	—	—	—	—	—	—	—	STA[15:0]	—	—	—	—	0000	
DMA1STAH	0B16	—	—	—	—	—	—	—	—	—	—	STA[23:16]	—	—	—	—	0000	
DMA1STBL	0B18	—	—	—	—	—	—	—	—	—	—	STB[15:0]	—	—	—	—	0000	
DMA1STBH	0B1A	—	—	—	—	—	—	—	—	—	—	STB[23:16]	—	—	—	—	0000	
DMA1PAD	0B1C	—	—	—	—	—	—	—	—	—	—	PAD[15:0]	—	—	—	—	0000	
DMA1CNT	0B1E	—	—	—	—	—	—	—	—	—	—	CNT[13:0]	—	—	—	—	0000	
DMA2CON	0B20	CHEN	SIZE	DIR	HALF	NULLW	—	—	—	—	—	AMODE[1:0]	—	—	—	—	0000	
DMA2REQ	0B22	FORCE	—	—	—	—	—	—	—	—	—	IRQSEL[7:0]	—	—	—	—	00FF	
DMA2STAL	0B24	—	—	—	—	—	—	—	—	—	—	STA[15:0]	—	—	—	—	0000	
DMA2STAH	0B26	—	—	—	—	—	—	—	—	—	—	STA[23:16]	—	—	—	—	0000	
DMA2STBL	0B28	—	—	—	—	—	—	—	—	—	—	STB[15:0]	—	—	—	—	0000	
DMA2STBH	0B2A	—	—	—	—	—	—	—	—	—	—	STB[23:16]	—	—	—	—	0000	
DMA2PAD	0B2C	—	—	—	—	—	—	—	—	—	—	PAD[15:0]	—	—	—	—	0000	
DMA2CNT	0B2E	—	—	—	—	—	—	—	—	—	—	CNT[13:0]	—	—	—	—	0000	
DMA3CON	0B30	CHEN	SIZE	DIR	HALF	NULLW	—	—	—	—	—	AMODE[1:0]	—	—	—	—	0000	
DMA3REQ	0B32	FORCE	—	—	—	—	—	—	—	—	—	IRQSEL[7:0]	—	—	—	—	00FF	
DMA3STAL	0B34	—	—	—	—	—	—	—	—	—	—	STA[15:0]	—	—	—	—	0000	
DMA3STAH	0B36	—	—	—	—	—	—	—	—	—	—	STA[23:16]	—	—	—	—	0000	
DMA3STBL	0B38	—	—	—	—	—	—	—	—	—	—	STB[15:0]	—	—	—	—	0000	
DMA3STBH	0B3A	—	—	—	—	—	—	—	—	—	—	STB[23:16]	—	—	—	—	0000	
DMA3PAD	0B3C	—	—	—	—	—	—	—	—	—	—	PAD[15:0]	—	—	—	—	0000	
DMA3CNT	0B3E	—	—	—	—	—	—	—	—	—	—	CNT[13:0]	—	—	—	—	0000	
DMAPWC	0BF0	—	—	—	—	—	—	—	—	—	—	—	—	—	—	PWCOL[3:0]	0000	
DMARQC	0BF2	—	—	—	—	—	—	—	—	—	—	—	—	—	—	RQCOL[3:0]	0000	
DMAPPS	0BF4	—	—	—	—	—	—	—	—	—	—	—	—	—	—	PPST[3:0]	0000	
DMALCA	0BF6	—	—	—	—	—	—	—	—	—	—	—	—	—	—	LSTCH[3:0]	000F	
DSADRL	0BF8	—	—	—	—	—	—	—	—	—	—	DSADR[15:0]	—	—	—	—	0000	
DSADRH	0BFA	—	—	—	—	—	—	—	—	—	—	DSADR[23:16]	—	—	—	—	0000	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-26: PORTA REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12 ⁽¹⁾	Bit 11 ⁽¹⁾	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	—	—	—	TRISA[12:7]						—	—	TRISA4	—	—	TRISA[1:0]	1F93	
PORTA	0E02	—	—	—	RA[12:7]						—	—	RA4	—	—	RA[1:0]	0000	
LATA	0E04	—	—	—	LATA[12:7]						—	—	LATA4	—	—	LA1TA[1:0]	0000	
ODCA	0E06	—	—	—	ODCA[12:7]						—	—	ODCA4	—	—	ODCA[1:0]	0000	
CNENA	0E08	—	—	—	CNIEA[12:7]						—	—	CNIEA4	—	—	CNIEA[1:0]	0000	
CNPUA	0E0A	—	—	—	CNPUA[12:7]						—	—	CNPUA4	—	—	CNPUA[1:0]	0000	
CNPDA	0E0C	—	—	—	CNPDA[12:7]						—	—	CNPDA4	—	—	CNPDA[1:0]	0000	
ANSELA	0E0E	—	—	—	ANSA[12:11]	—	—	—	—	—	—	—	ANS4	—	—	ANSA[1:0]	1813	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RA11 and RA12 are not available I/Os on this device and should be configured as digital outputs, driven low, to ensure minimum noise and current consumption.

TABLE 4-27: PORTB REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10	TRISB[15:0]												FFFF				
PORTB	0E12	RB[15:0]												xxxx				
LATB	0E14	LATB[15:0]												xxxx				
ODCB	0E16	ODCB[15:0]												0000				
CNENB	0E18	CNIEB[15:0]												0000				
CNPUB	0E1A	CNPUB[15:0]												0000				
CNPDB	0E1C	CNPDB[15:0]												0000				
ANSELB	0E1E	—	—	—	—	—	—	—	ANS8	—	—	—	—	ANSB[3:0]	010F			

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-28: PORTC REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13 ⁽¹⁾	Bit 12	Bit 11 ⁽¹⁾	Bit 10 ⁽¹⁾	Bit 9 ⁽¹⁾	Bit 8 ⁽¹⁾	Bit 7 ⁽¹⁾	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E20	TRISC15	—								TRISC[13:0]						FFFF	
PORTC	0E22	RC15	—								RC[13:0]						xxxx	
LATC	0E24	LATC15	—								LATC[13:0]						xxxx	
ODCC	0E26	ODCC15	—								ODCC[13:0]						0000	
CNEN	0E28	CNIEC15	—								CNIEC[13:0]						0000	
CNPUC	0E2A	CNPUC15	—								CNPUC[13:0]						0000	
CNPDC	0E2C	CNPDC15	—								CNPDC[13:0]						0000	
ANSEL	0E2E	—	—	—	—	ANSC11	—	—	—	—	—	—	—	—	—	—	ANSC[2:0]	
																	0807	

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RC7, RC8, RC9, RC10, RC11 and RC13 are not available I/Os on this device and should be configured as digital outputs, driven low, to ensure minimum noise and current consumption.

TABLE 4-29: PORTD REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8 ⁽¹⁾	Bit 7	Bit 6 ⁽¹⁾	Bit 5 ⁽¹⁾	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	0E30	—	—	—	—	—	—	—	TRISD8	—	TRISD[6:5]		—	—	—	—	—	0160
PORTD	0E32	—	—	—	—	—	—	—	RD8	—	RD[6:5]		—	—	—	—	—	xxxx
LATD	0E34	—	—	—	—	—	—	—	LATD8	—	LATD[6:5]		—	—	—	—	—	xxxx
ODCD	0E36	—	—	—	—	—	—	—	ODCD8	—	ODCD[6:5]		—	—	—	—	—	0000
CNEND	0E38	—	—	—	—	—	—	—	CNIED8	—	CNIED[6:5]		—	—	—	—	—	0000
CNPUD	0E3A	—	—	—	—	—	—	—	CNPUD8	—	CNPUD[6:5]		—	—	—	—	—	0000
CNPDD	0E3C	—	—	—	—	—	—	—	CNPDD8	—	CNPDD[6:5]		—	—	—	—	—	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RD5, RD6 and RD8 are not available I/Os on this device and should be configured as digital outputs, driven low, to ensure minimum noise and current consumption.

TABLE 4-30: PORTE REGISTER MAP

File Name	Addr.	Bit 15 ⁽¹⁾	Bit 14 ⁽¹⁾	Bit 13 ⁽¹⁾	Bit 12 ⁽¹⁾	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	0E40	TRISE[15:12]					—	—	—	—	—	—	—	—	—	—	—	F000
PORTE	0E42	RE[15:12]					—	—	—	—	—	—	—	—	—	—	xxxx	
LATE	0E44	LATE[15:12]					—	—	—	—	—	—	—	—	—	—	xxxx	
ODCE	0E46	ODCE[15:12]					—	—	—	—	—	—	—	—	—	—	0000	
CNENE	0E48	CNIEE[15:12]					—	—	—	—	—	—	—	—	—	—	0000	
CNPUE	0E4A	CNPUE[15:12]					—	—	—	—	—	—	—	—	—	—	0000	
CNPDE	0E4C	CNPDE[15:12]					—	—	—	—	—	—	—	—	—	—	0000	
ANSELE	0E4E	ANSE[15:12]					—	—	—	—	—	—	—	—	—	—	F000	

Legend: \times = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RE12, RE13, RE14 and RE15 are not available I/Os on this device and should be configured as digital outputs, driven low, to ensure minimum noise and current consumption.

TABLE 4-31: PORTF REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1 ⁽¹⁾	Bit 0 ⁽¹⁾	All Resets
TRISF	0E50	—	—	—	—	—	—	—	—	—	—	—	—	—	—	TRISF[1:0]	0003	
PORTF	0E52	—	—	—	—	—	—	—	—	—	—	—	—	—	—	RF[1:0]	xxxx	
LATF	0E54	—	—	—	—	—	—	—	—	—	—	—	—	—	—	LATF[1:0]	xxxx	
ODCF	0E56	—	—	—	—	—	—	—	—	—	—	—	—	—	—	ODCF[1:0]	0000	
CNENF	0E58	—	—	—	—	—	—	—	—	—	—	—	—	—	—	CNIEF[1:0]	0000	
CNPUF	0E5A	—	—	—	—	—	—	—	—	—	—	—	—	—	—	CNPUF[1:0]	0000	
CNPDF	0E5C	—	—	—	—	—	—	—	—	—	—	—	—	—	—	CNPDF[1:0]	0000	

Legend: \times = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

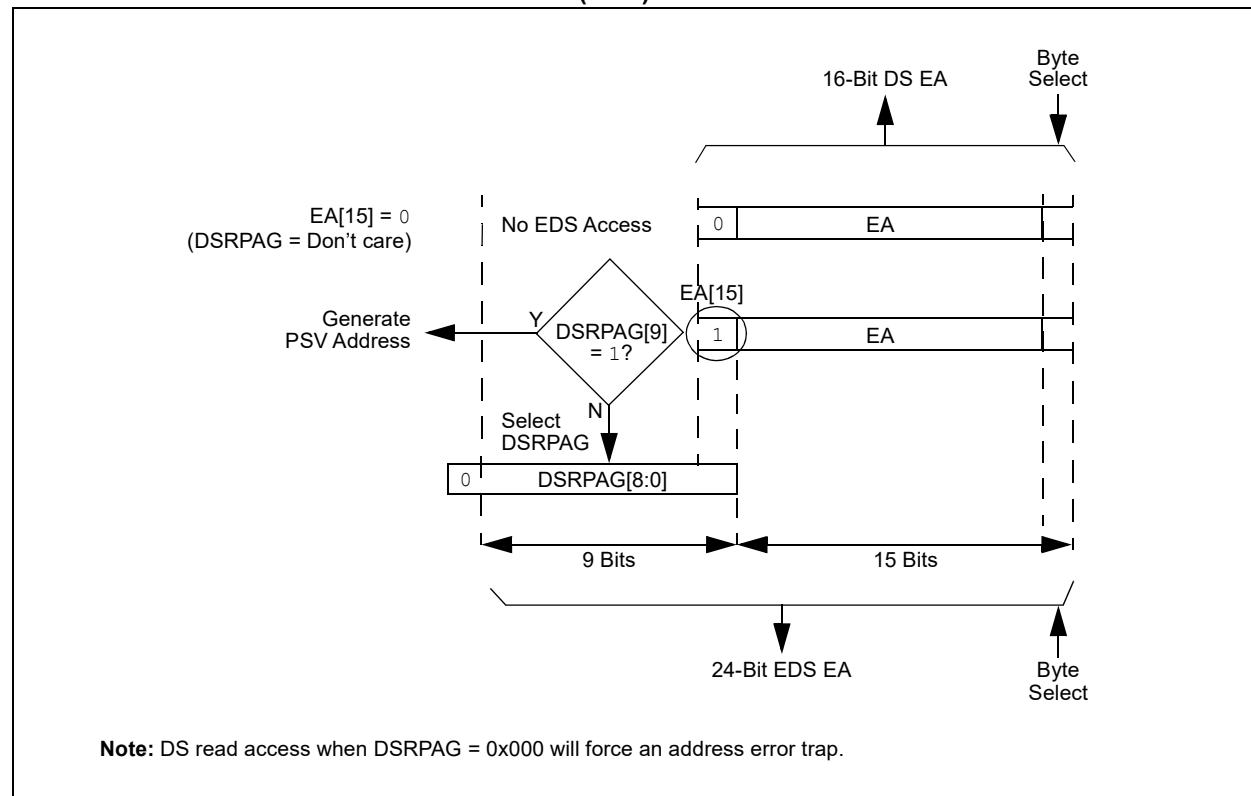
Note 1: RF0 and RF1 are not available I/Os on this device and should be configured as digital outputs, driven low, to ensure minimum noise and current consumption.

TABLE 4-32: PORTG REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9 ⁽¹⁾	Bit 8	Bit 7 ⁽¹⁾	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	0E60	—	—	—	—	—	—	TRISG[9:6]					—	—	—	—	03C0	
PORTG	0E62	—	—	—	—	—	—	RG[9:6]					—	—	—	—	xxxx	
LATG	0E64	—	—	—	—	—	—	LATG[9:6]					—	—	—	—	xxxx	
ODCG	0E66	—	—	—	—	—	—	ODCG[9:6]					—	—	—	—	0000	
CNENG	0E68	—	—	—	—	—	—	CNIEG[9:6]					—	—	—	—	0000	
CNPUG	0E6A	—	—	—	—	—	—	CNPUG[9:6]					—	—	—	—	0000	
CNPDG	0E6C	—	—	—	—	—	—	CNPDG9					—	—	—	—	0000	

Legend: \times = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RG7 and RG9 are not available I/Os on this device and should be configured as digital outputs, driven low, to ensure minimum noise and current consumption.


4.4.1 PAGED MEMORY SCHEME

The dsPIC33EDV64MC205 device architecture extends the available Data Space through a paging scheme, which allows the available Data Space to be accessed using `MOV` instructions in a linear fashion for pre-modified and post-modified Effective Addresses (EA). The upper half of the base Data Space address is used in conjunction with the Data Space Page registers, the 10-bit Read Page register (DSRPAG) or the 9-bit Write Page register (DSWPAG), to form an Extended Data Space (EDS)

address or Program Space Visibility (PSV) address. The Data Space Page registers are located in the SFR space.

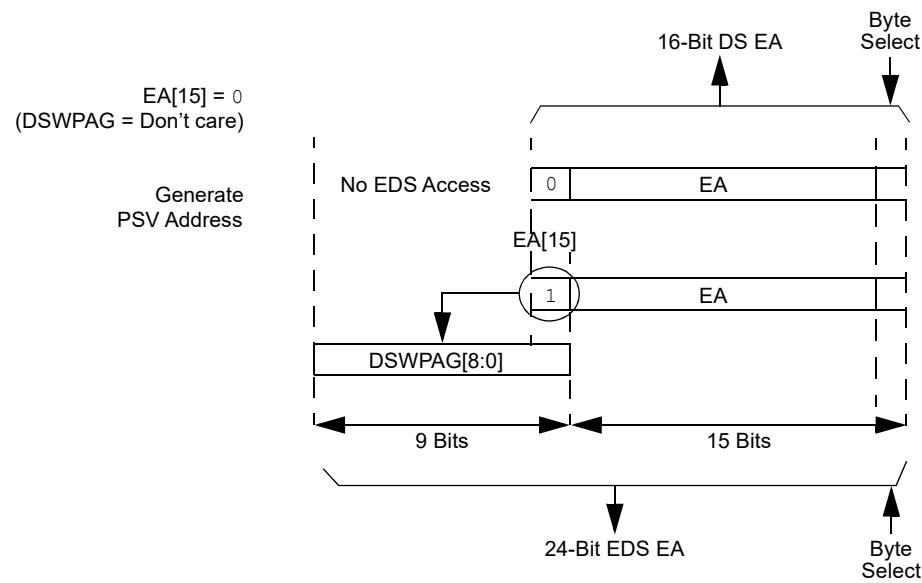
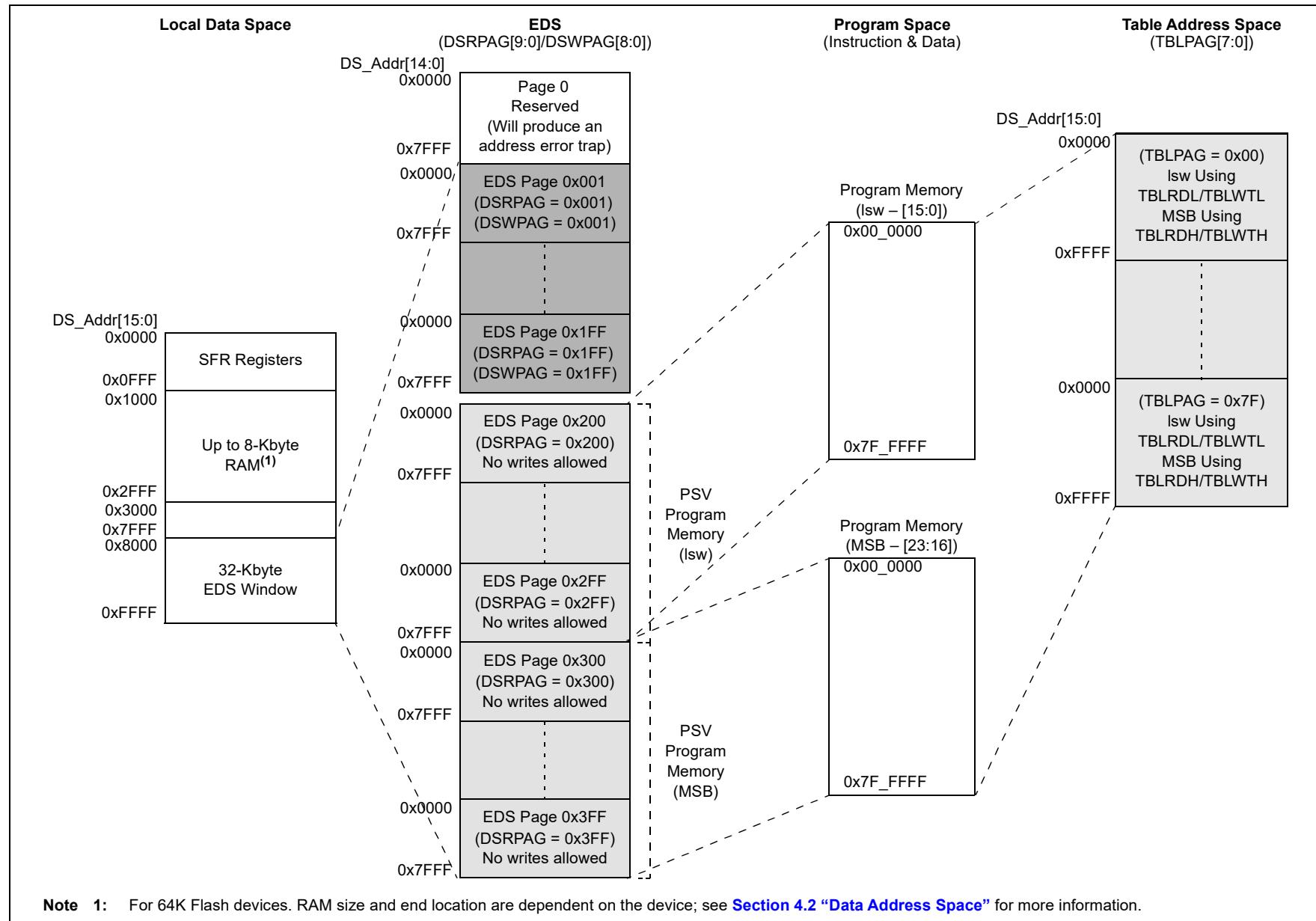

Construction of the EDS address is shown in [Figure 4-4](#). When $DSRPAG[9] = 0$ and the base address bit, $EA[15] = 1$, the $DSRPAG[8:0]$ bits are concatenated onto $EA[14:0]$ to form the 24-bit EDS read address. Similarly, when the base address bit, $EA[15] = 1$, the $DSWPAG[8:0]$ bits are concatenated onto $EA[14:0]$ to form the 24-bit EDS write address.

FIGURE 4-4: EXTENDED DATA SPACE (EDS) READ ADDRESS GENERATION

dsPIC33EDV64MC205

FIGURE 4-5: EXTENDED DATA SPACE (EDS) WRITE ADDRESS GENERATION



Note: DS read access when DSRPAG = 0x000 will force an address error trap.

The paged memory scheme provides access to multiple 32-Kbyte windows in the EDS and PSV memory. The Data Space Page registers, DSxPAG, in combination with the upper half of the Data Space address can provide up to 16 Mbytes of additional address space in the EDS and 8 Mbytes (DSRPAG only) of PSV address space. The paged data memory space is shown in [Example 4-6](#).

The Program Space (PS) can be accessed with a DSRPAG of 0x200 or greater. Only reads from PS are supported using the DSRPAG. Writes to PS are not supported, so DSWPAG is dedicated to DS, including EDS only. The Data Space and EDS can be read from, and written to, using DSRPAG and DSWPAG, respectively.

FIGURE 4-6: PAGED DATA MEMORY SPACE

dsPIC33EDV64MC205

Allocating different Page registers for read and write access allows the architecture to support data movement between different pages in data memory. This is accomplished by setting the DSRPAG register value to the page from which you want to read, and configuring the DSWPAG register to the page to which it needs to be written. Data can also be moved from different PSV to EDS pages, by configuring the DSRPAG and DSWPAG registers to address PSV and EDS space, respectively. The data can be moved between pages by a single instruction.

When an EDS or PSV page overflow or underflow occurs, EA[15] is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the EDS or PSV pages can occur at the page boundaries when:

- The initial address prior to modification addresses an EDS or PSV page
- The EA calculation uses Pre-Modified or Post-Modified Register Indirect Addressing; however, this does not include Register Offset Addressing

In general, when an overflow is detected, the DSxPAG register is incremented and the EA[15] bit is set to keep the base address within the EDS or PSV window. When an underflow is detected, the DSxPAG register is decremented and the EA[15] bit is set to keep the base address within the EDS or PSV window. This creates a linear EDS and PSV address space, but only when using Register Indirect Addressing modes.

Exceptions to the operation described above arise when entering and exiting the boundaries of Page 0, EDS and PSV spaces. [Table 4-33](#) lists the effects of overflow and underflow scenarios at different boundaries.

In the following cases, when overflow or underflow occurs, the EA[15] bit is set and the DSxPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

- Register Indirect with Register Offset Addressing
- Modulo Addressing
- Bit-Reversed Addressing

TABLE 4-33: OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0, EDS and PSV SPACE BOUNDARIES^(2,3,4)

O/U, R/W	Operation	Before			After		
		DSxPAG	DS EA[15]	Page Description	DSxPAG	DS EA[15]	Page Description
O, Read	[++Wn] or [Wn++]	DSRPAG = 0x1FF	1	EDS: Last page	DSRPAG = 0x1FF	0	See Note 1
O, Read		DSRPAG = 0x2FF	1	PSV: Last lsw page	DSRPAG = 0x300	1	PSV: First MSB page
O, Read		DSRPAG = 0x3FF	1	PSV: Last MSB page	DSRPAG = 0x3FF	0	See Note 1
O, Write		DSWPAG = 0x1FF	1	EDS: Last page	DSWPAG = 0x1FF	0	See Note 1
U, Read	[--Wn] or [Wn--]	DSRPAG = 0x001	1	PSV page	DSRPAG = 0x001	0	See Note 1
U, Read		DSRPAG = 0x200	1	PSV: First lsw page	DSRPAG = 0x200	0	See Note 1
U, Read		DSRPAG = 0x300	1	PSV: First MSB page	DSRPAG = 0x2FF	1	PSV: Last lsw page

Legend: O = Overflow, U = Underflow, R = Read, W = Write

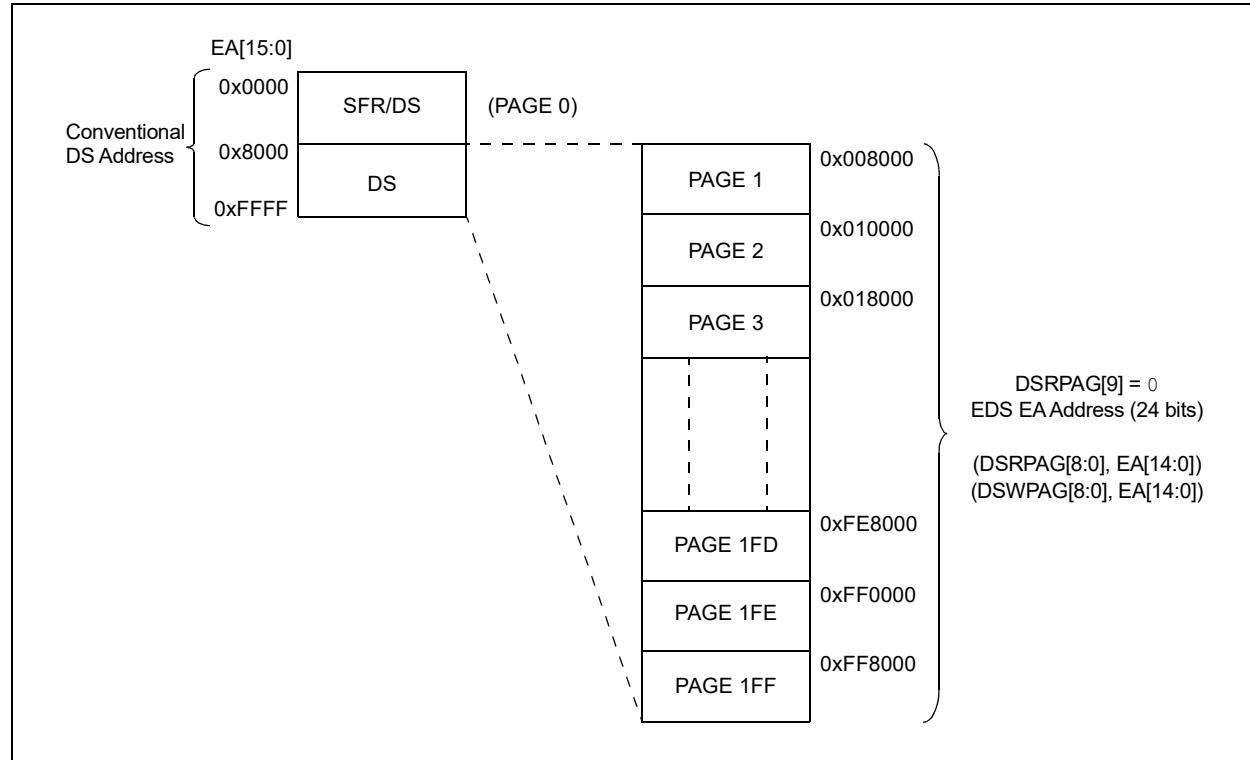
Note 1: The Register Indirect Addressing now addresses a location in the base Data Space (0x0000-0x8000).

- 2: An EDS access with DSxPAG = 0x000 will generate an address error trap.
- 3: Only reads from PS are supported using DSRPAG. An attempt to write to PS using DSWPAG will generate an address error trap.
- 4: Pseudolinear Addressing is not supported for large offsets.

4.4.2 EXTENDED X DATA SPACE

The lower portion of the base address space range, between 0x0000 and 0x7FFF, is always accessible regardless of the contents of the Data Space Page registers. It is indirectly addressable through the register indirect instructions. It can be regarded as being located in the default EDS Page 0 (i.e., EDS address range of 0x000000 to 0x007FFF with the base address bit, EA[15] = 0, for this address range). However, Page 0 cannot be accessed through the upper 32 Kbytes, 0x8000 to 0xFFFF, of base Data Space, in combination with DSRPAG = 0x000 or DSWPAG = 0x000. Consequently, DSRPAG and DSWPAG are initialized to 0x001 at Reset.

Note 1: DSxPAG should not be used to access Page 0. An EDS access with DSxPAG set to 0x000 will generate an address error trap.


2: Clearing the DSxPAG in software has no effect.

The remaining pages, including both EDS and PSV pages, are only accessible using the DSRPAG or DSWPAG registers in combination with the upper 32 Kbytes, 0x8000 to 0xFFFF, of the base address, where base address bit, EA[15] = 1.

For example, when DSRPAG = 0x001 or DSWPAG = 0x001, accesses to the upper 32 Kbytes, 0x8000 to 0xFFFF, of the Data Space will map to the EDS address range of 0x008000 to 0x00FFFF. When DSRPAG = 0x002 or DSWPAG = 0x002, accesses to the upper 32 Kbytes of the Data Space will map to the EDS address range of 0x010000 to 0x017FFF and so on, as shown in the EDS memory map in [Figure 4-7](#).

For more information on the PSV page access using Data Space Page registers, refer to [Section 5.0 “Program Space Visibility from Data Space”](#) in the “[dsPIC33/PIC24 Program Memory](#)” (DS70000613) of the “[dsPIC33/PIC24 Family Reference Manual](#)”.

FIGURE 4-7: EDS MEMORY MAP

dsPIC33EDV64MC205

4.4.3 DATA MEMORY ARBITRATION AND BUS INITIATOR PRIORITY

EDS accesses from bus initiators in the system are arbitrated.

The arbiter for data memory (including EDS) arbitrates between the CPU, the DMA and the ICD module. In the event of coincidental access to a bus by the bus initiators, the arbiter determines which bus initiator access has the highest priority. The other bus initiators are suspended and processed after the access of the bus by the bus initiator with the highest priority.

By default, the CPU is Bus Initiator 0 (M0) with the highest priority and the ICD is Bus Initiator 4 (M4) with the lowest priority. The remaining bus initiator (DMA Controller) is allocated to M3 (M1 and M2 are reserved and cannot be used). The user application may raise or lower the priority of the DMA Controller to be above that of the CPU by setting the appropriate bits in the EDS Bus Initiator Priority Control (MSTRPR) register. All bus initiators with raised priorities will maintain the same priority relationship relative to each other (i.e., M1 being highest and M3 being lowest, with M2 in between). Also, all the bus initiators with priorities

below that of the CPU maintain the same priority relationship relative to each other. The priority schemes for bus initiators with different MSTRPR values are tabulated in [Table 4-34](#).

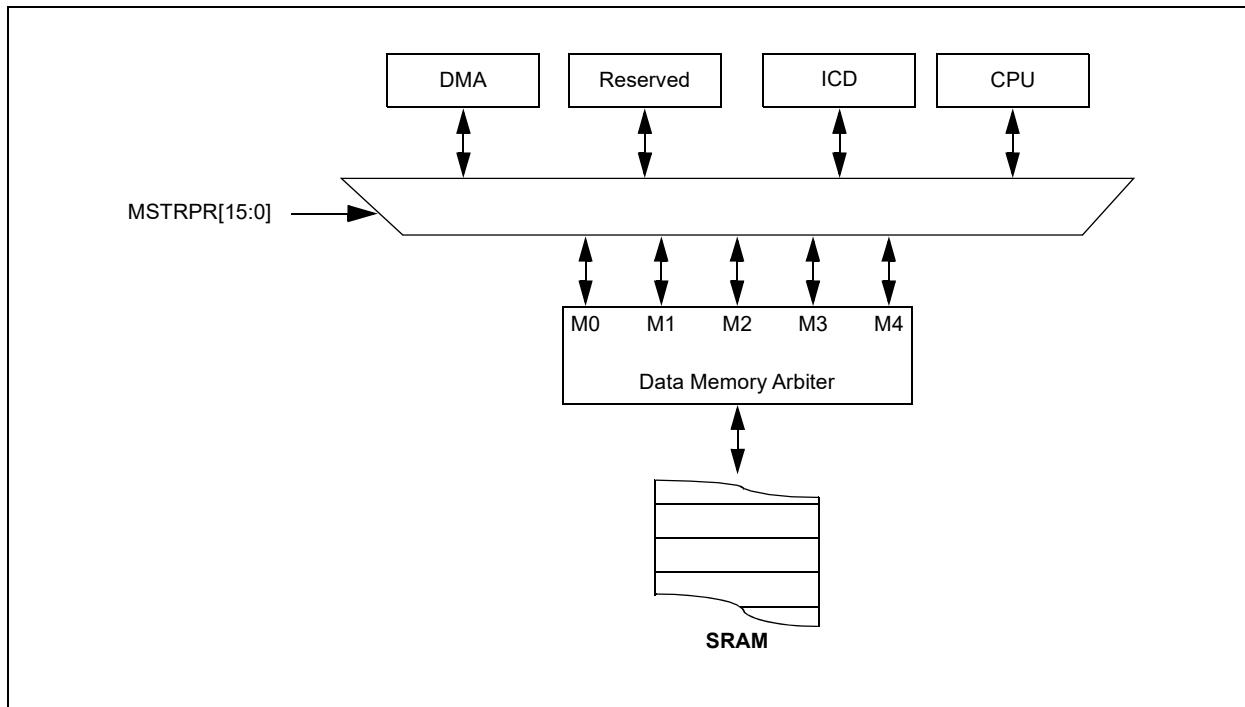

This bus initiator priority control allows the user application to manipulate the real-time response of the system, either statically during initialization or dynamically in response to real-time events.

TABLE 4-34: DATA MEMORY BUS ARBITER PRIORITY

Priority	MSTRPR[15:0] Bit Setting ⁽¹⁾	
	0x0000	0x0020
M0 (highest)	CPU	DMA
M1	Reserved	CPU
M2	Reserved	Reserved
M3	DMA	Reserved
M4 (lowest)	ICD	ICD

Note 1: All other values of MSTRPR[15:0] are reserved.

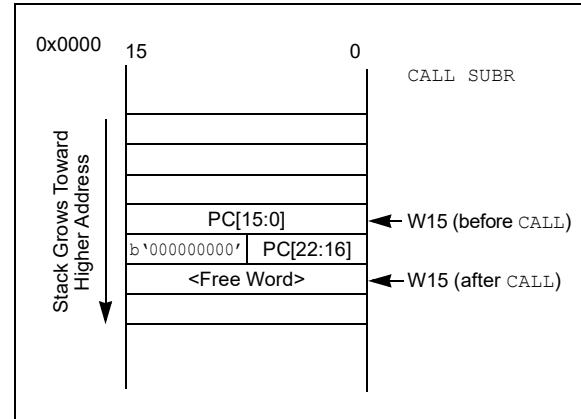
FIGURE 4-8: ARBITER ARCHITECTURE

4.4.4 SOFTWARE STACK

The W15 register serves as a dedicated Software Stack Pointer (SSP) and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating of the Stack Pointer (for example, creating stack frames).

Note: To protect against misaligned stack accesses, W15[0] is fixed to '0' by the hardware.

W15 is initialized to 0x1000 during all Resets. This address permits stack availability for non-maskable trap exceptions. These can occur before the SSP is initialized by the user software. You can reprogram the SSP during initialization to any location within Data Space.


The SSP always points to the first available free word and fills the software stack working from lower toward higher addresses. [Figure 4-9](#) illustrates how it pre-decrements for a stack pop (read) and post-increments for a stack push (writes).

When the PC is pushed onto the stack, PC[15:0] are pushed onto the first available stack word, then PC[22:16] are pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in [Figure 4-9](#). During exception processing, the MSB of the PC is concatenated with the lower eight bits of the CPU STATUS Register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

Note 1: To maintain system Stack Pointer (W15) coherency, W15 is never subject to (EDS) paging, and is therefore restricted to an address range of 0x0000 to 0xFFFF. The same applies to the W14 when used as a Stack Frame Pointer (SFA = 1).

2: As the stack can be placed in, and can access X and Y spaces, care must be taken regarding its use, particularly with regard to local automatic variables in a C development environment.

FIGURE 4-9: CALL STACK FRAME

4.5 Instruction Addressing Modes

The addressing modes shown in [Table 4-35](#) form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the `MAC` class of instructions differ from those in the other instruction types.

4.5.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a Working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the `MUL` instruction), which writes the result to a register or register pair. The `MOV` instruction allows additional flexibility and can access the entire Data Space.

4.5.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2
where, Operand 1 is always a Working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can either be a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

TABLE 4-35: FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn form the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn form the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

4.5.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the `MOV` instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit `Wb` (Register Offset) field is shared by both source and destination (but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.5.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (`CLR`, `ED`, `EDAC`, `MAC`, `MPY`, `MPY.N`, `MOVSAC` and `MSC`), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the Data Pointers through Register Indirect tables.

The Two-Source Operand Prefetch registers must be members of the set: $\{W8, W9, W10, W11\}$. For data reads, `W8` and `W9` are always directed to the X RAGU, and `W10` and `W11` are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must therefore, be valid addresses within X Data Space for `W8` and `W9`, and Y Data Space for `W10` and `W11`.

Note: Register Indirect with Register Offset Addressing mode is available only for `W9` (in X space) and `W11` (in Y space).

In summary, the following addressing modes are supported by the MAC class of instructions:

- Register Indirect
- Register Indirect Post-Modified by 2
- Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.5.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, `BRA` (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the `DISI` instruction uses a 14-bit unsigned literal field. In some instructions, such as `ULNK`, the source of an operand or result is implied by the opcode itself. Certain operations, such as a `NOP`, do not have any operands.

4.6 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either Data or Program Space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into Program Space) and Y Data Spaces. Modulo Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a Bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

Note: Modulo Addressing has address alignment restrictions for the buffer start or end address. Refer to “**Data Memory**” (www.microchip.com/DS70595) for more information.

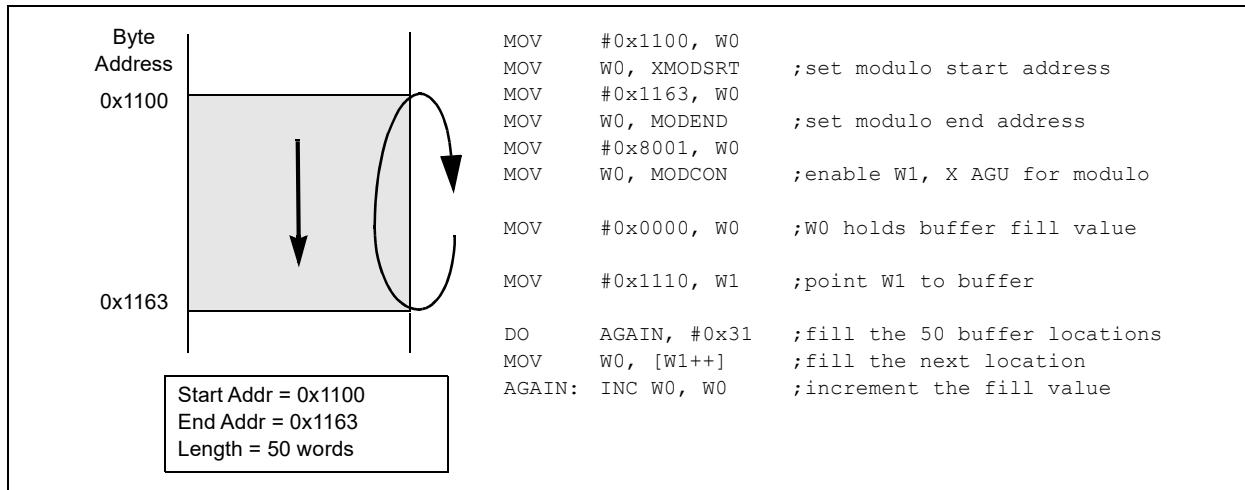
4.6.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified, and loaded into the 16-bit Modulo Buffer Address registers: XMDSRT, XMODEND, YMDSRT and YMODEND (see [Table 4-1](#)).

Note: Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.6.2 W ADDRESS REGISTER SELECTION


The Modulo and Bit-Reversed Addressing Control register, MODCON, contains enable flags as well as a W register field to specify the W Address registers. The XWM[3:0] and YWM[3:0] bit fields select the registers that operate with Modulo Addressing:

- If XWM[3:0] = 1111, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM[3:0] = 1111, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON[3:0] (see [Table 4-1](#)). Modulo Addressing is enabled for X Data Space when XWM[3:0] bits are set to any value other than ‘1111’ and the XMODEN bit is set (MODCON[15]).

The Y Address Space Pointer W register (YWM), to which Modulo Addressing is to be applied, is stored in MODCON[7:4]. Modulo Addressing is enabled for Y Data Space when YWM[3:0] is set to any value other than ‘1111’ and the YMODEN bit is set at MODCON[14].

FIGURE 4-10: MODULO ADDRESSING OPERATION EXAMPLE

4.6.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than, or greater than, the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (such as [W7 + W2]) is used, Modulo Addressing correction is performed but the contents of the register remain unchanged.

4.7 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.7.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled when all these conditions are met:

- BWMx bits (W register selection) in the MODCON register are any value other than '1111' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XBREV[14:0] is the Bit-Reversed Addressing modifier, or 'pivot point', which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note: All bit-reversed EA calculations assume word-sized data (LSb of every EA is always clear). The XBREVx value is scaled accordingly to generate compatible (byte) addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XBREVx) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data are a requirement, the LSb of the EA is ignored (and always clear).

Note: Modulo Addressing and Bit-Reversed Addressing can be enabled simultaneously using the same W register, but Bit-Reversed Addressing operation will always take precedence for data writes when enabled.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV[15]) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

dsPIC33EDV64MC205

FIGURE 4-11: BIT-REVERSED ADDRESSING EXAMPLE

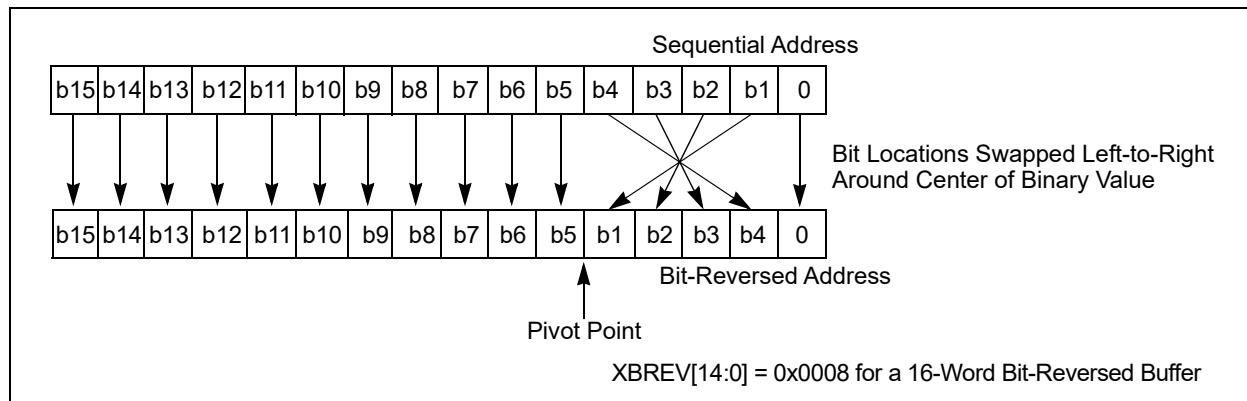


TABLE 4-36: BIT-REVERSED ADDRESSING SEQUENCE (16-ENTRY)

Normal Address					Bit-Reversed Address				
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

4.8 Interfacing Program and Data Memory Spaces

The dsPIC33EDV64MC205 device architecture uses a 24-bit wide Program Space and a 16-bit wide Data Space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the Program Space. To use these data successfully, they must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the architecture of the dsPIC33EDV64MC205 device provides two methods by which Program Space can be accessed during operation:

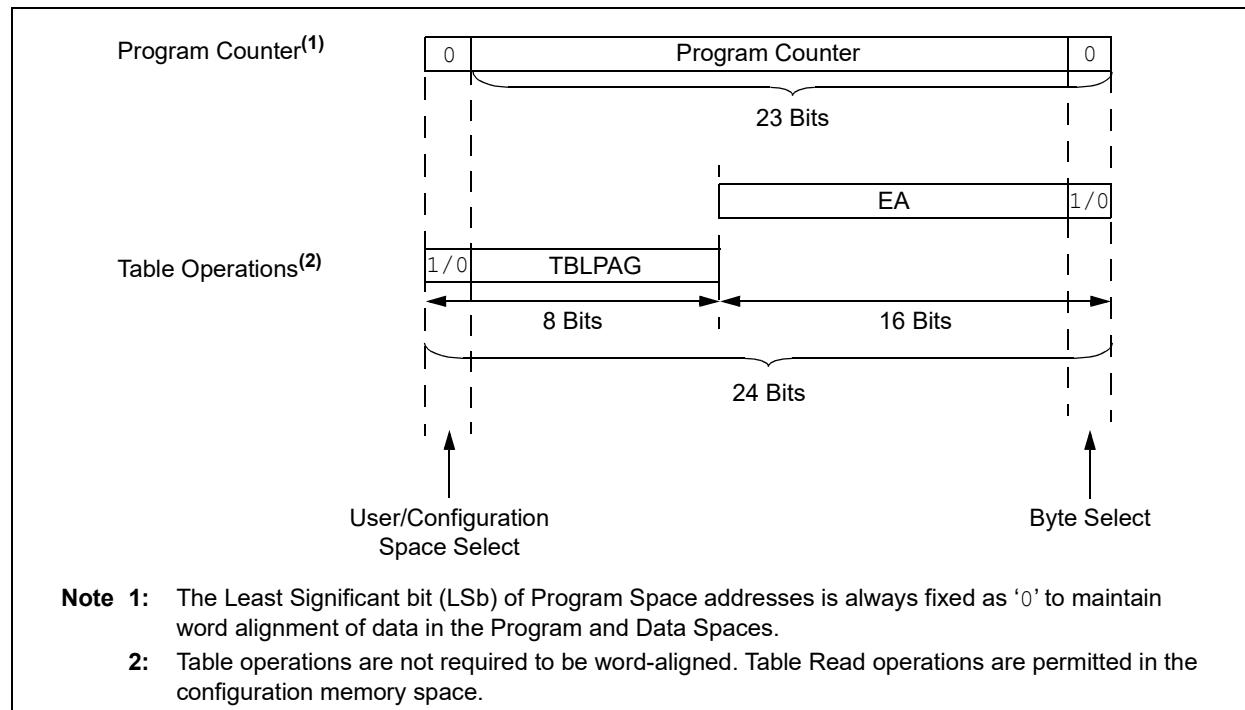

- Using table instructions to access individual bytes or words anywhere in the Program Space
- Remapping a portion of the Program Space into the Data Space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

TABLE 4-37: PROGRAM SPACE ADDRESS CONSTRUCTION

Access Type	Access Space	Program Space Address				
		[23]	[22:16]	[15]	[14:1]	[0]
Instruction Access (Code Execution)	User	0	PC[22:1]			0
		0xx	xxxx	xxxx	xxxx	xxxx0
TBLRD/TBLWT (Byte/Word Read/Write)	User	TBLPAG[7:0]		Data EA[15:0]		
		0xxx	xxxx	xxxx	xxxx	xxxx
	Configuration	TBLPAG[7:0]		Data EA[15:0]		
		1xxx	xxxx	xxxx	xxxx	xxxx

FIGURE 4-12: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

dsPIC33EDV64MC205

4.8.1 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

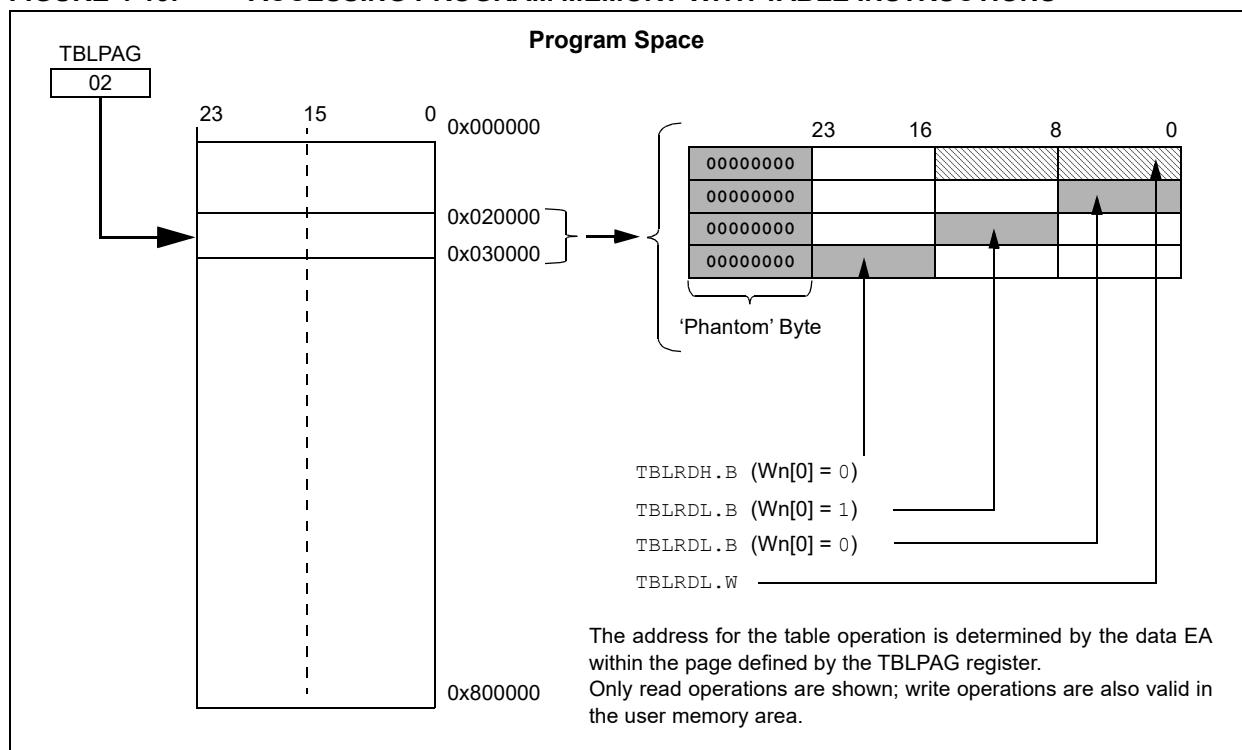
The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the Program Space without going through Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a Program Space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from Program Space. Both function as either byte or word operations.

- **TBLRDL (Table Read Low):**

- In Word mode, this instruction maps the lower word of the Program Space location (P[15:0]) to a data address (D[15:0])
- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.


- **TBLRDH (Table Read High):**

- In Word mode, this instruction maps the entire upper word of a program address (P[23:16]) to a data address. The 'phantom' byte (D[15:8]) is always '0'.
- In Byte mode, this instruction maps the upper or lower byte of the program word to D[7:0] of the data address in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a Program Space address. The details of their operation are explained in **Section 5.0 “Flash Program Memory”**.

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG[7] = 0, the table page is located in the user memory space. When TBLPAG[7] = 1, the page is located in configuration space.

FIGURE 4-13: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

5.0 FLASH PROGRAM MEMORY

Note 1: This data sheet summarizes the features of the dsPIC33EDV64MC205 device. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to “**Flash Programming**” (www.microchip.com/DS70000609) in the “*dsPIC33/PIC24 Family Reference Manual*”.

2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 “Memory Organization”** in this data sheet for device-specific register and bit information.

The dsPIC33EDV64MC205 device contains internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

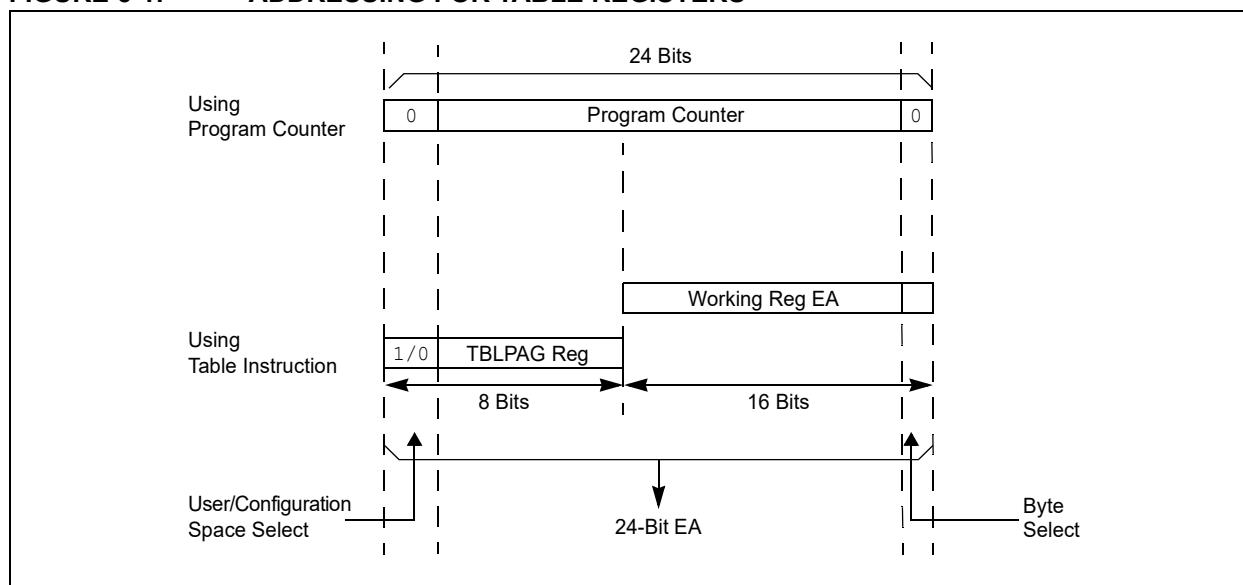
Flash memory can be programmed in two ways:

- In-Circuit Serial Programming™ (ICSP™) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows for the dsPIC33EDV64MC205 device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (Vss) and Master

Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user application can write program memory data, a single program memory word, and erase program memory in blocks or ‘pages’ of 1024 instructions (3072 bytes) at a time.


5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits[7:0] of the TBLPAG register and the Effective Address (EA) from a W register, specified in the table instruction, as shown in **Figure 5-1**.

The TBLRDL and the TBLWTL instructions are used to read or write to bits[15:0] of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits[23:16] of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

5.2 RTSP Operation

RTSP allows the user application to erase a single page of memory and to program two instruction words at a time. For the page size of the device, refer to [Table 1](#).

For more information on erasing and programming Flash memory, refer to “[Flash Programming](#)” (DS70000609) in the “*dsPIC33/PIC24 Family Reference Manual*”.

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

For erase and program times, refer to Parameters [D137a](#) and [D137b](#) (Page Erase Time), and [D138a](#) and [D138b](#) (Word Write Cycle Time) in [Table 30-14](#) in [Section 30.0 “Electrical Characteristics”](#).

Setting the WR bit (NVMCON[15]) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program two adjacent words (24 bits x 2) of program Flash memory at a time on every other word address boundary (0x000002, 0x000006, 0x00000A, etc.). To do this, it is necessary to erase the page that contains the desired address of the location the user wants to change.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPs.

Refer to [Flash Programming](#)” (DS70000609) in the “*dsPIC33/PIC24 Family Reference Manual*” for details and codes examples on programming using RTSP.

5.4 Flash Memory Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this [link](#), contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser:
<http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en555464>

5.4.1 KEY RESOURCES

- “[Flash Programming](#)” (DS70000609) in the “*dsPIC33/PIC24 Family Reference Manual*”
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related “*dsPIC33/PIC24 Family Reference Manual*” Sections
- Development Tools

5.5 Control Registers

Four SFRs are used to erase and write the program Flash memory: NVMCON, NVMKEY, NVMADRH and NVMADRL.

The NVMCON register ([Register 5-1](#)) enables and initiates Flash memory erase and write operations.

NVMKEY ([Register 5-4](#)) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register.

There are two NVM Address registers: NVMADRH and NVMADRL. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected word for programming operations or the selected page for erase operations.

The NVMADRH register is used to hold the upper eight bits of the EA, while the NVMADRL register is used to hold the lower 16 bits of the EA.

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER

R/SO-0 ⁽⁶⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	NVMSIDL ⁽²⁾	—	—	—	—
bit 15	bit 8						

U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾			
—	—	—	—	NVMOP[3:0] ^(3,4)						
bit 7	bit 0									

Legend:	SO = Settable Only bit
R = Readable bit	W = Writable bit
-n = Value at POR	'1' = Bit is set

bit 15	WR: Write Control bit ⁽¹⁾
	1 = Initiates a Flash memory program or erase operation; the operation is self-timed and the bit is cleared by hardware once the operation is complete
	0 = Program or erase operation is complete and inactive
bit 14	WREN: Write Enable bit ⁽¹⁾
	1 = Enables Flash program/erase operations
	0 = Inhibits Flash program/erase operations
bit 13	WRERR: Write Sequence Error Flag bit ⁽¹⁾
	1 = An improper program or erase sequence attempt or termination has occurred (bit is set automatically on any set attempt of the WR bit)
	0 = The program or erase operation completed normally
bit 12	NVMSIDL: NVM Stop in Idle Control bit ⁽²⁾
	1 = Flash voltage regulator goes into Standby mode during Idle mode
	0 = Flash voltage regulator is active during Idle mode
bit 11-4	Unimplemented: Read as '0'
bit 3-0	NVMOP[3:0]: NVM Operation Select bits ^(1,3,4)
	1111 = Reserved
	1110 = Reserved
	1101 = Reserved
	1100 = Reserved
	1011 = Reserved
	1010 = Reserved
	0011 = Memory page erase operation
	0010 = Reserved
	0001 = Memory double-word program operation ⁽⁵⁾
	0000 = Reserved

Note 1: These bits can only be reset on a POR.

2: If this bit is set, there will be minimal power savings (IDLE) and upon exiting Idle mode, there is a delay (TVREG) before Flash memory becomes operational.

3: All other combinations of NVMOP[3:0] are unimplemented.

4: Execution of the PWRSAV instruction is ignored while any of the NVM operations are in progress.

5: Two adjacent words on a 4-word boundary are programmed during execution of this operation.

6: This bit can only be reset on a POR or a BOR.

dsPIC33EDV64MC205

REGISTER 5-2: NVMADRH: NONVOLATILE MEMORY ADDRESS REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
NVMADR[23:16]							
bit 7							bit 0

Legend:

R = Readable bit
-n = Value at POR

W = Writable bit
'1' = Bit is set

U = Unimplemented bit, read as '0'
'0' = Bit is cleared
x = Bit is unknown

bit 15-8 **Unimplemented:** Read as '0'
bit 7-0 **NVMADR[23:16]:** Nonvolatile Memory Write Address High bits
Selects the upper eight bits of the location to program or erase in program Flash memory. This register may be read or written by the user application.

REGISTER 5-3: NVMADRL: NONVOLATILE MEMORY ADDRESS REGISTER LOW

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
NVMADR[15:8]							
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
NVMADR[7:0]							
bit 7							bit 0

Legend:

R = Readable bit
-n = Value at POR

W = Writable bit
'1' = Bit is set

U = Unimplemented bit, read as '0'
'0' = Bit is cleared
x = Bit is unknown

bit 15-0 **NVMADR[15:0]:** Nonvolatile Memory Write Address Low bits
Selects the lower 16 bits of the location to program or erase in program Flash memory. This register may be read or written by the user application.

REGISTER 5-4: NVMKEY: NONVOLATILE MEMORY KEY

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
NVMKEY[7:0]							
bit 7							bit 0

Legend:

R = Readable bit
-n = Value at POR

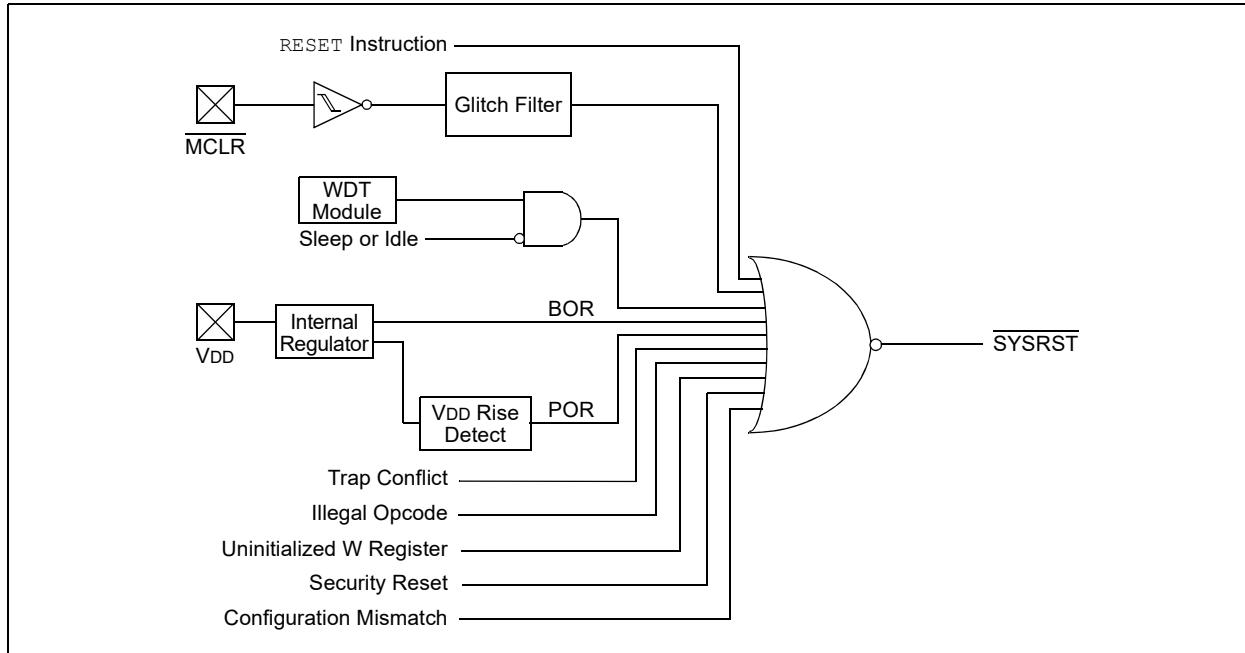
W = Writable bit
'1' = Bit is set

U = Unimplemented bit, read as '0'
'0' = Bit is cleared
x = Bit is unknown

bit 15-8 **Unimplemented:** Read as '0'
bit 7-0 **NVMKEY[7:0]:** Nonvolatile Memory Key Register (write-only) bits

6.0 RESETS

Note 1: This data sheet summarizes the features of the dsPIC33EDV64MC205 device. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to “Reset” (www.microchip.com/DS70602) in the “dsPIC33/PIC24 Family Reference Manual”.


2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 “Memory Organization”** in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Time-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

A simplified block diagram of the Reset module is shown in [Figure 6-1](#).

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or **Section 4.0 “Memory Organization”** of this data sheet for register Reset states.

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see [Register 6-1](#)).

A POR clears all the bits, except for the POR and BOR bits (RCON[1:0]) that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device Power-Saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

For all Resets, the default clock source is determined by the FNOSC[2:0] bits in the FOSCSEL Configuration register. The value of the FNOSC[2:0] bits is loaded into NOSC[2:0] (OSCCON[10:8]) on Reset, which in turn, initializes the system clock.

6.1 Reset Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this [link](#), contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser:
<http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en555464>

6.1.1 KEY RESOURCES

- “**Reset**” (DS70602) in the “*dsPIC33/PIC24 Family Reference Manual*”
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related “*dsPIC33/PIC24 Family Reference Manual*” Sections
- Development Tools

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
TRAPR	IOPUWR	—	—	VREGSF	—	CM	VREGS
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15	TRAPR: Trap Reset Flag bit 1 = A Trap Conflict Reset has occurred 0 = A Trap Conflict Reset has not occurred
bit 14	IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit 1 = An illegal opcode detection, an illegal address mode or Uninitialized W register used as an Address Pointer caused a Reset 0 = An illegal opcode or Uninitialized W register Reset has not occurred
bit 13-12	Unimplemented: Read as '0'
bit 11	VREGSF: Flash Voltage Regulator Standby During Sleep bit 1 = Flash voltage regulator is active during Sleep 0 = Flash voltage regulator goes into Standby mode during Sleep
bit 10	Unimplemented: Read as '0'
bit 9	CM: Configuration Mismatch Flag bit 1 = A Configuration Mismatch Reset has occurred. 0 = A Configuration Mismatch Reset has not occurred
bit 8	VREGS: Voltage Regulator Standby During Sleep bit 1 = Voltage regulator is active during Sleep 0 = Voltage regulator goes into Standby mode during Sleep
bit 7	EXTR: External Reset (MCLR) Pin bit 1 = A Master Clear (pin) Reset has occurred 0 = A Master Clear (pin) Reset has not occurred
bit 6	SWR: Software RESET (Instruction) Flag bit 1 = A RESET instruction has been executed 0 = A RESET instruction has not been executed
bit 5	SWDTEN: Software Enable/Disable of WDT bit ⁽²⁾ 1 = WDT is enabled 0 = WDT is disabled
bit 4	WDTO: Watchdog Timer Time-out Flag bit 1 = WDT time-out has occurred 0 = WDT time-out has not occurred

Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.

2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

dsPIC33EDV64MC205

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 3	SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode
bit 2	IDLE: Wake-up from Idle Flag bit 1 = Device has been in Idle mode 0 = Device has not been in Idle mode
bit 1	BOR: Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred 0 = A Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit 1 = A Power-on Reset has occurred 0 = A Power-on Reset has not occurred

Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.

2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

7.0 INTERRUPT CONTROLLER

Note 1: This data sheet summarizes the features of the dsPIC33EDV64MC205 device. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to “**Interrupts**” (www.microchip.com/DS70000600) in the “*dsPIC33/PIC24 Family Reference Manual*”.

2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 “Memory Organization”** in this data sheet for device-specific register and bit information.

The dsPIC33EDV64MC205 device interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the CPU.

The interrupt controller has the following features:

- Up to Eight Processor Exceptions and Software Traps
- Eight User-Selectable Priority Levels
- Interrupt Vector Table (IVT) with a Unique Vector for Each Interrupt or Exception Source
- Fixed Priority within a Specified User Priority Level
- Fixed Interrupt Entry and Return Latencies

7.1 Interrupt Vector Table

The dsPIC33EDV64MC205 device Interrupt Vector Table (IVT), shown in [Figure 7-1](#), resides in program memory starting at location, 000004h. The IVT contains seven non-maskable trap vectors and up to 246 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 takes priority over interrupts at any other vector address.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33EDV64MC205 device resets its registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location, 0x000000. A `GOTO` instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a `RESET` instruction.

dsPIC33EDV64MC205

FIGURE 7-1: INTERRUPT VECTOR TABLE

IVT	Decreasing Natural Order Priority	
	Reset – GOTO Instruction	0x000000
	Reset – GOTO Address	0x000002
	Oscillator Fail Trap Vector	0x000004
	Address Error Trap Vector	0x000006
	Generic Hard Trap Vector	0x000008
	Stack Error Trap Vector	0x00000A
	Math Error Trap Vector	0x00000C
	DMAC Error Trap Vector	0x00000E
	Generic Soft Trap Vector	0x000010
	Reserved	0x000012
	Interrupt Vector 0	0x000014
	Interrupt Vector 1	0x000016
	:	:
	:	:
	:	:
	Interrupt Vector 52	0x00007C
	Interrupt Vector 53	0x00007E
	Interrupt Vector 54	0x000080
	:	:
	:	:
	:	:
	Interrupt Vector 116	0x0000FC
	Interrupt Vector 117	0x0000FE
	Interrupt Vector 118	0x000100
	Interrupt Vector 119	0x000102
	Interrupt Vector 120	0x000104
	:	:
	:	:
	:	:
	Interrupt Vector 244	0x0001FC
	Interrupt Vector 245	0x0001FE
	START OF CODE	0x000200

See [Table 7-1](#) for
Interrupt Vector Details

TABLE 7-1: INTERRUPT VECTOR DETAILS

Interrupt Source	Vector #	IRQ #	IVT Address	Interrupt Bit Location		
				Flag	Enable	Priority
Highest Natural Order Priority						
INT0 – External Interrupt 0	8	0	0x000014	IFS0[0]	IEC0[0]	IPC0[2:0]
IC1 – Input Capture 1	9	1	0x000016	IFS0[1]	IEC0[1]	IPC0[6:4]
OC1 – Output Compare 1	10	2	0x000018	IFS0[2]	IEC0[2]	IPC0[10:8]
T1 – Timer1	11	3	0x00001A	IFS0[3]	IEC0[3]	IPC0[14:12]
DMA0 – DMA Channel 0	12	4	0x00001C	IFS0[4]	IEC0[4]	IPC1[2:0]
IC2 – Input Capture 2	13	5	0x00001E	IFS0[5]	IEC0[5]	IPC1[6:4]
OC2 – Output Compare 2	14	6	0x000020	IFS0[6]	IEC0[6]	IPC1[10:8]
T2 – Timer2	15	7	0x000022	IFS0[7]	IEC0[7]	IPC1[14:12]
T3 – Timer3	16	8	0x000024	IFS0[8]	IEC0[8]	IPC2[2:0]
SPI1E – SPI1 Error	17	9	0x000026	IFS0[9]	IEC0[9]	IPC2[6:4]
SPI1 – SPI1 Transfer Done	18	10	0x000028	IFS0[10]	IEC0[10]	IPC2[10:8]
U1RX – UART1 Receiver	19	11	0x00002A	IFS0[11]	IEC0[11]	IPC2[14:12]
U1TX – UART1 Transmitter	20	12	0x00002C	IFS0[12]	IEC0[12]	IPC3[2:0]
AD1 – ADC1 Convert Done	21	13	0x00002E	IFS0[13]	IEC0[13]	IPC3[6:4]
DMA1 – DMA Channel 1	22	14	0x000030	IFS0[14]	IEC0[14]	IPC3[10:8]
Reserved	23	15	0x000032	—	—	—
SI2C1 – I2C1 Secondary Event	24	16	0x000034	IFS1[0]	IEC1[0]	IPC4[2:0]
MI2C1 – I2C1 Main Event	25	17	0x000036	IFS1[1]	IEC1[1]	IPC4[6:4]
CM – Comparator Combined Event	26	18	0x000038	IFS1[2]	IEC1[2]	IPC4[10:8]
CN – Input Change Interrupt	27	19	0x00003A	IFS1[3]	IEC1[3]	IPC4[14:12]
INT1 – External Interrupt 1	28	20	0x00003C	IFS1[4]	IEC1[4]	IPC5[2:0]
Reserved	29-31	21-23	0x00003E-0x000042	—	—	—
DMA2 – DMA Channel 2	32	24	0x000044	IFS1[8]	IEC1[8]	IPC6[2:0]
OC3 – Output Compare 3	33	25	0x000046	IFS1[9]	IEC1[9]	IPC6[6:4]
OC4 – Output Compare 4	34	26	0x000048	IFS1[10]	IEC1[10]	IPC6[10:8]
T4 – Timer4	35	27	0x00004A	IFS1[11]	IEC1[11]	IPC6[14:12]
T5 – Timer5	36	28	0x00004C	IFS1[12]	IEC1[12]	IPC7[2:0]
INT2 – External Interrupt 2	37	29	0x00004E	IFS1[13]	IEC1[13]	IPC7[6:4]
U2RX – UART2 Receiver	38	30	0x000050	IFS1[14]	IEC1[14]	IPC7[10:8]
U2TX – UART2 Transmitter	39	31	0x000052	IFS1[15]	IEC1[15]	IPC7[14:12]
SPI2E – SPI2 Error	40	32	0x000054	IFS2[0]	IEC2[0]	IPC8[2:0]
SPI2 – SPI2 Transfer Done	41	33	0x000056	IFS2[1]	IEC2[1]	IPC8[6:4]
DMA3 – DMA Channel 3	44	36	0x00005C	IFS2[4]	IEC2[4]	IPC9[2:0]
IC3 – Input Capture 3	45	37	0x00005E	IFS2[5]	IEC2[5]	IPC9[6:4]
IC4 – Input Capture 4	46	38	0x000060	IFS2[6]	IEC2[6]	IPC9[10:8]
Reserved	47-56	39-48	0x000062-0x000074	—	—	—
SI2C2 – I2C2 Secondary Event	57	49	0x000076	IFS3[1]	IEC3[1]	IPC12[6:4]
MI2C2 – I2C2 Main Event	58	50	0x000078	IFS3[2]	IEC3[2]	IPC12[10:8]
Reserved	59-64	51-56	0x00007A-0x000084	—	—	—
PWMSpEventMatch – PWM Special Event Match	65	57	0x000086	IFS3[9]	IEC3[9]	IPC14[6:4]

dsPIC33EDV64MC205

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

Interrupt Source	Vector #	IRQ #	IVT Address	Interrupt Bit Location		
				Flag	Enable	Priority
QE1 – QE1 Position Counter Compare	66	58	0x000088	IFS3[10]	IEC3[10]	IPC14[10:8]
Reserved	67-72	59-64	0x00008A-0x000094	—	—	—
U1E – UART1 Error Interrupt	73	65	0x000096	IFS4[1]	IEC4[1]	IPC16[6:4]
U2E – UART2 Error Interrupt	74	66	0x000098	IFS4[2]	IEC4[2]	IPC16[10:8]
CRC – CRC Generator Interrupt	75	67	0x00009A	IFS4[3]	IEC4[3]	IPC16[14:12]
Reserved	76-77	68-69	0x00009C-0x00009E	—	—	—
Reserved	78	70	0x0000A0	—	—	—
Reserved	79-84	71-76	0x0000A2-0x0000AC	—	—	—
CTMU – CTMU Interrupt	85	77	0x0000AE	IFS4[13]	IEC4[13]	IPC19[6:4]
Reserved	86-101	78-93	0x0000B0-0x0000CE	—	—	—
PWM1 – PWM Generator 1	102	94	0x0000D0	IFS5[14]	IEC5[14]	IPC23[10:8]
PWM2 – PWM Generator 2	103	95	0x0000D2	IFS5[15]	IEC5[15]	IPC23[14:12]
PWM3 – PWM Generator 3	104	96	0x0000D4	IFS6[0]	IEC6[0]	IPC24[2:0]
Reserved	105-149	97-141	0x0001D6-0x00012E	—	—	—
ICD – ICD Application	150	142	0x000142	IFS8[14]	IEC8[14]	IPC35[10:8]
Reserved	151	143	0x000130	—	—	—
Reserved	152	144	0x000134	—	—	—
PTGSTEP – PTG Step	153	145	0x000136	IFS9[1]	IEC9[1]	IPC36[6:4]
PTGWD – PTG Watchdog Timer Time-out	154	146	0x000138	IFS9[2]	IEC9[2]	IPC36[10:8]
PTG0 – PTG Interrupt 0	155	147	0x00013A	IFS9[3]	IEC9[3]	IPC36[14:12]
PTG1 – PTG Interrupt 1	156	148	0x00013C	IFS9[4]	IEC9[4]	IPC37[2:0]
PTG2 – PTG Interrupt 2	157	149	0x00013E	IFS9[5]	IEC9[5]	IPC37[6:4]
PTG3 – PTG Interrupt 3	158	150	0x000140	IFS9[6]	IEC9[6]	IPC37[10:8]
Reserved	159-245	151-245	0x000142-0x0001FE	—	—	—
Lowest Natural Order Priority						

7.3 Interrupt Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this [link](#), contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser:
<http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en555464>

7.3.1 KEY RESOURCES

- “**Interrupts**” (DS70000600) in the “*dsPIC33/PIC24 Family Reference Manual*”
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related “*dsPIC33/PIC24 Family Reference Manual*” Sections
- Development Tools

7.4 Interrupt Control and Status Registers

The dsPIC33EDV64MC205 device implements the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON3
- INTCON4
- INTTREG

7.4.1 INTCON1 THROUGH INTCON4

Global interrupt control functions are controlled from INTCON1, INTCON2, INTCON3 and INTCON4.

INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS), as well as the control and status flags for the processor trap sources.

The INTCON2 register controls external interrupt request signal behavior and also contains the Global Interrupt Enable bit (GIE).

INTCON3 contains the status flags for the DMA and ^{DO} stack overflow status trap sources.

The INTCON4 register contains the Software Generated Hard Trap status bit (SGHT).

7.4.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.4.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.4.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.4.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number bits (VECNUM[7:0]) and Interrupt Priority Level bits (ILR[3:0]) fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in [Table 7-1](#). For example, the INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0[0], the INT0IE bit in IEC0[0] and the INT0IP bits in the first position of IPC0 (IPC0[2:0]).

7.4.6 STATUS/CONTROL REGISTERS

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers, refer to “**CPU**” (DS70359) in the “*dsPIC33/PIC24 Family Reference Manual*”.

- The CPU STATUS Register, SR, contains the IPL[2:0] bits (SR[7:5]). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit, which together with IPL[2:0], also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in [Register 7-3](#) through [Register 7-7](#) in the following pages.

dsPIC33EDV64MC205

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15							bit 8

R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL[2:0] ⁽²⁾		RA	N	OV	Z	C
bit 7							bit 0

Legend:

R = Readable bit

-n = Value at POR

C = Clearable bit

W = Writable bit

'1'= Bit is set

U = Unimplemented bit, read as '0'

'0' = Bit is cleared

x = Bit is unknown

bit 7-5

IPL[2:0]: CPU Interrupt Priority Level Status bits^(2,3)

111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled

110 = CPU Interrupt Priority Level is 6 (14)

101 = CPU Interrupt Priority Level is 5 (13)

100 = CPU Interrupt Priority Level is 4 (12)

011 = CPU Interrupt Priority Level is 3 (11)

010 = CPU Interrupt Priority Level is 2 (10)

001 = CPU Interrupt Priority Level is 1 (9)

000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see [Register 3-1](#).**2:** The IPL[2:0] bits are concatenated with the IPL[3] bit (CORCON[3]) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL[3] = 1. User interrupts are disabled when IPL[3] = 1.**3:** The IPL[2:0] Status bits are read-only when the NSTDIS bit (INTCON1[15]) = 1.

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US1	US0	EDT	DL2	DL1	DL0
bit 15							bit 8

R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3⁽²⁾	SFA	RND	IF
bit 7							bit 0

Legend:

R = Readable bit

-n = Value at POR

C = Clearable bit

W = Writable bit

'1'= Bit is set

U = Unimplemented bit, read as '0'

'0'= Bit is cleared

x = Bit is unknown

bit 15 **VAR**: Variable Exception Processing Latency Control bit

1 = Variable exception processing is enabled

0 = Fixed exception processing is enabled

bit 3 **IPL3**: CPU Interrupt Priority Level Status bit 3⁽²⁾

1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see [Register 3-2](#).

2: The IPL3 bit is concatenated with the IPL[2:0] bits (SR[7:5]) to form the CPU Interrupt Priority Level.

dsPIC33EDV64MC205

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE
bit 15	bit 8						

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7	bit 0						

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15	NSTDIS: Interrupt Nesting Disable bit 1 = Interrupt nesting is disabled 0 = Interrupt nesting is enabled
bit 14	OVAERR: Accumulator A Overflow Trap Flag bit 1 = Trap was caused by overflow of Accumulator A 0 = Trap was not caused by overflow of Accumulator A
bit 13	OVBERR: Accumulator B Overflow Trap Flag bit 1 = Trap was caused by overflow of Accumulator B 0 = Trap was not caused by overflow of Accumulator B
bit 12	COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit 1 = Trap was caused by catastrophic overflow of Accumulator A 0 = Trap was not caused by catastrophic overflow of Accumulator A
bit 11	COVBERR: Accumulator B Catastrophic Overflow Trap Flag bit 1 = Trap was caused by catastrophic overflow of Accumulator B 0 = Trap was not caused by catastrophic overflow of Accumulator B
bit 10	OVATE: Accumulator A Overflow Trap Enable bit 1 = Trap overflow of Accumulator A 0 = Trap is disabled
bit 9	OVBTE: Accumulator B Overflow Trap Enable bit 1 = Trap overflow of Accumulator B 0 = Trap is disabled
bit 8	COVTE: Catastrophic Overflow Trap Enable bit 1 = Trap on catastrophic overflow of Accumulator A or B is enabled 0 = Trap is disabled
bit 7	SFTACERR: Shift Accumulator Error Status bit 1 = Math error trap was caused by an invalid accumulator shift 0 = Math error trap was not caused by an invalid accumulator shift
bit 6	DIV0ERR: Divide-by-Zero Error Status bit 1 = Math error trap was caused by a divide-by-zero 0 = Math error trap was not caused by a divide-by-zero
bit 5	DMACERR: DMAC Trap Flag bit 1 = DMAC trap has occurred 0 = DMAC trap has not occurred
bit 4	MATHERR: Math Error Status bit 1 = Math error trap has occurred 0 = Math error trap has not occurred

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 3	ADDRERR: Address Error Trap Status bit 1 = Address error trap has occurred 0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit 1 = Stack error trap has occurred 0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit 1 = Oscillator failure trap has occurred 0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

dsPIC33EDV64MC205

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
GIE	DISI	SWTRAP	—	—	—	—	—
bit 15	bit 8						

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	INT2EP	INT1EP	INT0EP
bit 7	bit 0						

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15 **GIE:** Global Interrupt Enable bit
1 = Interrupts and associated IE bits are enabled
0 = Interrupts are disabled, but traps are still enabled

bit 14 **DISI:** DISI Instruction Status bit
1 = DISI instruction is active
0 = DISI instruction is not active

bit 13 **SWTRAP:** Software Trap Status bit
1 = Software trap is enabled
0 = Software trap is disabled

bit 12-3 **Unimplemented:** Read as '0'

bit 2 **INT2EP:** External Interrupt 2 Edge Detect Polarity Select bit
1 = Interrupt on negative edge
0 = Interrupt on positive edge

bit 1 **INT1EP:** External Interrupt 1 Edge Detect Polarity Select bit
1 = Interrupt on negative edge
0 = Interrupt on positive edge

bit 0 **INT0EP:** External Interrupt 0 Edge Detect Polarity Select bit
1 = Interrupt on negative edge
0 = Interrupt on positive edge

REGISTER 7-5: INTCON3: INTERRUPT CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	—	DAE	DOOVR	—	—	—	—
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-6 **Unimplemented:** Read as '0'

bit 5 **DAE:** DMA Address Error Soft Trap Status bit
1 = DMA address error soft trap has occurred
0 = DMA address error soft trap has not occurred

bit 4 **DOOVR:** DO Stack Overflow Soft Trap Status bit
1 = DO stack overflow soft trap has occurred
0 = DO stack overflow soft trap has not occurred

bit 3-0 **Unimplemented:** Read as '0'

REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	SGHT
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-1 **Unimplemented:** Read as '0'

bit 0 **SGHT:** Software Generated Hard Trap Status bit
1 = Software generated hard trap has occurred
0 = Software generated hard trap has not occurred

dsPIC33EDV64MC205

REGISTER 7-7: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0			
—	—	—	—	ILR[3:0]						
bit 15	bit 8									

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
VECNUM[7:0]							
bit 7	bit 0						

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-12 **Unimplemented:** Read as '0'

bit 11-8 **ILR[3:0]:** New CPU Interrupt Priority Level bits

1111 = CPU Interrupt Priority Level is 15

•

•

•

0001 = CPU Interrupt Priority Level is 1

0000 = CPU Interrupt Priority Level is 0

bit 7-0 **VECNUM[7:0]:** Vector Number of Pending Interrupt bits

11111111 = 255, Reserved; do not use

•

•

•

00001001 = 9, IC1 – Input Capture 1

00001000 = 8, INT0 – External Interrupt 0

00000111 = 7, Reserved; do not use

00000110 = 6, Generic soft error trap

00000101 = 5, DMAC error trap

00000100 = 4, Math error trap

00000011 = 3, Stack error trap

00000010 = 2, Generic hard trap

00000001 = 1, Address error trap

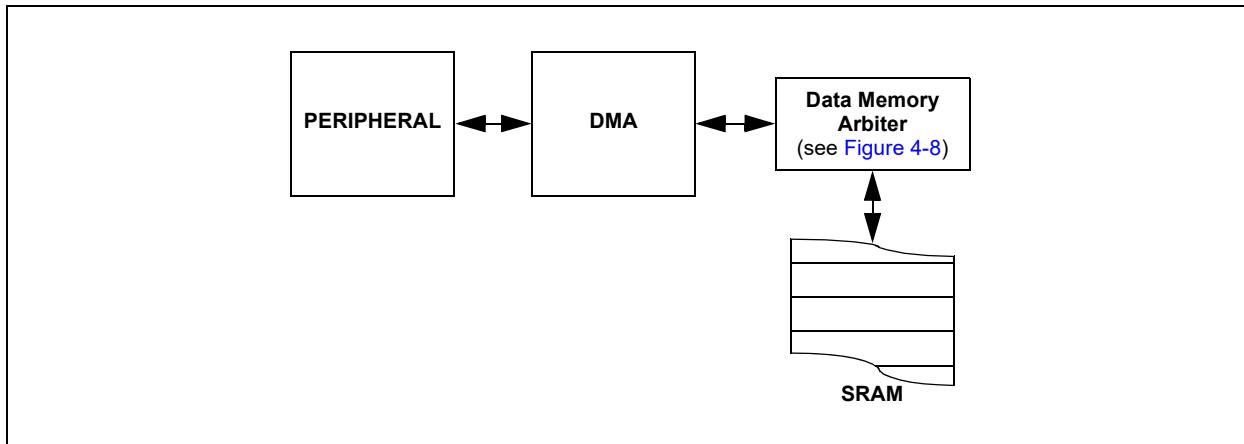
00000000 = 0, Oscillator fail trap

8.0 DIRECT MEMORY ACCESS (DMA)

Note 1: This data sheet summarizes the features of the dsPIC33EDV64MC205 device. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to “**Direct Memory Access (DMA)**” (www.microchip.com/DS70348) in the “*dsPIC33/PIC24 Family Reference Manual*”.

2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 “Memory Organization”** in this data sheet for device-specific register and bit information.

The DMA Controller (DMAC) transfers data between Peripheral Data registers and Data Space SRAM


In addition, DMA can access the entire data memory space. The data memory bus arbiter is utilized when either the CPU or DMA attempts to access SRAM, resulting in potential DMA or CPU Stalls.

The DMA Controller supports four independent channels. Each channel can be configured for transfers to or from selected peripherals. Some of the peripherals supported by the DMA Controller include:

- Analog-to-Digital Converter (ADC)
- Serial Peripheral Interface (SPI)
- UART
- Input Capture
- Output Compare

Refer to [Table 8-1](#) for a complete list of supported peripherals.

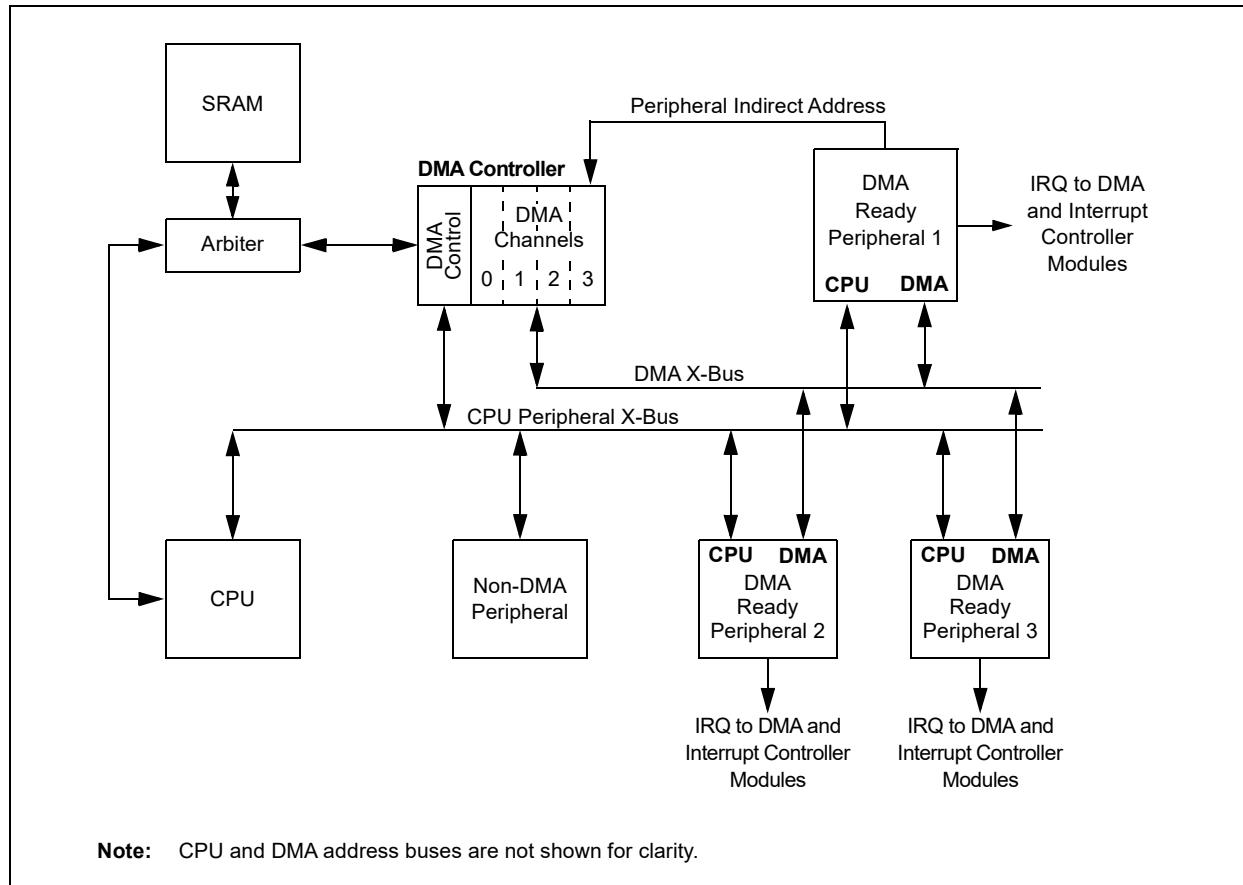
FIGURE 8-1: DMA CONTROLLER MODULE

dsPIC33EDV64MC205

In addition, DMA transfers can be triggered by timers as well as external interrupts. Each DMA channel is unidirectional. Two DMA channels must be allocated to read and write to a peripheral. If more than one channel receives a request to transfer data, a simple fixed priority scheme based on channel number, dictates which channel completes the transfer and which channel, or channels, are left pending. Each DMA channel moves a block of data, after which, it generates an interrupt to the CPU to indicate that the block is available for processing.

The DMA Controller provides these functional capabilities:

- Four DMA Channels
- Register Indirect with Post-Increment Addressing mode
- Register Indirect without Post-Increment Addressing mode


- Peripheral Indirect Addressing mode (peripheral generates destination address)
- CPU Interrupt after Half or Full Block Transfer Complete
- Byte or Word Transfers
- Fixed Priority Channel Arbitration
- Manual (software) or Automatic (peripheral DMA requests) Transfer Initiation
- One-Shot or Auto-Repeat Block Transfer modes
- Ping-Pong mode (automatic switch between two SRAM start addresses after each block transfer is complete)
- DMA Request for Each Channel can be Selected from any Supported Interrupt Source
- Debug Support Features

The peripherals that can utilize DMA are listed in [Table 8-1](#).

TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

Peripheral to DMA Association	DMAxREQ Register IRQSEL[7:0] Bits	DMAxPAD Register (Values to Read from Peripheral)	DMAxPAD Register (Values to Write to Peripheral)
INT0 – External Interrupt 0	00000000	—	—
IC1 – Input Capture 1	00000001	0x0144 (IC1BUF)	—
IC2 – Input Capture 2	00000101	0x014C (IC2BUF)	—
IC3 – Input Capture 3	00100101	0x0154 (IC3BUF)	—
IC4 – Input Capture 4	00100110	0x015C (IC4BUF)	—
OC1 – Output Compare 1	00000010	—	0x0906 (OC1R) 0x0904 (OC1RS)
OC2 – Output Compare 2	00000110	—	0x0910 (OC2R) 0x090E (OC2RS)
OC3 – Output Compare 3	00011001	—	0x091A (OC3R) 0x0918 (OC3RS)
OC4 – Output Compare 4	00011010	—	0x0924 (OC4R) 0x0922 (OC4RS)
TMR2 – Timer2	00000111	—	—
TMR3 – Timer3	00001000	—	—
TMR4 – Timer4	00011011	—	—
TMR5 – Timer5	00011100	—	—
SPI1 Transfer Done	00001010	0x0248 (SPI1BUF)	0x0248 (SPI1BUF)
SPI2 Transfer Done	00100001	0x0268 (SPI2BUF)	0x0268 (SPI2BUF)
UART1RX – UART1 Receiver	00001011	0x0226 (U1RXREG)	—
UART1TX – UART1 Transmitter	00001100	—	0x0224 (U1TXREG)
UART2RX – UART2 Receiver	00011110	0x0236 (U2RXREG)	—
UART2TX – UART2 Transmitter	00011111	—	0x0234 (U2TXREG)
ADC1 – ADC1 Convert Done	00001101	0x0300 (ADC1BUF0)	—

FIGURE 8-2: DMA CONTROLLER BLOCK DIAGRAM

8.1 DMA Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this [link](#), contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser:
<http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en555464>

8.1.1 KEY RESOURCES

- **“Direct Memory Access (DMA)”** (DS70348) in the *“dsPIC33/PIC24 Family Reference Manual”*
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *“dsPIC33/PIC24 Family Reference Manual”* Sections
- Development Tools

8.2 DMAC Registers

Each DMAC Channel x (where $x = 0$ through 3) contains the following registers:

- 16-Bit DMA Channel Control register (DMA x CON)
- 16-Bit DMA Channel IRQ Select register (DMA x REQ)
- 32-Bit DMA RAM Primary Start Address register (DMA x STA)
- 32-Bit DMA RAM Secondary Start Address register (DMA x STB)
- 16-Bit DMA Peripheral Address register (DMA x PAD)
- 14-Bit DMA Transfer Count register (DMA x CNT)

Additional status registers (DMA x WC, DMA x QC, DMA x PPS, DMA x LCA and DMA x ADR) are common to all DMAC channels. These status registers provide information on write and request collisions, as well as on last address and channel access information.

The interrupt flags (DMA x IF) are located in an IFS x register in the interrupt controller. The corresponding interrupt enable control bits (DMA x IE) are located in an IEC x register in the interrupt controller and the corresponding interrupt priority control bits (DMA x IP) are located in an IPC x register in the interrupt controller.

dsPIC33EDV64MC205

REGISTER 8-1: DMAxCON: DMA CHANNEL x CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CHEN	SIZE	DIR	HALF	NULLW	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
—	—	AMODE1	AMODE0	—	—	MODE1	MODE0
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15	CHEN: DMA Channel Enable bit 1 = Channel is enabled 0 = Channel is disabled
bit 14	SIZE: DMA Data Transfer Size bit 1 = Byte 0 = Word
bit 13	DIR: DMA Transfer Direction bit (source/destination bus select) 1 = Reads from RAM address, writes to peripheral address 0 = Reads from peripheral address, writes to RAM address
bit 12	HALF: DMA Block Transfer Interrupt Select bit 1 = Initiates interrupt when half of the data have been moved 0 = Initiates interrupt when all of the data have been moved
bit 11	NULLW: Null Data Peripheral Write Mode Select bit 1 = Null data write to peripheral in addition to RAM write (DIR bit must also be clear) 0 = Normal operation
bit 10-6	Unimplemented: Read as '0'
bit 5-4	AMODE[1:0]: DMA Channel Addressing Mode Select bits 11 = Reserved 10 = Peripheral Indirect Addressing mode 01 = Register Indirect without Post-Increment mode 00 = Register Indirect with Post-Increment mode
bit 3-2	Unimplemented: Read as '0'
bit 1-0	MODE[1:0]: DMA Channel Operating Mode Select bits 11 = One-Shot, Ping-Pong modes are enabled (one block transfer from/to each DMA buffer) 10 = Continuous, Ping-Pong modes are enabled 01 = One-Shot, Ping-Pong modes are disabled 00 = Continuous, Ping-Pong modes are disabled

REGISTER 8-2: DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER

R/S-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
FORCE ⁽¹⁾	—	—	—	—	—	—	—
bit 15	bit 8						

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQSEL[7:0]							
bit 7	bit 0						

Legend:	S = Settable bit
R = Readable bit	W = Writable bit
-n = Value at POR	‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15	FORCE: Force DMA Transfer bit ⁽¹⁾ 1 = Forces a single DMA transfer (Manual mode) 0 = Automatic DMA transfer initiation by DMA request
bit 14-8	Unimplemented: Read as ‘0’
bit 7-0	IRQSEL[7:0]: DMA Peripheral IRQ Number Select bits 01000110 = Reserved 00100110 = IC4 – Input Capture 4 00100101 = IC3 – Input Capture 3 00100010 = Reserved 00100001 = SPI2 Transfer Done 00011111 = UART2TX – UART2 Transmitter 00011110 = UART2RX – UART2 Receiver 00011100 = TMR5 – Timer5 00011011 = TMR4 – Timer4 00011010 = OC4 – Output Compare 4 00011001 = OC3 – Output Compare 3 00001101 = ADC1 – ADC1 Convert done 00001100 = UART1TX – UART1 Transmitter 00001011 = UART1RX – UART1 Receiver 00001010 = SPI1 – Transfer Done 00001000 = TMR3 – Timer3 00000111 = TMR2 – Timer2 00000110 = OC2 – Output Compare 2 00000101 = IC2 – Input Capture 2 00000010 = OC1 – Output Compare 1 00000001 = IC1 – Input Capture 1 00000000 = INT0 – External Interrupt 0

Note 1: The FORCE bit cannot be cleared by user software. The FORCE bit is cleared by hardware when the forced DMA transfer is complete or the channel is disabled (CHEN = 0).

dsPIC33EDV64MC205

REGISTER 8-3: DMAxSTAH: DMA CHANNEL x START ADDRESS REGISTER A (HIGH)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
STA[23:16]							
bit 7							bit 0

Legend:

R = Readable bit

-n = Value at POR

W = Writable bit

'1' = Bit is set

U = Unimplemented bit, read as '0'

'0' = Bit is cleared

x = Bit is unknown

bit 15-8 **Unimplemented:** Read as '0'

bit 7-0 **STA[23:16]:** Primary Start Address bits (source or destination)

REGISTER 8-4: DMAxSTAL: DMA CHANNEL x START ADDRESS REGISTER A (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
STA[15:8]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
STA[7:0]							
bit 7							bit 0

Legend:

R = Readable bit

-n = Value at POR

W = Writable bit

'1' = Bit is set

U = Unimplemented bit, read as '0'

'0' = Bit is cleared

x = Bit is unknown

bit 15-0 **STA[15:0]:** Primary Start Address bits (source or destination)

REGISTER 8-5: DMAxSTBH: DMA CHANNEL x START ADDRESS REGISTER B (HIGH)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
STB[23:16]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-8

Unimplemented: Read as '0'

bit 7-0

STB[23:16]: Secondary Start Address bits (source or destination)

REGISTER 8-6: DMAxSTBL: DMA CHANNEL x START ADDRESS REGISTER B (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
STB[15:8]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
STB[7:0]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0

STB[15:0]: Secondary Start Address bits (source or destination)

dsPIC33EDV64MC205

REGISTER 8-7: DMAxPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PAD[15:8]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PAD[7:0]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0 **PAD[15:0]**: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-8: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CNT[13:8] ⁽²⁾							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CNT[7:0] ⁽²⁾							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-0 **CNT[13:0]**: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: The number of DMA transfers = CNT[13:0] + 1.

REGISTER 8-9: DSADRH: DMA MOST RECENT RAM HIGH ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
DSADR[23:16]							
bit 7							bit 0

Legend:

R = Readable bit

-n = Value at POR

W = Writable bit

'1' = Bit is set

U = Unimplemented bit, read as '0'

'0' = Bit is cleared

x = Bit is unknown

bit 15-8 **Unimplemented:** Read as '0'

bit 7-0 **DSADR[23:16]:** Most Recent DMA Address Accessed by DMA bits

REGISTER 8-10: DSADRL: DMA MOST RECENT RAM LOW ADDRESS REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
DSADR[15:8]							
bit 15							bit 8

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
DSADR[7:0]							
bit 7							bit 0

Legend:

R = Readable bit

-n = Value at POR

W = Writable bit

'1' = Bit is set

U = Unimplemented bit, read as '0'

'0' = Bit is cleared

x = Bit is unknown

bit 15-0 **DSADR[15:0]:** Most Recent DMA Address Accessed by DMA bits

dsPIC33EDV64MC205

REGISTER 8-11: DMAPWC: DMA PERIPHERAL WRITE COLLISION STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	—	PWCOL3	PWCOL2	PWCOL1	PWCOL0
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-4 **Unimplemented:** Read as '0'

bit 3 **PWCOL3:** DMA Channel 3 Peripheral Write Collision Flag bit

1 = Write collision is detected

0 = No write collision is detected

bit 2 **PWCOL2:** DMA Channel 2 Peripheral Write Collision Flag bit

1 = Write collision is detected

0 = No write collision is detected

bit 1 **PWCOL1:** DMA Channel 1 Peripheral Write Collision Flag bit

1 = Write collision is detected

0 = No write collision is detected

bit 0 **PWCOL0:** DMA Channel 0 Peripheral Write Collision Flag bit

1 = Write collision is detected

0 = No write collision is detected

REGISTER 8-12: DMARQC: DMA REQUEST COLLISION STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	—	RQCOL3	RQCOL2	RQCOL1	RQCOL0
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-4 **Unimplemented:** Read as '0'

bit 3 **RQCOL3:** DMA Channel 3 Transfer Request Collision Flag bit
 1 = User force and interrupt-based request collision is detected
 0 = No request collision is detected

bit 2 **RQCOL2:** DMA Channel 2 Transfer Request Collision Flag bit
 1 = User force and interrupt-based request collision is detected
 0 = No request collision is detected

bit 1 **RQCOL1:** DMA Channel 1 Transfer Request Collision Flag bit
 1 = User force and interrupt-based request collision is detected
 0 = No request collision is detected

bit 0 **RQCOL0:** DMA Channel 0 Transfer Request Collision Flag bit
 1 = User force and interrupt-based request collision is detected
 0 = No request collision is detected

dsPIC33EDV64MC205

REGISTER 8-13: DMALCA: DMA LAST CHANNEL ACTIVE STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1
—	—	—	—	LSTCH[3:0]			
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-4 **Unimplemented:** Read as '0'

bit 3-0 **LSTCH[3:0]:** Last DMAC Channel Active Status bits

1111 = No DMA transfer has occurred since system Reset

1110 = Reserved

•

•

•

0100 = Reserved

0011 = Last data transfer was handled by Channel 3

0010 = Last data transfer was handled by Channel 2

0001 = Last data transfer was handled by Channel 1

0000 = Last data transfer was handled by Channel 0

REGISTER 8-14: DMAPPS: DMA PING-PONG STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	—	PPST3	PPST2	PPST1	PPST0
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

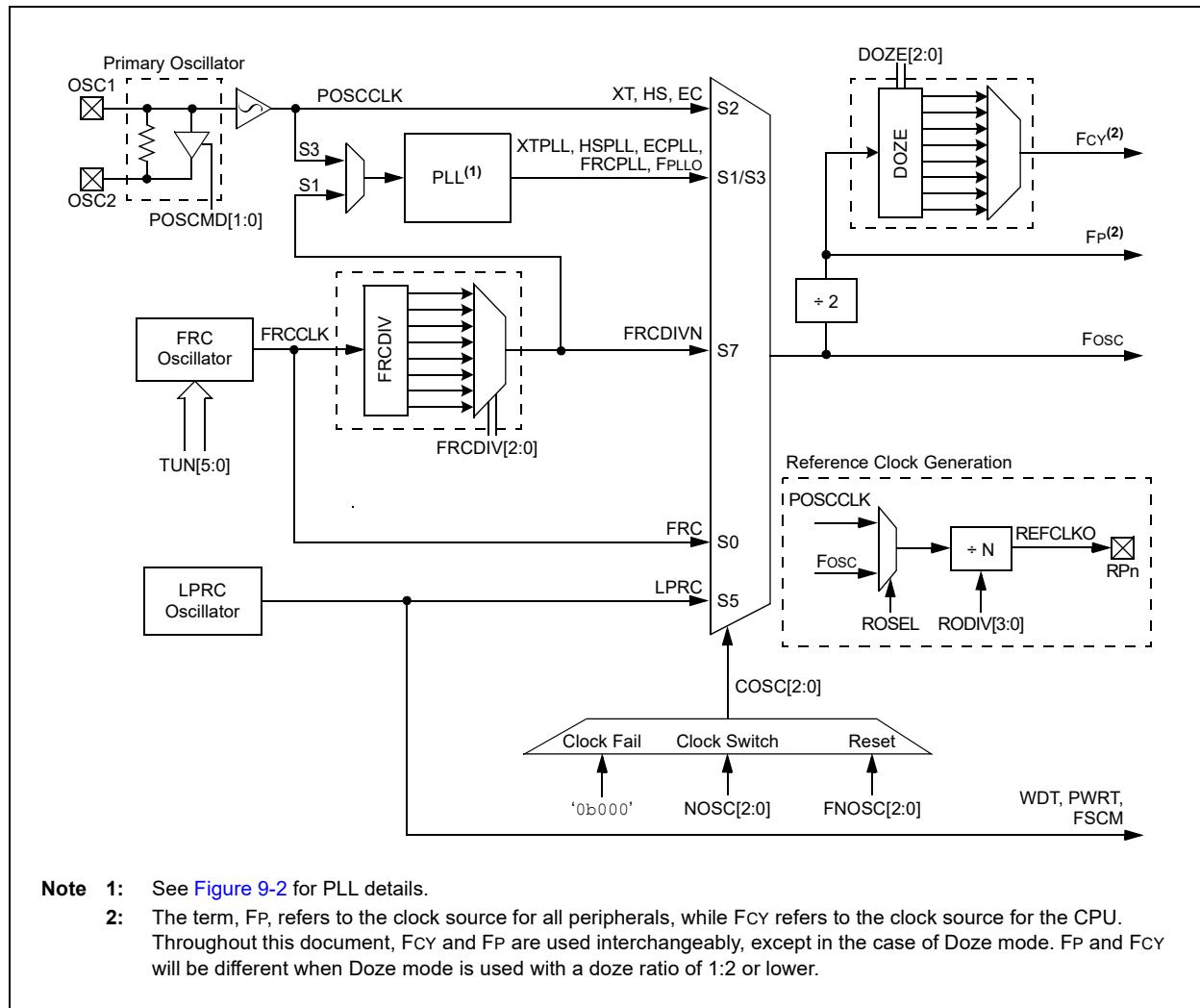
bit 15-4	Unimplemented: Read as '0'
bit 3	PPST3: DMA Channel 3 Ping-Pong Mode Status Flag bit 1 = DMASTB3 register is selected 0 = DMASTA3 register is selected
bit 2	PPST2: DMA Channel 2 Ping-Pong Mode Status Flag bit 1 = DMASTB2 register is selected 0 = DMASTA2 register is selected
bit 1	PPST1: DMA Channel 1 Ping-Pong Mode Status Flag bit 1 = DMASTB1 register is selected 0 = DMASTA1 register is selected
bit 0	PPST0: DMA Channel 0 Ping-Pong Mode Status Flag bit 1 = DMASTB0 register is selected 0 = DMASTA0 register is selected

dsPIC33EDV64MC205

NOTES:

9.0 OSCILLATOR CONFIGURATION

Note 1: This data sheet summarizes the features of the dsPIC33EDV64MC205 device. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to “Oscillator” (www.microchip.com/DS70580) in the “dsPIC33/PIC24 Family Reference Manual”.


2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 “Memory Organization”** in this data sheet for device-specific register and bit information.

The dsPIC33EDV64MC205 device oscillator system provides:

- On-Chip Phase-Locked Loop (PLL) to Boost Internal Operating Frequency on Select Internal and External Oscillator Sources
- On-the-Fly Clock Switching between Various Clock Sources
- Doze mode for System Power Savings
- Fail-Safe Clock Monitor (FSCM) that Detects Clock Failure and Permits Safe Application Recovery or Shutdown
- Configuration bits for Clock Source Selection

A simplified diagram of the oscillator system is shown in [Figure 9-1](#).

FIGURE 9-1: OSCILLATOR SYSTEM DIAGRAM

dsPIC33EDV64MC205

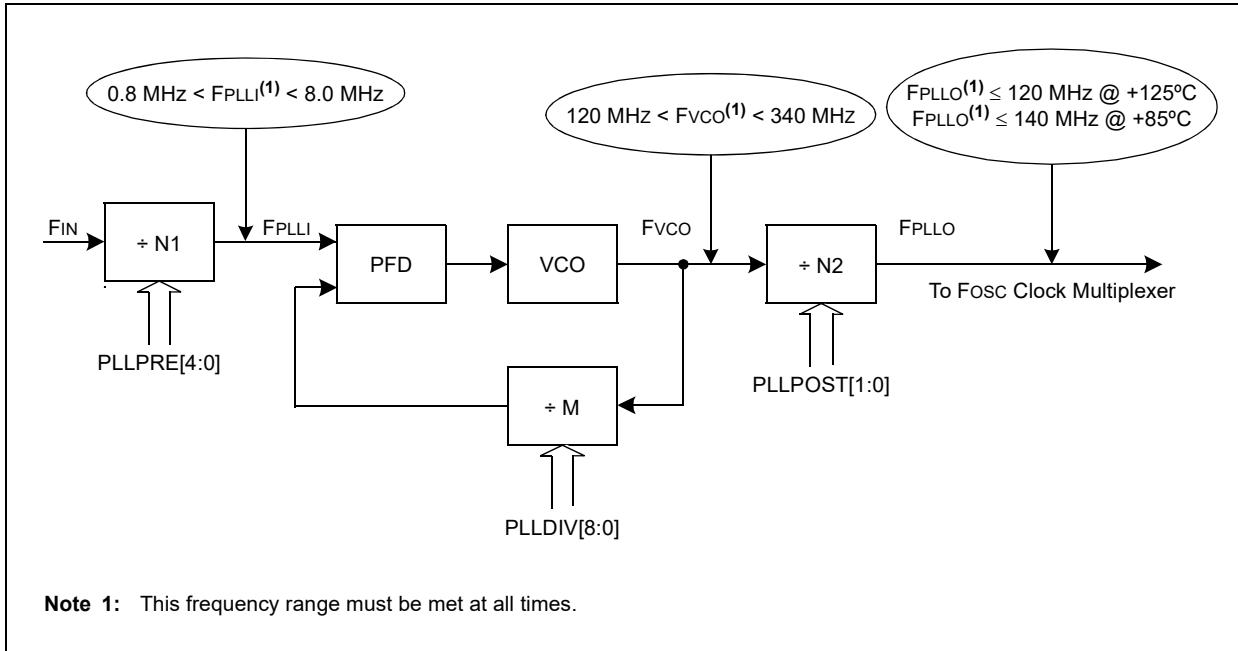
9.1 CPU Clocking System

The dsPIC33EDV64MC205 device provides six system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with Phase-Locked Loop (PLL)
- FRC Oscillator with Postscaler
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- Low-Power RC (LPRC) Oscillator

Instruction execution speed or device operating frequency, F_{CY} , is given by [Equation 9-1](#).

EQUATION 9-1: DEVICE OPERATING FREQUENCY


$$F_{CY} = F_{OSC}/2$$

[Figure 9-2](#) is a block diagram of the PLL module.

[Equation 9-2](#) provides the relationship between input frequency (F_{IN}) and output frequency (F_{PLL0}). In Clock modes, S1 and S3, when the PLL output is selected, $F_{OSC} = F_{PLL0}$.

[Equation 9-3](#) provides the relationship between input frequency (F_{IN}) and VCO frequency (F_{VCO}).

FIGURE 9-2: PLL BLOCK DIAGRAM

EQUATION 9-2: F_{PLL0} CALCULATION

$$F_{PLL0} = F_{IN} \times \left(\frac{M}{N1 \times N2} \right) = F_{IN} \times \left(\frac{PLLDIV[8:0] + 2}{(PLLPRE[4:0] + 2) \times 2(PLLPOST[1:0] + 1)} \right)$$

Where:

$$N1 = PLLPRE[4:0] + 2$$

$$N2 = 2 \times (PLLPOST[1:0] + 1)$$

$$M = PLLDIV[8:0] + 2$$

EQUATION 9-3: F_{VCO} CALCULATION

$$F_{VCO} = F_{IN} \times \left(\frac{M}{N1} \right) = F_{IN} \times \left(\frac{PLLDIV[8:0] + 2}{(PLLPRE[4:0] + 2)} \right)$$

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Oscillator Mode	Oscillator Source	POSCMD[1:0]	FNOSC[2:0]	See Notes
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default Oscillator mode for an unprogrammed (erased) device.

9.2 Oscillator Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this [link](#), contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser:
<http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en555464>

9.2.1 KEY RESOURCES

- “**Oscillator**” (DS70580) in the “*dsPIC33/PIC24 Family Reference Manual*”
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related “*dsPIC33/PIC24 Family Reference Manual*” Sections
- Development Tools

dsPIC33EDV64MC205

9.3 Oscillator Control Registers

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
—	COSC2	COSC1	COSC0	—	NOSC2 ⁽²⁾	NOSC1 ⁽²⁾	NOSC0 ⁽²⁾
bit 15							

R/W-0	R/W-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0
CLKLOCK	IOLOCK	LOCK	—	CF ⁽³⁾	—	—	OSWEN
bit 7							

Legend:

y = Value set from Configuration bits on POR

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	COSC[2:0]: Current Oscillator Selection bits (read-only) 111 = Fast RC Oscillator (FRC) with Divide-by-n 110 = Fast RC Oscillator (FRC) with Divide-by-16 101 = Low-Power RC Oscillator (LPRC) 100 = Reserved 011 = Primary Oscillator (XT, HS, EC) with PLL (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL) 000 = Fast RC Oscillator (FRC)
bit 11	Unimplemented: Read as '0'
bit 10-8	NOSC[2:0]: New Oscillator Selection bits ⁽²⁾ 111 = Fast RC Oscillator (FRC) with Divide-by-n 110 = Fast RC Oscillator (FRC) with Divide-by-16 101 = Low-Power RC Oscillator (LPRC) 100 = Reserved 011 = Primary Oscillator (XT, HS, EC) with PLL (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL) 000 = Fast RC Oscillator (FRC)
bit 7	CLKLOCK: Clock Lock Enable bit 1 = If (FCKSM0 = 1), then clock and PLL configurations are locked; if (FCKSM0 = 0), then clock and PLL configurations may be modified 0 = Clock and PLL selections are not locked, configurations may be modified
bit 6	IOLOCK: I/O Lock Enable bit 1 = I/O lock is active 0 = I/O lock is not active
bit 5	LOCK: PLL Lock Status bit (read-only) 1 = Indicates that PLL is in lock or PLL start-up timer is satisfied 0 = Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled

Note 1: Writes to this register require an unlock sequence. Refer to “**Oscillator**” (DS70580) in the “*dsPIC33/PIC24 Family Reference Manual*” (available from the Microchip website) for details.

2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.

3: This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and trigger an oscillator failure trap.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 4	Unimplemented: Read as '0'
bit 3	CF: Clock Fail Detect bit ⁽³⁾ 1 = FSCM has detected a clock failure 0 = FSCM has not detected a clock failure
bit 2-1	Unimplemented: Read as '0'
bit 0	OSWEN: Oscillator Switch Enable bit 1 = Requests oscillator switch to selection specified by the NOSC[2:0] bits 0 = Oscillator switch is complete

Note 1: Writes to this register require an unlock sequence. Refer to “**Oscillator**” (DS70580) in the “*dsPIC33/PIC24 Family Reference Manual*” (available from the Microchip website) for details.

- 2:** Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
- 3:** This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and trigger an oscillator failure trap.

dsPIC33EDV64MC205

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI	DOZE2 ⁽¹⁾	DOZE1 ⁽¹⁾	DOZE0 ⁽¹⁾	DOZEN ^(2,3)	FRCDIV2	FRCDIV1	FRCDIV0
bit 15							

R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PLLPOST1	PLLPOST0	—	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0
bit 7							

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15	ROI: Recover on Interrupt bit 1 = Interrupts will clear the DOZEN bit 0 = Interrupts have no effect on the DOZEN bit
bit 14-12	DOZE[2:0]: Processor Clock Reduction Select bits ⁽¹⁾ 111 = F _{CY} divided by 128 110 = F _{CY} divided by 64 101 = F _{CY} divided by 32 100 = F _{CY} divided by 16 011 = F _{CY} divided by 8 (default) 010 = F _{CY} divided by 4 001 = F _{CY} divided by 2 000 = F _{CY} divided by 1
bit 11	DOZEN: Doze Mode Enable bit ^(2,3) 1 = DOZE[2:0] field specifies the ratio between the peripheral clocks and the processor clocks 0 = Processor clock and peripheral clock ratio is forced to 1:1
bit 10-8	FRCDIV[2:0]: Internal Fast RC Oscillator Postscaler bits 111 = FRC divided by 256 110 = FRC divided by 64 101 = FRC divided by 32 100 = FRC divided by 16 011 = FRC divided by 8 010 = FRC divided by 4 001 = FRC divided by 2 000 = FRC divided by 1 (default)
bit 7-6	PLLPOST[1:0]: PLL VCO Output Divider Select bits (also denoted as 'N2', PLL postscaler) 11 = Output divided by 8 10 = Reserved 01 = Output divided by 4 (default) 00 = Output divided by 2
bit 5	Unimplemented: Read as '0'

Note 1: The DOZE[2:0] bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE[2:0] are ignored.

2: This bit is cleared when the ROI bit is set and an interrupt occurs.

3: The DOZEN bit cannot be set if DOZE[2:0] = 000. If DOZE[2:0] = 000, any attempt by user software to set the DOZEN bit is ignored.

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER (CONTINUED)

bit 4-0	PLLPRE[4:0]: PLL Phase Detector Input Divider Select bits (also denoted as 'N1', PLL prescaler)
	11111 = Input divided by 33
	•
	•
	•
	00001 = Input divided by 3
	00000 = Input divided by 2 (default)

Note 1: The DOZE[2:0] bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE[2:0] are ignored.

2: This bit is cleared when the ROI bit is set and an interrupt occurs.

3: The DOZEN bit cannot be set if DOZE[2:0] = 000. If DOZE[2:0] = 000, any attempt by user software to set the DOZEN bit is ignored.

dsPIC33EDV64MC205

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	PLLDIV8
bit 15							bit 8

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
PLLDIV[7:0]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-9 **Unimplemented:** Read as '0'

bit 8-0 **PLLDIV[8:0]:** PLL Feedback Divisor bits (also denoted as 'M', PLL multiplier)

111111111 = 513

•

•

•

000110000 = 50 (default)

•

•

•

000000010 = 4

000000001 = 3

000000000 = 2

REGISTER 9-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			TUN[5:0]			
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-6 **Unimplemented:** Read as '0'

bit 5-0 **TUN[5:0]:** FRC Oscillator Tuning bits

011111 = Maximum frequency deviation of 1.453% (7.477 MHz)

011110 = Center frequency + 1.406% (7.474 MHz)

•

•

•

000001 = Center frequency + 0.047% (7.373 MHz)

000000 = Center frequency (7.37 MHz nominal)

111111 = Center frequency - 0.047% (7.367 MHz)

•

•

•

100001 = Center frequency - 1.453% (7.263 MHz)

100000 = Minimum frequency deviation of -1.5% (7.259 MHz)

dsPIC33EDV64MC205

REGISTER 9-5: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ROON	—	ROSSL	ROSEL	RODIV3 ⁽¹⁾	RODIV2 ⁽¹⁾	RODIV1 ⁽¹⁾	RODIV0 ⁽¹⁾
bit 15	bit 8						

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7	bit 0						

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15	ROON: Reference Oscillator Output Enable bit 1 = Reference Oscillator output is enabled on the REFCLKO pin ⁽²⁾ 0 = Reference Oscillator output is disabled
bit 14	Unimplemented: Read as '0'
bit 13	ROSSL: Reference Oscillator Run in Sleep bit 1 = Reference Oscillator output continues to run in Sleep 0 = Reference Oscillator output is disabled in Sleep
bit 12	ROSEL: Reference Oscillator Source Select bit 1 = Oscillator crystal is used as the reference clock 0 = System clock is used as the reference clock
bit 11-8	RODIV[3:0]: Reference Oscillator Divider bits ⁽¹⁾ 1111 = Reference clock divided by 32,768 1110 = Reference clock divided by 16,384 1101 = Reference clock divided by 8,192 1100 = Reference clock divided by 4,096 1011 = Reference clock divided by 2,048 1010 = Reference clock divided by 1,024 1001 = Reference clock divided by 512 1000 = Reference clock divided by 256 0111 = Reference clock divided by 128 0110 = Reference clock divided by 64 0101 = Reference clock divided by 32 0100 = Reference clock divided by 16 0011 = Reference clock divided by 8 0010 = Reference clock divided by 4 0001 = Reference clock divided by 2 0000 = Reference clock
bit 7-0	Unimplemented: Read as '0'

Note 1: The Reference Oscillator output must be disabled (ROON = 0) before writing to these bits.

2: This pin is remappable. See [Section 11.4 “Peripheral Pin Select \(PPS\)”](#) for more information.

10.0 POWER-SAVING FEATURES

Note 1: This data sheet summarizes the features of the dsPIC33EDV64MC205 device. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to “**Watchdog Timer and Power-Saving Modes**” (www.microchip.com/DS70615) in the “*dsPIC33/PIC24 Family Reference Manual*”.

2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 “Memory Organization”** in this data sheet for device-specific register and bit information.

The dsPIC33EDV64MC205 device provides the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of peripherals being clocked constitutes lower consumed power.

The dsPIC33EDV64MC205 device can manage power consumption in four ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- Software-Controlled Doze mode
- Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application’s power consumption while still maintaining critical application features, such as timing-sensitive communications.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

```
PWRSAV #SLEEP_MODE      ; Put the device into Sleep mode
PWRSAV #IDLE_MODE       ; Put the device into Idle mode(1)
```

Note 1: The use of PWRSAV #SLEEP_MODE has limitations when the Flash Voltage Regulator bit, VREGSF (RCON[11]), is set to Standby mode. Refer to Section **Section 10.2.1 “Sleep Mode”** for more information.

10.1 Clock Frequency and Clock Switching

The dsPIC33EDV64MC205 device allows a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC_x bits (OSCCON[10:8]). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0 “Oscillator Configuration”**.

10.2 Instruction-Based Power-Saving Modes

The dsPIC33EDV64MC205 device has two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in **Example 10-1**.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to “wake-up”.

10.2.1 SLEEP MODE

The following occurs in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the Input Change Notification (ICN) on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of these events:

- Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

For optimal power savings, the internal regulator and the Flash regulator can be configured to go into standby when Sleep mode is entered by clearing the VREGS (RCON[8]) and VREGSF (RCON[11]) bits (default configuration). However, putting the Flash voltage regulator in Standby mode (VREGSF = 0) when in Sleep has the effect of corrupting the prefetched instructions placed in the instruction queue. When the part wakes up, these instructions may cause undefined behavior. To remove this problem, the instruction queue must be flushed after the part wakes up. A way to flush the instruction queue is to perform a branch. Therefore, it is required to implement the SLEEP instruction in a function with 4-instruction word alignment. The 4-instruction word alignment will assure that the SLEEP instruction is always placed on the correct address to make sure the flushing will be effective. [Example 10-2](#) shows how this is performed.

EXAMPLE 10-2: SLEEP MODE PWRSAV INSTRUCTION SYNTAX (WITH FLASH VOLTAGE REGULATOR SET TO STANDBY MODE)

```
.global _GoToSleep
.section .text
.align 4

_GoToSleep:

PWRSAV #SLEEP_MODE
BRA TO_FLUSH_QUEUE_LABEL
TO_FLUSH_QUEUE_LABEL:
RETURN
```

If the application requires a faster wake-up time, and can accept higher current requirements, the VREGS (RCON[8]) and VREGSF (RCON[11]) bits can be set to keep the internal regulator and the Flash regulator active during Sleep mode.

10.2.2 IDLE MODE

The following occurs in Idle mode:

- The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see [Section 10.4 “Peripheral Module Disable”](#)).
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (two-four clock cycles later), starting with the instruction following the PWRSAV instruction or the first instruction in the Interrupt Service Routine (ISR).

All peripherals also have the option to discontinue operation when Idle mode is entered to allow for increased power savings. This option is selectable in the control register of each peripheral; for example, the TSIDL bit in the Timer1 Control register (T1CON[13]).

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

10.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV[11]). The ratio between peripheral and core clock speed is determined by the DOZE[2:0] bits (CLKDIV[14:12]). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV[15]). By default, interrupt events have no effect on Doze mode operation.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a Minimum Power Consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid.

A peripheral module is enabled only if both the associated bits in the PMD register are cleared and the peripheral is supported by the specific dsPIC® DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

10.5 Power-Saving Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this [link](#), contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser:
<http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en555464>

10.5.1 KEY RESOURCES

- “**Watchdog Timer and Power-Saving Modes**” (DS70615) in the “*dsPIC33/PIC24 Family Reference Manual*”
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related “*dsPIC33/PIC24 Family Reference Manual*” Sections
- Development Tools

dsPIC33EDV64MC205

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	—	AD1MD
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15	T5MD: Timer5 Module Disable bit 1 = Timer5 module is disabled 0 = Timer5 module is enabled
bit 14	T4MD: Timer4 Module Disable bit 1 = Timer4 module is disabled 0 = Timer4 module is enabled
bit 13	T3MD: Timer3 Module Disable bit 1 = Timer3 module is disabled 0 = Timer3 module is enabled
bit 12	T2MD: Timer2 Module Disable bit 1 = Timer2 module is disabled 0 = Timer2 module is enabled
bit 11	T1MD: Timer1 Module Disable bit 1 = Timer1 module is disabled 0 = Timer1 module is enabled
bit 10	QEI1MD: QEI1 Module Disable bit 1 = QEI1 module is disabled 0 = QEI1 module is enabled
bit 9	PWMMD: PWM Module Disable bit 1 = PWM module is disabled 0 = PWM module is enabled
bit 8	Unimplemented: Read as '0'
bit 7	I2C1MD: I2C1 Module Disable bit 1 = I2C1 module is disabled 0 = I2C1 module is enabled
bit 6	U2MD: UART2 Module Disable bit 1 = UART2 module is disabled 0 = UART2 module is enabled
bit 5	U1MD: UART1 Module Disable bit 1 = UART1 module is disabled 0 = UART1 module is enabled
bit 4	SPI2MD: SPI2 Module Disable bit 1 = SPI2 module is disabled 0 = SPI2 module is enabled
bit 3	SPI1MD: SPI1 Module Disable bit 1 = SPI1 module is disabled 0 = SPI1 module is enabled

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

bit 2-1	Unimplemented: Read as '0'
bit 0	AD1MD: ADC1 Module Disable bit
	1 = ADC1 module is disabled
	0 = ADC1 module is enabled

dsPIC33EDV64MC205

REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	IC4MD	IC3MD	IC2MD	IC1MD
bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	OC4MD	OC3MD	OC2MD	OC1MD
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-12 **Unimplemented:** Read as '0'

bit 11 **IC4MD:** Input Capture 4 Module Disable bit
1 = Input Capture 4 module is disabled
0 = Input Capture 4 module is enabled

bit 10 **IC3MD:** Input Capture 3 Module Disable bit
1 = Input Capture 3 module is disabled
0 = Input Capture 3 module is enabled

bit 9 **IC2MD:** Input Capture 2 Module Disable bit
1 = Input Capture 2 module is disabled
0 = Input Capture 2 module is enabled

bit 8 **IC1MD:** Input Capture 1 Module Disable bit
1 = Input Capture 1 module is disabled
0 = Input Capture 1 module is enabled

bit 7-4 **Unimplemented:** Read as '0'

bit 3 **OC4MD:** Output Compare 4 Module Disable bit
1 = Output Compare 4 module is disabled
0 = Output Compare 4 module is enabled

bit 2 **OC3MD:** Output Compare 3 Module Disable bit
1 = Output Compare 3 module is disabled
0 = Output Compare 3 module is enabled

bit 1 **OC2MD:** Output Compare 2 Module Disable bit
1 = Output Compare 2 module is disabled
0 = Output Compare 2 module is enabled

bit 0 **OC1MD:** Output Compare 1 Module Disable bit
1 = Output Compare 1 module is disabled
0 = Output Compare 1 module is enabled

REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0
—	—	—	—	—	CMPMD	—	—
bit 15							bit 8
R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
CRCMD	—	—	—	—	—	I2C2MD	—
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10	CMPMD: Comparator Module Disable bit
	1 = Comparator module is disabled
	0 = Comparator module is enabled
bit 9-8	Unimplemented: Read as '0'
bit 7	CRCMD: CRC Module Disable bit
	1 = CRC module is disabled
	0 = CRC module is enabled
bit 6-2	Unimplemented: Read as '0'
bit 1	I2C2MD: I2C2 Module Disable bit
	1 = I2C2 module is disabled
	0 = I2C2 module is enabled
bit 0	Unimplemented: Read as '0'

REGISTER 10-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0
—	—	—	—	REFOMD	CTMUMD	—	—
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-4	Unimplemented: Read as '0'
bit 3	REFOMD: Reference Clock Module Disable bit
	1 = Reference clock module is disabled
	0 = Reference clock module is enabled
bit 2	CTMUMD: CTMU Module Disable bit
	1 = CTMU module is disabled
	0 = CTMU module is enabled
bit 1-0	Unimplemented: Read as '0'

dsPIC33EDV64MC205

REGISTER 10-5: PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	PWM3MD	PWM2MD	PWM1MD
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-11 **Unimplemented:** Read as '0'

bit 10 **PWM3MD:** PWM3 Module Disable bit
1 = PWM3 module is disabled
0 = PWM3 module is enabled

bit 9 **PWM2MD:** PWM2 Module Disable bit
1 = PWM2 module is disabled
0 = PWM2 module is enabled

bit 8 **PWM1MD:** PWM1 Module Disable bit
1 = PWM1 module is disabled
0 = PWM1 module is enabled

bit 7-0 **Unimplemented:** Read as '0'

REGISTER 10-6: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0
—	—	—	DMA0MD ⁽¹⁾	PTGMD	—	—	—
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-5 **Unimplemented:** Read as '0'

bit 4 **DMA0MD:** DMA0 Module Disable bit⁽¹⁾

1 = DMA0 module is disabled

0 = DMA0 module is enabled

DMA1MD: DMA1 Module Disable bit⁽¹⁾

1 = DMA1 module is disabled

0 = DMA1 module is enabled

DMA2MD: DMA2 Module Disable bit⁽¹⁾

1 = DMA2 module is disabled

0 = DMA2 module is enabled

DMA3MD: DMA3 Module Disable bit⁽¹⁾

1 = DMA3 module is disabled

0 = DMA3 module is enabled

bit 3 **PTGMD:** PTG Module Disable bit

1 = PTG module is disabled

0 = PTG module is enabled

bit 2-0 **Unimplemented:** Read as '0'

Note 1: This single bit enables and disables all four DMA channels.

dsPIC33EDV64MC205

NOTES:

11.0 I/O PORTS

Note 1: This data sheet summarizes the features of the dsPIC33EDV64MC205 device. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to “I/O Ports” (www.microchip.com/DS70000598) in the “dsPIC33/PIC24 Family Reference Manual”.

2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 “Memory Organization”** in this data sheet for device-specific register and bit information.

Many of the device pins are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

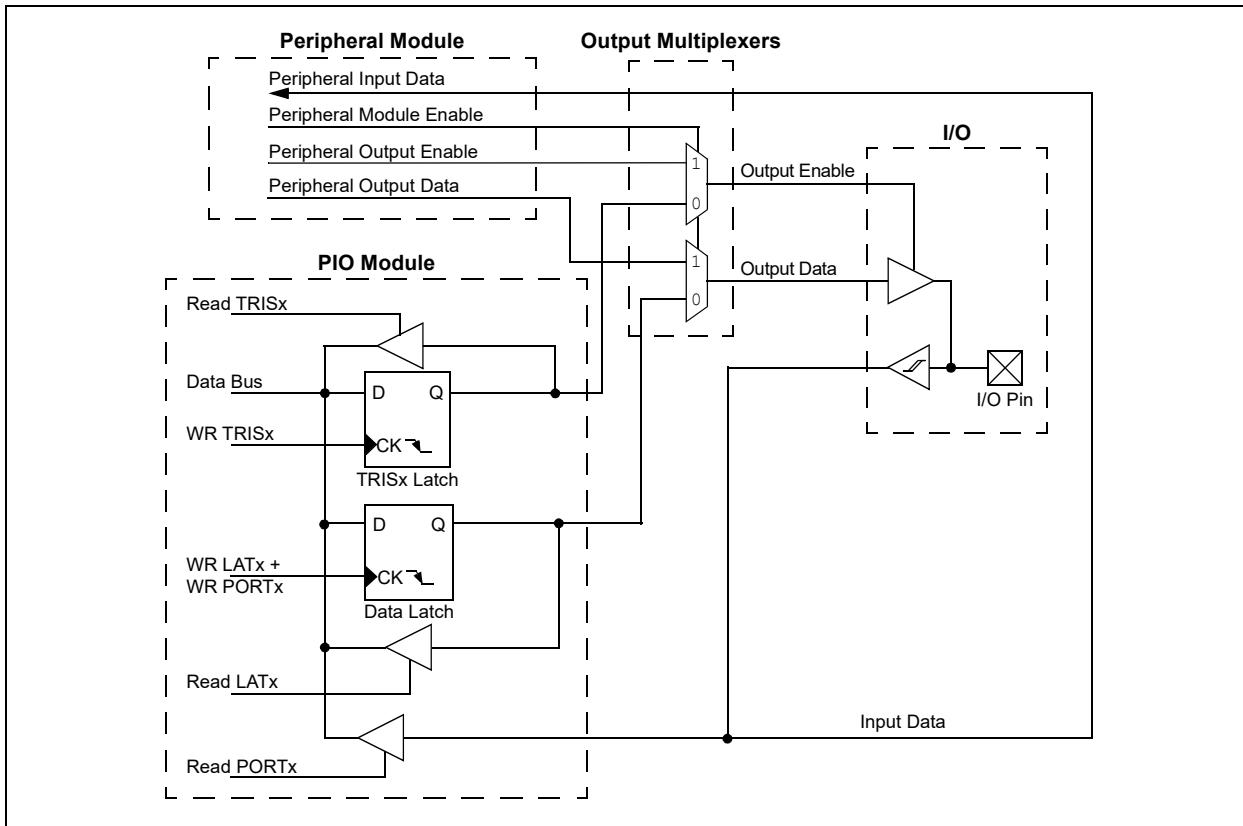
11.1 Parallel I/O (PIO) Ports

Generally, a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents “loop through” in which a port's digital output can drive the input of a peripheral that shares the same pin. [Figure 11-1](#) illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

Note 1: Several I/Os on the host dsPIC33 DSC are not brought to external pins on the device package.

2: Some I/Os are used as interconnects between the host DSC and the MOSFET Gate Driver module. These interconnects include dedicated PWM connections, as well as control and communication connections, which are to be configured as shown in [Table 1-1](#).


3: Other I/Os are unavailable due to pin count limitations and need to be configured as digital outputs and driven to a logic low level. The PORT register maps of the I/Os are available in [Table 4-26](#) to [Table 4-32](#).

All port pins have eight registers directly associated with their operation as digital I/Os. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a ‘1’, then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Latch register (LATx), read the latch. Writes to the Latch register, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device are disabled. This means the corresponding LATx and TRISx registers, and the port pins are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

FIGURE 11-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

11.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORT x , LAT x and TRIS x registers for data control, port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control x register, ODC x , associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs other than VDD by using external pull-up resistors. The maximum open-drain voltage allowed on any pin is the same as the maximum VIH specification for that particular pin.

See [Table 30-11](#) for the maximum VIH specification for each pin.

11.2 Configuring Analog and Digital Port Pins

The ANSEL x register controls the operation of the analog port pins. The port pins that are to function as analog inputs or outputs must have their corresponding ANSEL x and TRIS x bits set. In order to use port pins for I/O functionality with digital modules, such as timers, UARTs, etc., the corresponding ANSEL x bit must be cleared.

The ANSEL x register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

When ANSEL x = 1 (the port is selected as analog) and TRIS x = 1 (digital I/O is enabled), the digital input value read by the port is always '0'.

Pins with analog functions affected by the ANSEL x registers are listed with a buffer type of analog in the Pinout I/O Descriptions (see [Table 1-2](#)).

If the TRIS x bit is cleared (output) while the ANSEL x bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or comparator module.

When the PORT x register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the AN x pins) can cause the input buffer to consume current that exceeds the device specifications.

11.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP, as shown in [Example 11-1](#).

11.3 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a Change-of-State.

Three control registers are associated with the Change Notification (CN) functionality of each I/O port. The CNENx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each I/O pin also has a weak pull-up and a weak pull-down connected to it. The pull-ups and pull-downs act as a current source or sink source connected to the pin and eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups and pull-downs are enabled separately, using the CNPUX and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

Note: Pull-ups and pull-downs on Change Notification pins should always be disabled when the port pin is configured as a digital output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

```
MOV 0xFF00, W0 ; Configure PORTB<15:8>
; as inputs
MOV W0, TRISB ; and PORTB<7:0>
; as outputs
NOP ; Delay 1 cycle
BTSS PORTB, #13 ; Next Instruction
```

11.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient workarounds in application code, or a complete redesign, may be the only option.

Peripheral Pin Select configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.4.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the label, "RPn" or "RPI_n", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

11.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the Peripheral Pin Select are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs.

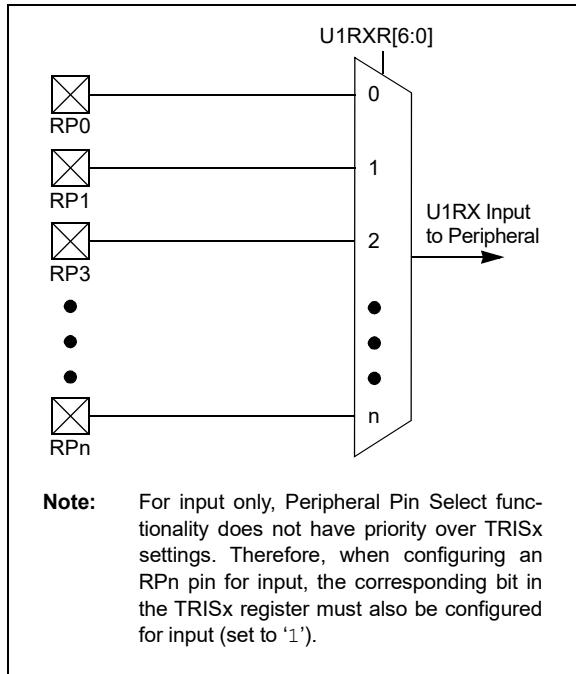
In comparison, some digital only peripheral modules are never included in the Peripheral Pin Select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I²C and the PWM. A similar requirement excludes all modules with analog inputs, such as the ADC Converter.

A key difference between remappable and non-remappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/Os and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

11.4.3 CONTROLLING PERIPHERAL PIN SELECT

Peripheral Pin Select features are controlled through two sets of SFRs: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.


The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

11.4.4 INPUT MAPPING

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see [Register 11-1](#) through [Register 11-16](#)). Each register contains sets of 7-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 7-bit value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of Peripheral Pin Selections supported by the device.

For example, [Figure 11-2](#) illustrates remappable pin selection for the U1RX input.

FIGURE 11-2: REMAPPABLE INPUT FOR U1RX

11.4.4.1 Virtual Connections

The dsPIC33EDV64MC205 device supports virtual (internal) connections to the output of the op amp/comparator module (see [Figure 25-1](#) in [Section 25.0](#) “[Op Amp/Comparator Module](#)”) and the PTG module (see [Section 24.0](#) “[Peripheral Trigger Generator \(PTG\) Module](#)”).

Virtual connections provide a simple way of inter-peripheral connection without utilizing a physical pin. For example, by setting the FLT1R[6:0] bits of the RPINR12 register to the value of ‘b0000001’, the output of the analog comparator, C1OUT, will be connected to the PWM Fault 1 input, which allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

TABLE 11-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)

Input Name ⁽¹⁾	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R[6:0]
External Interrupt 2	INT2	RPINR1	INT2R[6:0]
Timer2 External Clock	T2CK	RPINR3	T2CKR[6:0]
Input Capture 1	IC1	RPINR7	IC1R[6:0]
Input Capture 2	IC2	RPINR7	IC2R[6:0]
Input Capture 3	IC3	RPINR8	IC3R[6:0]
Input Capture 4	IC4	RPINR8	IC4R[6:0]
Output Compare Fault A	OCFA	RPINR11	OCFAR[6:0]
PWM Fault 1	FLT1	RPINR12	FLT1R[6:0]
PWM Fault 2	FLT2	RPINR12	FLT2R[6:0]
QEI1 Phase A	QEA1	RPINR14	QEA1R[6:0]
QEI1 Phase B	QEB1	RPINR14	QEB1R[6:0]
QEI1 Index	INDX1	RPINR15	INDX1R[6:0]
QEI1 Home	HOME1	RPINR15	HOME1R[6:0]
UART1 Receive	U1RX	RPINR18	U1RXR[6:0]
UART2 Receive	U2RX	RPINR19	U2RXR[6:0]
SPI2 Data Input	SDI2	RPINR22	SDI2R[6:0]
SPI2 Clock Input	SCK2	RPINR22	SCK2R[6:0]
SPI2 Client Select	SS2	RPINR23	SS2R[6:0]
PWM Synchronous Input 1	SYNC1	RPINR37	SYNC1R[6:0]
PWM Dead-Time Compensation 1	DTCMP1	RPINR38	DTCMP1R[6:0]
PWM Dead-Time Compensation 2	DTCMP2	RPINR39	DTCMP2R[6:0]
PWM Dead-Time Compensation 3	DTCMP3	RPINR39	DTCMP3R[6:0]

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

dsPIC33EDV64MC205

TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES

Peripheral Pin Select Input Register Value	Input/Output	Pin Assignment	Peripheral Pin Select Input Register Value	Input/Output	Pin Assignment
000 0000	I	Vss	010 1101	I	Reserved
000 0001	I	C1OUT ⁽¹⁾	010 1110	I	Reserved
000 0010	I	C2OUT ⁽¹⁾	010 1111	I	Reserved
000 0011	I	C3OUT ⁽¹⁾	011 0000	—	—
000 0100	I	C4OUT ⁽¹⁾	011 0001	—	—
000 0101	—	—	011 0010	—	—
000 0110	I	PTGO30 ⁽¹⁾	011 0011	I	RPI51
000 0111	I	PTGO31 ⁽¹⁾	011 0100	I	RPI52
000 1000	—	—	011 0101	I	RPI53
000 1001	—	—	011 0110	I/O	RP54
000 1010	—	—	011 0111	I/O	Reserved
000 1011	—	—	011 1000	I/O	Reserved
000 1100	—	—	011 1001	I/O	Reserved
000 1101	—	—	011 1010	I	Reserved
000 1110	—	—	011 1011	—	—
000 1111	—	—	011 1100	—	—
001 0000	—	—	011 1101	—	—
001 0001	—	—	011 1110	—	—
001 0010	—	—	011 1111	—	—
001 0011	—	—	100 0000	—	—
001 0100	I/O	RP20	100 0001	—	—
001 0101	—	—	100 0010	—	—
001 0110	—	—	100 0011	—	—
001 0111	—	—	100 0100	—	—
001 1000	I	RPI24	100 0101	—	—
001 1001	I	RPI25	100 0110	—	—
001 1010	—	—	100 0111	—	—
001 1011	I	Reserved	100 1000	—	—
001 1100	I	Reserved	100 1001	—	—
001 1101	—	—	100 1010	—	—
001 1110	—	—	100 1011	—	—
001 1111	—	—	100 1100	—	—
010 0000	I	RPI32	100 1101	—	—
010 0001	I	RPI33	100 1110	—	—
010 0010	I	RPI34	100 1111	—	—
010 0011	I/O	RP35	101 0000	—	—
010 0100	I/O	RP36	101 0001	—	—
010 0101	I/O	RP37	101 0010	—	—
010 0110	I/O	RP38	101 0011	—	—
010 0111	I/O	RP39	101 0100	—	—

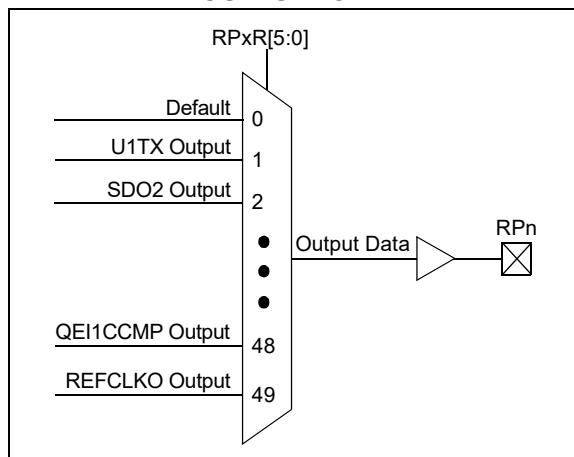
Legend: Shaded rows indicate PPS Input register values that are unimplemented.

Note 1: See [Section 11.4.4.1 “Virtual Connections”](#) for more information on selecting this pin assignment.

TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES (CONTINUED)

Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment	Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment
010 1000	I/O	RP40	101 0101	—	—
010 1001	I/O	RP41	101 0110	—	—
010 1010	I/O	Reserved	101 0111	—	—
010 1011	I/O	Reserved	101 1000	—	—
010 1100	I	Reserved	101 1001	—	—
101 1010	—	—	110 1101	—	—
101 1011	—	—	110 1110	—	—
101 1100	—	—	110 1111	—	—
101 1101	—	—	111 0000	—	—
101 1110	I	Reserved	111 0001	—	—
101 1111	I	Reserved	111 0010	—	—
110 0000	I	Reserved	111 0011	—	—
110 0001	I/O	Reserved	111 0100	—	—
110 0010	—	—	111 0101	—	—
110 0011	—	—	111 0110	I/O	RP118
110 0100	—	—	111 0111	I	Reserved
110 0101	—	—	111 1000	I/O	RP120
110 0110	—	—	111 1001	I	Reserved
110 0111	—	—	111 1010	—	—
110 1000	—	—	111 1011	—	—
110 1001	—	—	111 1100	—	—
110 1010	—	—	111 1101	—	—
110 1011	—	—	111 1110	—	—
110 1100	—	—	111 1111	—	—

Legend: Shaded rows indicate PPS Input register values that are unimplemented.


Note 1: See [Section 11.4.4.1 “Virtual Connections”](#) for more information on selecting this pin assignment.

11.4.4.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Each RPORx register contains sets of 6-bit fields, with each set associated with one RPn pin (see [Register 11-17](#) through [Register 11-26](#)). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see [Table 11-3](#) and [Figure 11-3](#)).

A null output is associated with the output register Reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 11-3: MULTIPLEXING REMAPPABLE OUTPUT FOR RPn

11.4.4.3 Mapping Limitations

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardware-enforced lockouts between any of the peripheral mapping SFRs. Literally, any combination of peripheral mappings across any or all of the RPn pins is possible. This includes both many-to-one and one-to-many mappings of peripheral inputs and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view.

TABLE 11-3: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn)

Function	RPxR[5:0]	Output Name
Default PORT	000000	RPn tied to Default Pin
U1TX	000001	RPn tied to UART1 Transmit
U2TX	000011	RPn tied to UART2 Transmit
SDO2	001000	RPn tied to SPI2 Data Output
SCK2	001001	RPn tied to SPI2 Clock Output
SS2	001010	RPn tied to SPI2 Client Select
OC1	010000	RPn tied to Output Compare 1 Output
OC2	010001	RPn tied to Output Compare 2 Output
OC3	010010	RPn tied to Output Compare 3 Output
OC4	010011	RPn tied to Output Compare 4 Output
C1OUT	011000	RPn tied to Comparator Output 1
C2OUT	011001	RPn tied to Comparator Output 2
C3OUT	011010	RPn tied to Comparator Output 3
SYNCO1	101101	RPn tied to PWM Primary Time Base Sync Output
CNTCMP1	101111	RPn tied to QEI1 Compare Output
REFCLKO	110001	RPn tied to Reference Clock Output
C4OUT	110010	RPn tied to Comparator Output 4

11.5 I/O Helpful Tips

1. In some cases, certain pins, as defined in [Table 30-11](#) under “Injection Current”, have internal protection diodes to VDD and Vss. The term, “Injection Current”, is also referred to as “Clamp Current”. On designated pins with sufficient external current-limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings, with respect to the Vss and VDD supplies. Note that when the user application forward biases either of the high or low-side internal input clamp diodes, that the resulting current being injected into the device that is clamped internally by the VDD and Vss power rails, may affect the ADC accuracy by four to six counts.
2. I/O pins that are shared with any analog input pin (i.e., ANx) are always analog pins by default after any Reset. Consequently, configuring a pin as an analog input pin automatically disables the digital input pin buffer and any attempt to read the digital input level by reading PORTx or LATx will always return a ‘0’, regardless of the digital logic level on the pin. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the Analog Pin Configuration registers in the I/O ports module (i.e., ANSELx) by setting the appropriate bit that corresponds to that I/O port pin to a ‘0’.
3. Most I/O pins have multiple functions. Referring to the device pin diagrams in this data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1; this indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.
4. Each pin has an internal weak pull-up resistor and pull-down resistor that can be configured using the CNPUx and CNPDx registers, respectively. These resistors eliminate the need for external resistors in certain applications. The internal pull-up is up to $\sim(VDD - 0.8)$, not VDD. This value is still above the minimum VIH of CMOS and TTL devices.
5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/I_{OH} and VOL/I_{OL} DC characteristic specifications. The respective I_{OH} and I_{OL} current rating only applies to maintaining the corresponding output at or above the VOH, and at or below the VOL levels. However, for LEDs, unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the [“Absolute Maximum Ratings^{\(1\)}”](#) section of this data sheet. For example:
 $VOH = 2.4V @ I_{OH} = -8\text{ mA and } VDD = 3.3V$
The maximum output current sourced by any 8 mA I/O pin = 12 mA.
LED source current < 12 mA is technically permitted.

Note: Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.

6. The Peripheral Pin Select (PPS) pin mapping rules are as follows:
 - a) Only one “output” function can be active on a given pin at any time, regardless if it is a dedicated or remappable function (one pin, one output).
 - b) It is possible to assign a “remappable output” function to multiple pins and externally short or tie them together for increased current drive.
 - c) If any “dedicated output” function is enabled on a pin, it will take precedence over any remappable “output” function.
 - d) If any “dedicated digital” (input or output) function is enabled on a pin, any number of “input” remappable functions can be mapped to the same pin.
 - e) If any “dedicated analog” function(s) are enabled on a given pin, “digital input(s)” of any kind will all be disabled, although a single “digital output”, at the user’s cautionary discretion, can be enabled and active as long as there is no signal contention with an external analog input signal. For example, it is possible for the ADC to convert the digital output logic level, or to toggle a digital output on a comparator or ADC input, provided there is no external analog input, such as for a built-in self-test.
 - f) Any number of “input” remappable functions can be mapped to the same pin(s) at the same time, including to any pin with a single output from either a dedicated or remappable “output”.
 - g) The TRISx registers control *only* the digital I/O output buffer. Any other dedicated or remappable active “output” will automatically override the TRISx setting. The TRISx register *does not* control the digital logic “input” buffer. Remappable digital “inputs” do not automatically override TRISx settings, which means that the TRISx bit must be set to input for pins with only remappable input function(s) assigned
 - h) All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin has been disabled. Only the Analog Pin Select registers control the digital input buffer, *not* the TRISx register. The user must disable the analog function on a pin using the Analog Pin Select registers in order to use any “digital input(s)” on a corresponding pin, no exceptions.

11.6 I/O Ports Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this [link](#), contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser:
<http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en555464>

11.6.1 KEY RESOURCES

- “**I/O Ports**” (DS70000598) in the “*dsPIC33/PIC24 Family Reference Manual*”
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related “*dsPIC33/PIC24 Family Reference Manual*” Sections
- Development Tools

11.7 Peripheral Pin Select Registers

REGISTER 11-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				INT1R[6:0]			
bit 15							

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-8 **INT1R[6:0]:** Assign External Interrupt 1 (INT1) to the Corresponding RPn or RPIn Pin bits
(see [Table 11-2](#) for input pin selection numbers)

bit 7-0 **Unimplemented:** Read as '0'

REGISTER 11-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				INT2R[6:0]			
bit 7							

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-7 **Unimplemented:** Read as '0'

bit 6-0 **INT2R[6:0]:** Assign External Interrupt 2 (INT2) to the Corresponding RPn or RPIn Pin bits
(see [Table 11-2](#) for input pin selection numbers)

dsPIC33EDV64MC205

REGISTER 11-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15	bit 8						

U-0	R/W-0						
—							
bit 7	bit 0						

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-7

Unimplemented: Read as '0'

bit 6-0

T2CKR[6:0]: Assign Timer2 External Clock (T2CK) to the Corresponding RPn or RPIn Pin bits
(see [Table 11-2](#) for input pin selection numbers)

REGISTER 11-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

U-0	R/W-0						
—							
bit 15	bit 8						

U-0	R/W-0						
—							
bit 7	bit 0						

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15

Unimplemented: Read as '0'

bit 14-8

IC2R[6:0]: Assign Input Capture 2 (IC2) to the Corresponding RPn or RPIn Pin bits
(see [Table 11-2](#) for input pin selection numbers)

bit 7

Unimplemented: Read as '0'

bit 6-0

IC1R[6:0]: Assign Input Capture 1 (IC1) to the Corresponding RPn or RPIn Pin bits
(see [Table 11-2](#) for input pin selection numbers)

REGISTER 11-5: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

U-0	R/W-0						
—							IC4R[6:0]
bit 15							

U-0	R/W-0						
—							IC3R[6:0]
bit 7							

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-8 **IC4R[6:0]:** Assign Input Capture 4 (IC4) to the Corresponding RPn or RPIn Pin bits
(see [Table 11-2](#) for input pin selection numbers)

bit 7 **Unimplemented:** Read as '0'

bit 6-0 **IC3R[6:0]:** Assign Input Capture 3 (IC3) to the Corresponding RPn or RPIn Pin bits
(see [Table 11-2](#) for input pin selection numbers)

REGISTER 11-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							

U-0	R/W-0						
—							OCFAR[6:0]
bit 7							

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-7 **Unimplemented:** Read as '0'

bit 6-0 **OCFAR[6:0]:** Assign Output Compare Fault A (OCFA) to the Corresponding RPn or RPIn Pin bits
(see [Table 11-2](#) for input pin selection numbers)

dsPIC33EDV64MC205

REGISTER 11-7: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				FLT2R[6:0]			
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				FLT1R[6:0]			
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-8 **FLT2R[6:0]:** Assign PWM Fault 2 (FLT2) to the Corresponding RPn or RPIn Pin bits
(see [Table 11-2](#) for input pin selection numbers)

bit 7 **Unimplemented:** Read as '0'

bit 6-0 **FLT1R[6:0]:** Assign PWM Fault 1 (FLT1) to the Corresponding RPn Pin bits
(see [Table 11-2](#) for input pin selection numbers)

REGISTER 11-8: RPINR14: PERIPHERAL PIN SELECT INPUT REGISTER 14

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				QEB1R[6:0]			
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				QEA1R[6:0]			
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-8 **QEB1R[6:0]:** Assign QEI1 Phase B (QEB1) to the Corresponding RPn or RPIn Pin bits
(see [Table 11-2](#) for input pin selection numbers)

bit 7 **Unimplemented:** Read as '0'

bit 6-0 **QEA1R[6:0]:** Assign QEI1 Phase A (QEA1) to the Corresponding RPn or RPIn Pin bits
(see [Table 11-2](#) for input pin selection numbers)

REGISTER 11-9: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				HOME1R[6:0]			
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				INDX1R[6:0]			
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-8 **HOME1R[6:0]:** Assign QE11 Home (HOME1) to the Corresponding RPn or RPIn Pin bits
(see [Table 11-2](#) for input pin selection numbers)

bit 7 **Unimplemented:** Read as '0'

bit 6-0 **IND1XR[6:0]:** Assign QE11 Index (INDX1) to the Corresponding RPn or RPIn Pin bits
(see [Table 11-2](#) for input pin selection numbers)

REGISTER 11-10: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				U1RXR[6:0]			
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-7 **Unimplemented:** Read as '0'

bit 6-0 **U1RXR[6:0]:** Assign UART1 Receive (U1RX) to the Corresponding RPn or RPIn Pin bits
(see [Table 11-2](#) for input pin selection numbers)

dsPIC33EDV64MC205

REGISTER 11-11: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—							
bit 7	U2RXR[6:0]						

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-7 **Unimplemented:** Read as '0'

bit 6-0 **U2RXR[6:0]:** Assign UART2 Receive (U2RX) to the Corresponding RPn or RPIn Pin bits
(see [Table 11-2](#) for input pin selection numbers)

REGISTER 11-12: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—							
bit 15	SCK2R[6:0]						

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—							
bit 7	SDI2R[6:0]						

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-8 **SCK2R[6:0]:** Assign SPI2 Clock Input (SCK2) to the Corresponding RPn or RPIn Pin bits
(see [Table 11-2](#) for input pin selection numbers)

bit 7 **Unimplemented:** Read as '0'

bit 6-0 **SDI2R[6:0]:** Assign SPI2 Data Input (SDI2) to the Corresponding RPn or RPIn Pin bits
(see [Table 11-2](#) for input pin selection numbers)

REGISTER 11-13: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—					SS2R[6:0]		
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-7 **Unimplemented:** Read as '0'

bit 6-0 **SS2R[6:0]:** Assign SPI2 Client Select ($\overline{SS2}$) to the Corresponding RPn or RPIn Pin bits
(see [Table 11-2](#) for input pin selection numbers)

REGISTER 11-14: RPINR37: PERIPHERAL PIN SELECT INPUT REGISTER 37

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—					SYNC1R[6:0]		
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-8 **SYNC1R[6:0]:** Assign PWM Synchronization Input 1 (SYNC1) to the Corresponding RPn or RPIn Pin bits
(see [Table 11-2](#) for input pin selection numbers)

bit 7-0 **Unimplemented:** Read as '0'

dsPIC33EDV64MC205

REGISTER 11-15: RPINR38: PERIPHERAL PIN SELECT INPUT REGISTER 38

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	DTCMP1R[6:0]						
bit 15							

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-8 **DTCMP1R[6:0]:** Assign PWM Dead-Time Compensation 1 (DTCMP1) to the Corresponding RPn or RPIn Pin bits (see [Table 11-2](#) for input pin selection numbers)

bit 7-0 **Unimplemented:** Read as '0'

REGISTER 11-16: RPINR39: PERIPHERAL PIN SELECT INPUT REGISTER 39

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	DTCMP3R[6:0]						
bit 15							

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	DTCMP2R[6:0]						
bit 7							

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

bit 15 **Unimplemented:** Read as '0'

bit 14-8 **DTCMP3R[6:0]:** Assign PWM Dead-Time Compensation 3 (DTCMP3) to the Corresponding RPn or RPIn Pin bits (see [Table 11-2](#) for input pin selection numbers)

bit 7 **Unimplemented:** Read as '0'

bit 6-0 **DTCMP2R[6:0]:** Assign PWM Dead-Time Compensation 2 (DTCMP2) to the Corresponding RPn or RPIn Pin bits (see [Table 11-2](#) for input pin selection numbers)

REGISTER 11-17: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP35R[5:0]			
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP20R[5:0]			
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 **RP35R[5:0]:** Peripheral Output Function is Assigned to RP35 Output Pin bits
(see [Table 11-3](#) for peripheral function numbers)

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 **RP20R[5:0]:** Peripheral Output Function is Assigned to RP20 Output Pin bits
(see [Table 11-3](#) for peripheral function numbers)

REGISTER 11-18: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP37R[5:0]			
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP36R[5:0]			
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 **RP37R[5:0]:** Peripheral Output Function is Assigned to RP37 Output Pin bits
(see [Table 11-3](#) for peripheral function numbers)

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 **RP36R[5:0]:** Peripheral Output Function is Assigned to RP36 Output Pin bits
(see [Table 11-3](#) for peripheral function numbers)

dsPIC33EDV64MC205

REGISTER 11-19: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP39R[5:0]			
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP38R[5:0]			
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-14

Unimplemented: Read as '0'

bit 13-8

RP39R[5:0]: Peripheral Output Function is Assigned to RP39 Output Pin bits
(see [Table 11-3](#) for peripheral function numbers)

bit 7-6

Unimplemented: Read as '0'

bit 5-0

RP38R[5:0]: Peripheral Output Function is Assigned to RP38 Output Pin bits
(see [Table 11-3](#) for peripheral function numbers)

REGISTER 11-20: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP41R[5:0]			
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP40R[5:0]			
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-14

Unimplemented: Read as '0'

bit 13-8

RP41R[5:0]: Peripheral Output Function is Assigned to RP41 Output Pin bits
(see [Table 11-3](#) for peripheral function numbers)

bit 7-6

Unimplemented: Read as '0'

bit 5-0

RP40R[5:0]: Peripheral Output Function is Assigned to RP40 Output Pin bits
(see [Table 11-3](#) for peripheral function numbers)

REGISTER 11-21: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

U-0	U-0	r-0	r-0	r-0	r-0	r-0	r-0	
—	—						Reserved	
bit 15								
							bit 8	

U-0	U-0	r-0	r-0	r-0	r-0	r-0	r-0	
—	—						Reserved	
bit 7								
							bit 0	

Legend:	r = Reserved bit
R = Readable bit	W = Writable bit
-n = Value at POR	'1' = Bit is set '0' = Bit is cleared

bit 15-14 **Unimplemented:** Read as '0'
 bit 13-8 **Reserved**
 bit 7-6 **Unimplemented:** Read as '0'
 bit 5-0 **Reserved**

REGISTER 11-22: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	r-0	r-0	r-0	r-0	r-0	r-0	
—	—						Reserved	
bit 15								
							bit 8	

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—						RP54R[5:0]	
bit 7								
							bit 0	

Legend:	r = Reserved bit
R = Readable bit	W = Writable bit
-n = Value at POR	'1' = Bit is set '0' = Bit is cleared

bit 15-14 **Unimplemented:** Read as '0'
 bit 13-8 **Reserved**
 bit 7-6 **Unimplemented:** Read as '0'
 bit 5-0 **RP54R[5:0]:** Peripheral Output Function is Assigned to RP54 Output Pin bits
 (see [Table 11-3](#) for peripheral function numbers)

dsPIC33EDV64MC205

REGISTER 11-23: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

U-0	U-0	r-0	r-0	r-0	r-0	r-0	r-0				
—	—			Reserved							
bit 15											bit 8

U-0	U-0	r-0	r-0	r-0	r-0	r-0	r-0				
—	—			Reserved							
bit 7											bit 0

Legend:	r = Reserved bit
R = Readable bit	W = Writable bit
-n = Value at POR	U = Unimplemented bit, read as '0' '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 **Reserved**

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 **Reserved**

REGISTER 11-24: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	r-0	r-0	r-0	r-0	r-0	r-0				
—	—			Reserved							
bit 15											bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	—	—	—	—	—	—	—				
bit 7											bit 0

Legend:	r = Reserved bit
R = Readable bit	W = Writable bit
-n = Value at POR	U = Unimplemented bit, read as '0' '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 **Reserved**

bit 7-0 **Unimplemented:** Read as '0'

REGISTER 11-25: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

U-0	U-0	r-0	r-0	r-0	r-0	r-0	r-0				
—	—			Reserved							
bit 15											bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	—	—	—	—	—	—	—				
bit 7											bit 0

Legend:	r = Reserved bit
R = Readable bit	W = Writable bit
-n = Value at POR	'1' = Bit is set '0' = Bit is cleared

bit 15-14 **Unimplemented:** Read as '0'
 bit 13-8 **Reserved**
 bit 7-0 **Unimplemented:** Read as '0'

REGISTER 11-26: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	—	—	—	—	—	—	—				
bit 15											bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	—			RP120R[5:0]							
bit 7											bit 0

Legend:	r = Reserved bit	W = Writable bit	U = Unimplemented bit, read as '0'
R = Readable bit	-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 15-6 **Unimplemented:** Read as '0'
 bit 5-0 **RP120R[5:0]:** Peripheral Output Function is Assigned to RP120 Output Pin bits
 (see [Table 11-3](#) for peripheral function numbers)

dsPIC33EDV64MC205

NOTES:

12.0 TIMER1

Note 1: This data sheet summarizes the features of the dsPIC33EDV64MC205 device. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to “**Timers**” (www.microchip.com/DS70362) in the “*dsPIC33/PIC24 Family Reference Manual*”.

- 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 “Memory Organization”** in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer that can operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

- Can be Operated in Asynchronous Counter mode from an External Clock Source
- The Timer1 External Clock Input (T1CK) can Optionally be Synchronized to the Internal Device Clock and the Clock Synchronization is Performed after the Prescaler

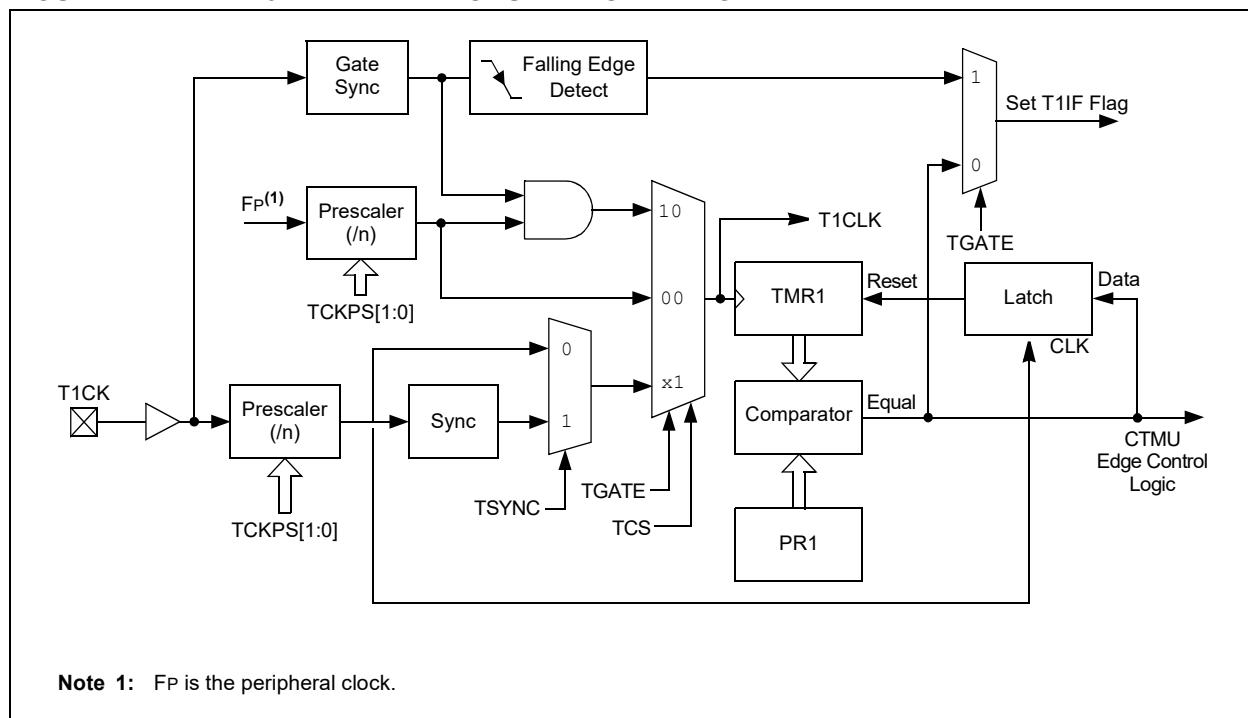
A block diagram of Timer1 is shown in [Figure 12-1](#).

The Timer1 module can operate in one of the following modes:

- Timer mode
- Gated Timer mode
- Synchronous Counter mode
- Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FCY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:


- Timer1 Clock Source Select bit (TCS): T1CON[1]
- Timer1 External Clock Input Synchronization Select bit (TSYNC): T1CON[2]
- Timer1 Gated Time Accumulation Enable bit (TGATE): T1CON[6]

Timer control bit settings for different operating modes are given in [Table 12-1](#).

TABLE 12-1: TIMER MODE SETTINGS

Mode	TCS	TGATE	TSYNC
Timer	0	0	x
Gated Timer	0	1	x
Synchronous Counter	1	x	1
Asynchronous Counter	1	x	0

FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

12.1 Timer1 Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this [link](#), contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser:
<http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en555464>

12.1.1 KEY RESOURCES

- “**Timers**” (DS70362) in the “*dsPIC33/PIC24 Family Reference Manual*”
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related “*dsPIC33/PIC24 Family Reference Manual*” Sections
- Development Tools

12.2 Timer1 Control Register

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹⁾	—	TSIDL	—	—	—	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
—	TGATE	TCKPS1	TCKPS0	—	TSYNC ⁽¹⁾	TCS ⁽¹⁾	—
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15	TON: Timer1 On bit ⁽¹⁾ 1 = Starts 16-bit Timer1 0 = Stops 16-bit Timer1
bit 14	Unimplemented: Read as '0'
bit 13	TSIDL: Timer1 Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12-7	Unimplemented: Read as '0'
bit 6	TGATE: Timer1 Gated Time Accumulation Enable bit <u>When TCS = 1:</u> This bit is ignored. <u>When TCS = 0:</u> 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled
bit 5-4	TCKPS[1:0]: Timer1 Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1
bit 3	Unimplemented: Read as '0'
bit 2	TSYNC: Timer1 External Clock Input Synchronization Select bit ⁽¹⁾ <u>When TCS = 1:</u> 1 = Synchronizes external clock input 0 = Does not synchronize external clock input <u>When TCS = 0:</u> This bit is ignored.
bit 1	TCS: Timer1 Clock Source Select bit ⁽¹⁾ 1 = External clock is from pin, T1CK (on the rising edge) 0 = Internal clock (FP)
bit 0	Unimplemented: Read as '0'

Note 1: When Timer1 is enabled in External Synchronous Counter mode (TCS = 1, TSYNC = 1, TON = 1), any attempts by user software to write to the TMR1 register are ignored.

dsPIC33EDV64MC205

NOTES:

13.0 TIMER2/3 AND TIMER4/5

Note 1: This data sheet summarizes the features of the dsPIC33EDV64MC205 device. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to “**Timers**” (www.microchip.com/DS70362) of the “*dsPIC33/PIC24 Family Reference Manual*”.

- 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 “Memory Organization”** in this data sheet for device-specific register and bit information.

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As 32-bit timers, Timer2/3 and Timer4/5 operate in three modes:

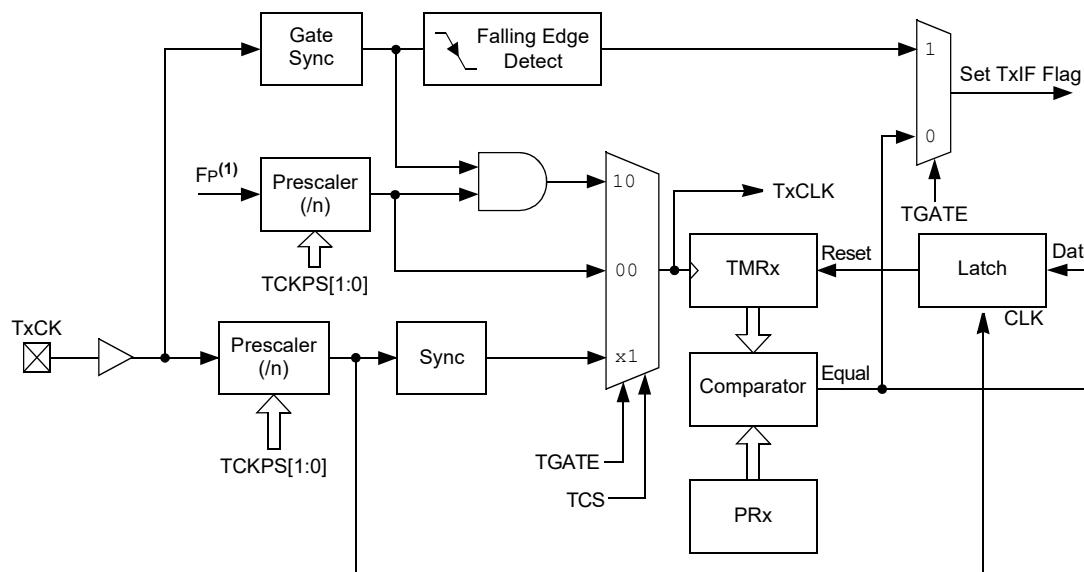
- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with all 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (32-bit timer pairs, Timer3 and Timer5 only)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed previously, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. T2CON and T4CON are shown in generic form in [Register 13-1](#). T3CON and T5CON are shown in [Register 13-2](#).

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word (lsw); Timer3 and Timer5 are the most significant word (msw) of the 32-bit timers.


Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 and Timer5 interrupt flags.

A block diagram for an example 32-bit timer pair (Timer2/3 and Timer4/5) is shown in [Figure 13-3](#).

Note: Only Timer2, 3, 4 and 5 can trigger a DMA data transfer.

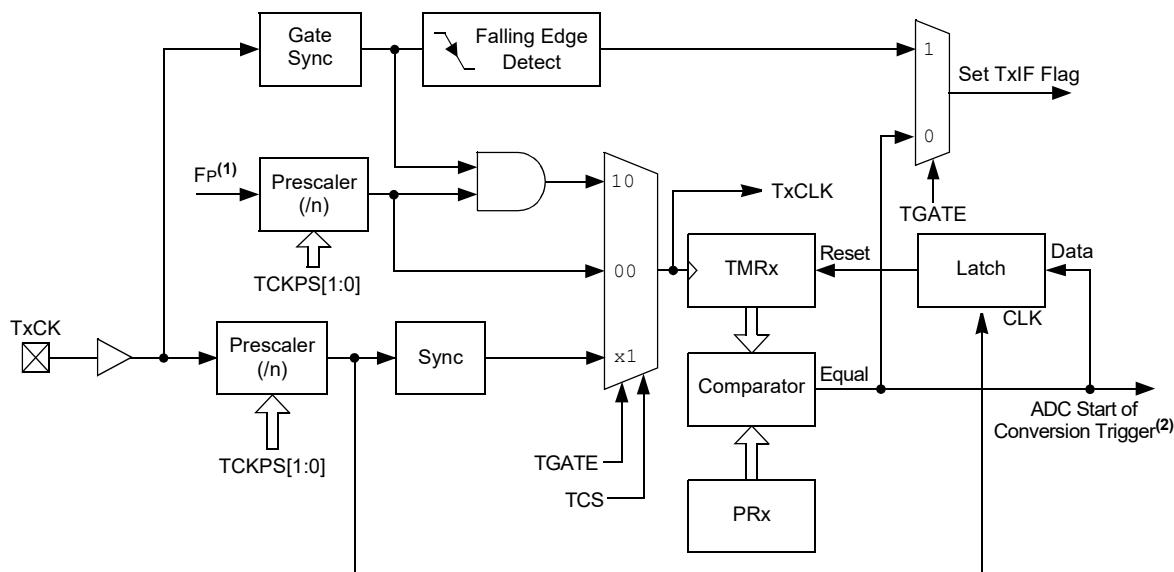
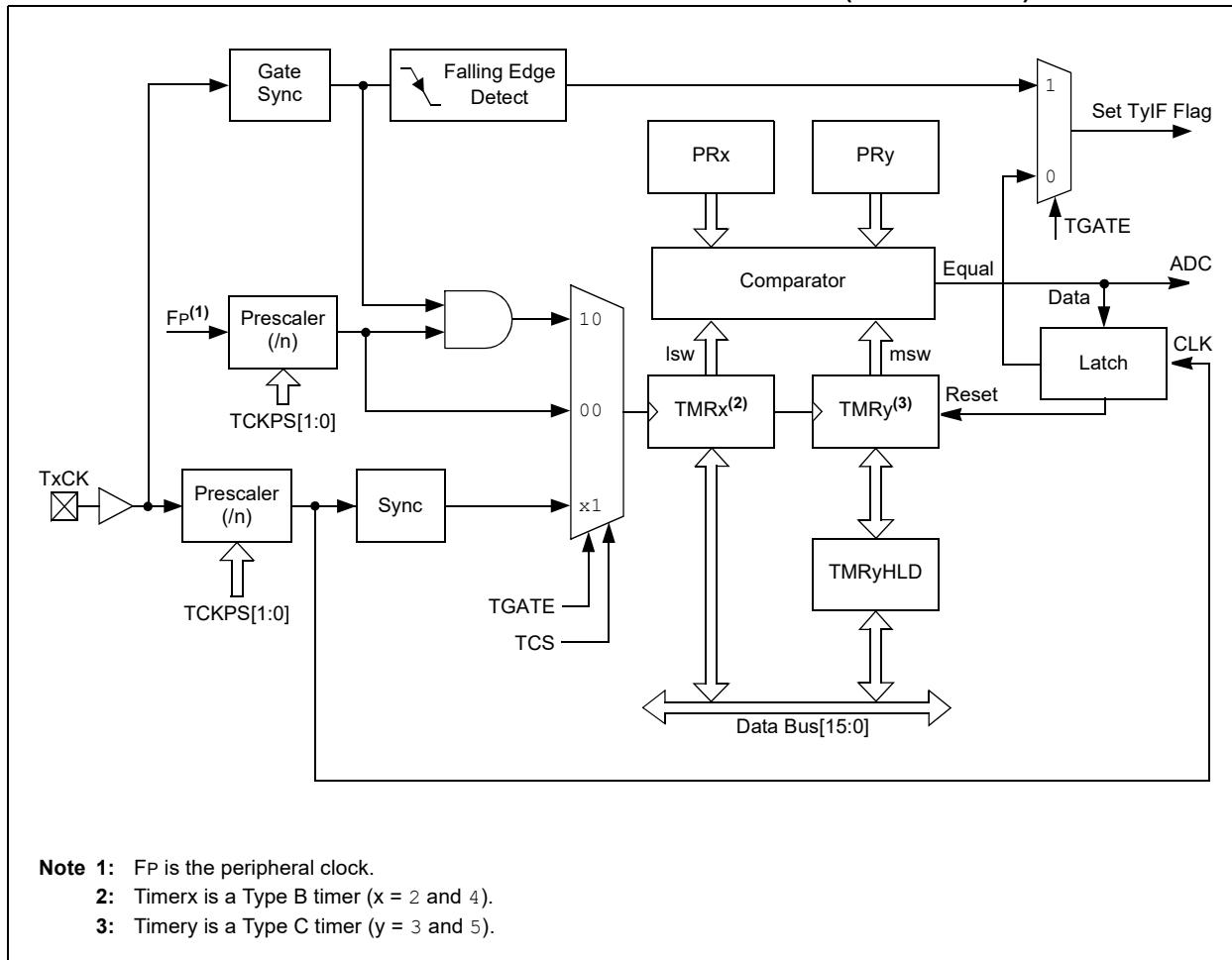

dsPIC33EDV64MC205

FIGURE 13-1: TYPE B TIMER BLOCK DIAGRAM (x = 2 AND 4)

Note 1: FP is the peripheral clock.


FIGURE 13-2: TYPE C TIMER BLOCK DIAGRAM (x = 3 AND 5)

Note 1: FP is the peripheral clock.

2: The ADC trigger is available on TMR3 and TMR5 only.

FIGURE 13-3: TYPE B/TYPE C TIMER PAIR BLOCK DIAGRAM (32-BIT TIMER)

13.1 Timerx/y Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this [link](#), contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser:
[http://www.microchip.com/
wwwproducts/Devices.aspx?d
DocName=en555464](http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en555464)

13.1.1 KEY RESOURCES

- “Timers” (DS70362) in the “*dsPIC33/PIC24 Family Reference Manual*”
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related “*dsPIC33/PIC24 Family Reference Manual*” Sections
- Development Tools

dsPIC33EDV64MC205

13.2 Timer Control Registers

REGISTER 13-1: TxCON: (TIMER2 AND TIMER4) CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON	—	TSIDL	—	—	—	—	—
bit 15							

U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
—	TGATE	TCKPS1	TCKPS0	T32	—	TCS ⁽¹⁾	—
bit 7							

Legend:

R = Readable bit
-n = Value at POR

W = Writable bit
'1' = Bit is set

U = Unimplemented bit, read as '0'
'0' = Bit is cleared
x = Bit is unknown

bit 15	TON: Timerx On bit <u>When T32 = 1:</u> 1 = Starts 32-bit Timerx/y 0 = Stops 32-bit Timerx/y <u>When T32 = 0:</u> 1 = Starts 16-bit Timerx 0 = Stops 16-bit Timerx
bit 14	Unimplemented: Read as '0'
bit 13	TSIDL: Timerx Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12-7	Unimplemented: Read as '0'
bit 6	TGATE: Timerx Gated Time Accumulation Enable bit <u>When TCS = 1:</u> This bit is ignored. <u>When TCS = 0:</u> 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled
bit 5-4	TCKPS[1:0]: Timerx Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1
bit 3	T32: 32-Bit Timer Mode Select bit 1 = Timerx and Timery form a single 32-bit timer 0 = Timerx and Timery act as two 16-bit timers
bit 2	Unimplemented: Read as '0'
bit 1	TCS: Timerx Clock Source Select bit ⁽¹⁾ 1 = External clock is from pin, TxCK (on the rising edge) 0 = Internal clock (FP)
bit 0	Unimplemented: Read as '0'

Note 1: The TxCK pin is not available on all devices. See the “[Pin Diagram](#)” section for the available pins.

REGISTER 13-2: TyCON: (TIMER3 AND TIMER5) CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹⁾	—	TSIDL ⁽²⁾	—	—	—	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
—	TGATE ⁽¹⁾	TCKPS1 ⁽¹⁾	TCKPS0 ⁽¹⁾	—	—	TCS ^(1,3)	—
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15	TON: Timery On bit ⁽¹⁾ 1 = Starts 16-bit Timery 0 = Stops 16-bit Timery
bit 14	Unimplemented: Read as '0'
bit 13	TSIDL: Timery Stop in Idle Mode bit ⁽²⁾ 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12-7	Unimplemented: Read as '0'
bit 6	TGATE: Timery Gated Time Accumulation Enable bit ⁽¹⁾ <u>When TCS = 1:</u> This bit is ignored. <u>When TCS = 0:</u> 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled
bit 5-4	TCKPS[1:0]: Timery Input Clock Prescale Select bits ⁽¹⁾ 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1
bit 3-2	Unimplemented: Read as '0'
bit 1	TCS: Timery Clock Source Select bit ^(1,3) 1 = External clock is from pin, TyCK (on the rising edge) 0 = Internal clock (FP)
bit 0	Unimplemented: Read as '0'

Note 1: When 32-bit operation is enabled (T2CON[3] = 1), these bits have no effect on Timery operation; all timer functions are set through TxCON.

2: When 32-bit timer operation is enabled (T32 = 1) in the Timerx Control register (TxCON[3]), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

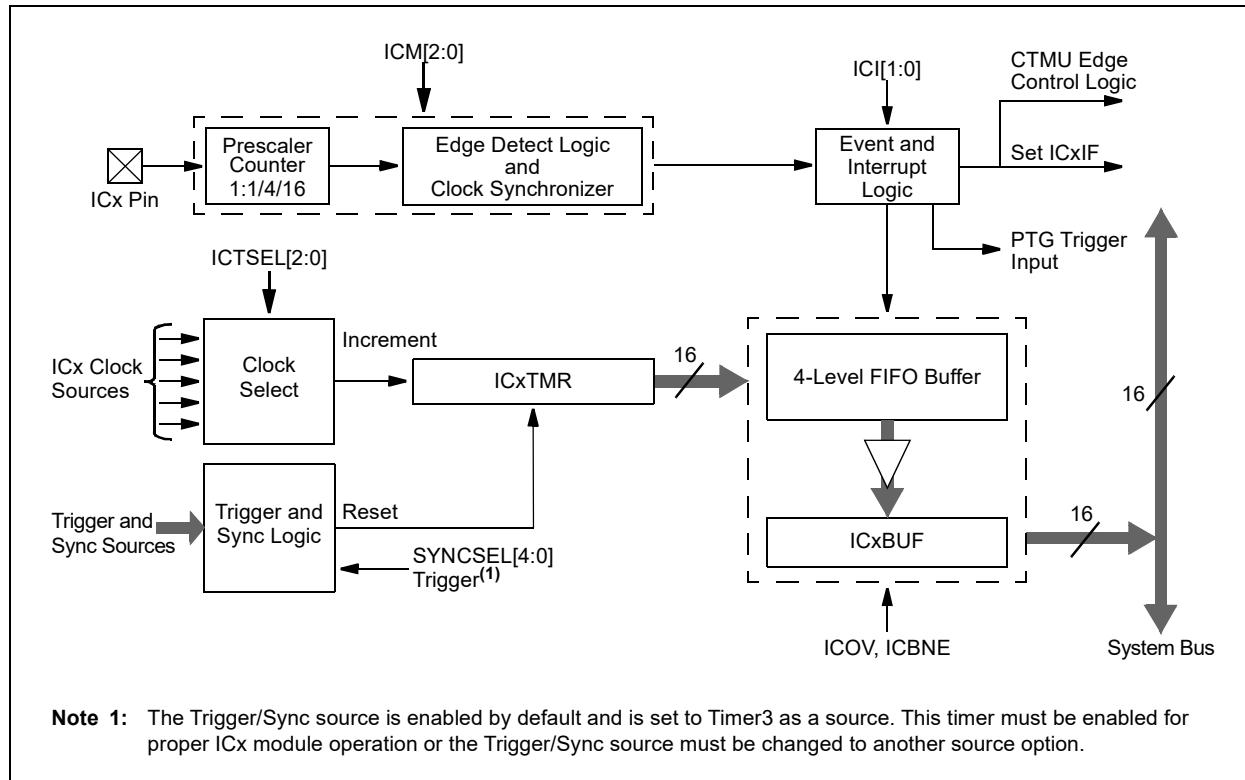
3: The TyCK pin is not available on all devices. See the “[Pin Diagram](#)” section for the available pins.

dsPIC33EDV64MC205

NOTES:

14.0 INPUT CAPTURE

Note 1: This data sheet summarizes the features of the dsPIC33EDV64MC205 device. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to “**Input Capture with Dedicated Timer**” (www.microchip.com/DS70000352) in the “*dsPIC33/dsPIC24 Family Reference Manual*”.


2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 “Memory Organization”** in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33EDV64MC205 device supports four input capture channels.

Key features of the input capture module include:

- Hardware-Configurable for 32-Bit Operation in All modes by Cascading Two Adjacent Modules
- Synchronous and Trigger modes of Output Compare Operation, with up to 19 User-Selectable Trigger/Sync Sources Available
- A 4-Level FIFO Buffer for Capturing and Holding Timer Values for Several Events
- Configurable Interrupt Generation
- Up to Six Clock Sources Available for Each Module, Driving a Separate Internal 16-Bit Counter

FIGURE 14-1: INPUT CAPTURE x MODULE BLOCK DIAGRAM

14.1 Input Capture Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this [link](#), contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser:
<http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en555464>

14.1.1 KEY RESOURCES

- “**Input Capture with Dedicated Timer**” (DS70000352) in the “*dsPIC33/PIC24 Family Reference Manual*”
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related “*dsPIC33/PIC24 Family Reference Manual*” Sections
- Development Tools

14.2 Input Capture Registers

REGISTER 14-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
—	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	HC/HS/R-0	HC/HS/R-0	R/W-0	R/W-0	R/W-0
—	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0
bit 7							bit 0

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared
		x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	ICSIDL: Input Capture x Stop in Idle Control bit 1 = Input capture will halt in CPU Idle mode 0 = Input capture will continue to operate in CPU Idle mode
bit 12-10	ICTSEL[2:0]: Input Capture x Timer Select bits 111 = Peripheral clock (FP) is the clock source of ICx 110 = Reserved 101 = Reserved 100 = T1CLK is the clock source of ICx (only the synchronous clock is supported) 011 = T5CLK is the clock source of ICx 010 = T4CLK is the clock source of ICx 001 = T2CLK is the clock source of ICx 000 = T3CLK is the clock source of ICx
bit 9-7	Unimplemented: Read as '0'
bit 6-5	ICI[1:0]: Number of Captures per Interrupt Select bits (this field is not used if ICM[2:0] = 001 or 111) 11 = Interrupt on every fourth capture event 10 = Interrupt on every third capture event 01 = Interrupt on every second capture event 00 = Interrupt on every capture event
bit 4	ICOV: Input Capture x Overflow Status Flag bit (read-only) 1 = Input capture buffer overflow occurred 0 = No input capture buffer overflow occurred
bit 3	ICBNE: Input Capture x Buffer Not Empty Status bit (read-only) 1 = Input capture buffer is not empty, at least one more capture value can be read 0 = Input capture buffer is empty
bit 2-0	ICM[2:0]: Input Capture x Mode Select bits 111 = Input capture functions as an interrupt pin only in CPU Sleep and Idle modes (rising edge detect only, all other control bits are not applicable) 110 = Unused (module is disabled) 101 = Capture mode, every 16th rising edge (Prescaler Capture mode) 100 = Capture mode, every 4th rising edge (Prescaler Capture mode) 011 = Capture mode, every rising edge (Simple Capture mode) 010 = Capture mode, every falling edge (Simple Capture mode) 001 = Capture mode, every edge rising and falling (Edge Detect mode (ICI[1:0]) is not used in this mode) 000 = Input capture module is turned off

dsPIC33EDV64MC205

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	IC32
bit 15							bit 8

R/W-0	HS/R/W-0	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
ICTRIG ⁽²⁾	TRIGSTAT ⁽³⁾	—	SYNCSEL4 ⁽⁴⁾	SYNCSEL3 ⁽⁴⁾	SYNCSEL2 ⁽⁴⁾	SYNCSEL1 ⁽⁴⁾	SYNCSEL0 ⁽⁴⁾
bit 7							bit 0

Legend:

HS = Hardware Settable bit

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-9 **Unimplemented:** Read as '0'bit 8 **IC32:** Input Capture x 32-Bit Timer Mode Select bit (Cascade mode)1 = Odd IC and Even IC form a single 32-bit input capture module⁽¹⁾

0 = Cascade module operation is disabled

bit 7 **ICTRIG:** Input Capture x Trigger Operation Select bit⁽²⁾

1 = Input source is used to trigger the input capture timer (Trigger mode)

0 = Input source is used to synchronize the input capture timer to a timer of another module (Synchronization mode)

bit 6 **TRIGSTAT:** Timer Trigger Status bit⁽³⁾

1 = ICxTMR has been triggered and is running

0 = ICxTMR has not been triggered and is being held clear

bit 5 **Unimplemented:** Read as '0'**Note 1:** The IC32 bit in both the Odd and Even IC must be set to enable Cascade mode.**2:** The input source is selected by the SYNCSEL[4:0] bits of the ICxCON2 register.**3:** This bit is set by the selected input source (selected by SYNCSEL[4:0] bits); it can be read, set and cleared in software.**4:** Do not use the ICx module as its own Sync or trigger source.**5:** This option should only be selected as a trigger source and not as a Sync source.**6:** Each Input Capture x (ICx) module has one PTG input source. See [Section 24.0 “Peripheral Trigger Generator \(PTG\) Module”](#) for more information (PTGO8 = IC1, PTGO9 = IC2, PTGO10 = IC3, PTGO11 = IC4).

REGISTER 14-2: IC_xCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

bit 4-0	SYNCSEL[4:0]: Input Source Select for Synchronization and Trigger Operation bits ⁽⁴⁾
11111	= No Sync or trigger source for IC _x
11110	= Reserved
11101	= Reserved
11100	= CTMU module synchronizes or triggers IC _x ⁽⁵⁾
11011	= ADC1 module synchronizes or triggers IC _x ⁽⁵⁾
11010	= CMP3 module synchronizes or triggers IC _x ⁽⁵⁾
11001	= CMP2 module synchronizes or triggers IC _x ⁽⁵⁾
11000	= CMP1 module synchronizes or triggers IC _x ⁽⁵⁾
10111	= Reserved
10110	= Reserved
10101	= Reserved
10100	= Reserved
10011	= IC4 module synchronizes or triggers IC _x
10010	= IC3 module synchronizes or triggers IC _x
10001	= IC2 module synchronizes or triggers IC _x
10000	= IC1 module synchronizes or triggers IC _x
01111	= Timer5 synchronizes or triggers IC _x
01110	= Timer4 synchronizes or triggers IC _x
01101	= Timer3 synchronizes or triggers IC _x (default)
01100	= Timer2 synchronizes or triggers IC _x
01011	= Timer1 synchronizes or triggers IC _x
01010	= PTGO _x module synchronizes or triggers IC _x ⁽⁶⁾
01001	= Reserved
01000	= Reserved
00111	= Reserved
00110	= Reserved
00101	= Reserved
00100	= OC4 module synchronizes or triggers IC _x
00011	= OC3 module synchronizes or triggers IC _x
00010	= OC2 module synchronizes or triggers IC _x
00001	= OC1 module synchronizes or triggers IC _x
00000	= No Sync or trigger source for IC _x

Note 1: The IC32 bit in both the Odd and Even IC must be set to enable Cascade mode.

2: The input source is selected by the SYNCSEL[4:0] bits of the IC_xCON2 register.

3: This bit is set by the selected input source (selected by SYNCSEL[4:0] bits); it can be read, set and cleared in software.

4: Do not use the IC_x module as its own Sync or trigger source.

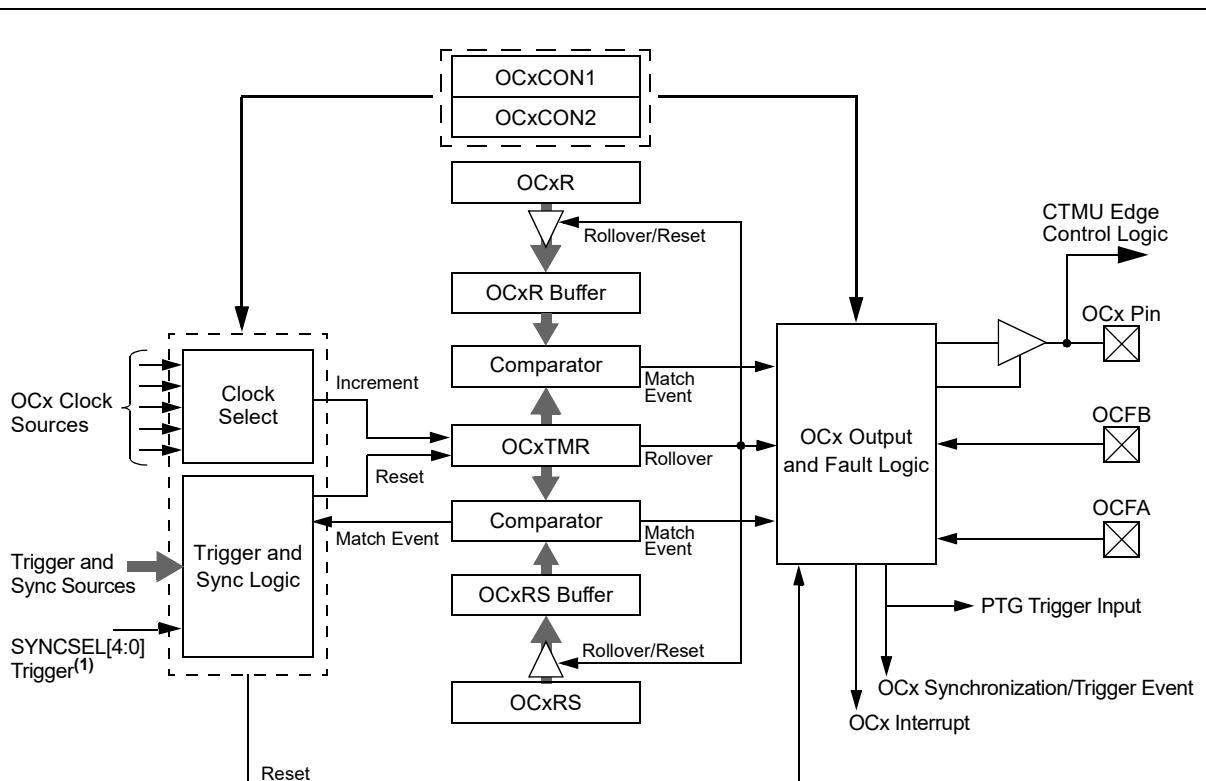
5: This option should only be selected as a trigger source and not as a Sync source.

6: Each Input Capture x (IC_x) module has one PTG input source. See **Section 24.0 “Peripheral Trigger Generator (PTG) Module”** for more information (PTGO8 = IC1, PTGO9 = IC2, PTGO10 = IC3, PTGO11 = IC4).

dsPIC33EDV64MC205

NOTES:

15.0 OUTPUT COMPARE


Note 1: This data sheet summarizes the features of the dsPIC33EDV64MC205 device. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to “Output Compare” (www.microchip.com/DS70000358) in the “dsPIC33/PIC24 Family Reference Manual”.

2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 “Memory Organization”** in this data sheet for device-specific register and bit information.

The output compare module can select one of seven available clock sources for its time base. The module compares the value of the timer with the value of one or two Compare registers, depending on the operating mode selected. The state of the output pin changes when the timer value matches the Compare register value. The output compare module generates either a single output pulse, or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events and trigger DMA data transfers.

Note: See “Output Compare” (DS70000358) in the “dsPIC33/PIC24 Family Reference Manual” for OCxR and OCxRS register restrictions.

FIGURE 15-1: OUTPUT COMPARE x MODULE BLOCK DIAGRAM

Note 1: The Trigger/Sync source is enabled by default and is set to Timer2 as a source. This timer must be enabled for proper OCx module operation or the Trigger/Sync source must be changed to another source option.

15.1 Output Compare Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this [link](#), contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser:
<http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en555464>

15.1.1 KEY RESOURCES

- “**Output Compare**” (DS70000358) in the “*dsPIC33/PIC24 Family Reference Manual*”
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related “*dsPIC33/PIC24 Family Reference Manual*” Sections
- Development Tools

15.2 Output Compare Control Registers

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
—	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	ENFLTB
bit 15							bit 8

R/W-0	U-0	HSC/R/W-0	HSC/R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ENFLTA	—	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit
R = Readable bit	W = Writable bit
-n = Value at POR	U = Unimplemented bit, read as '0'
	'1' = Bit is set
	'0' = Bit is cleared
	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Output Compare x Stop in Idle Mode Control bit 1 = Output Compare x halts in CPU Idle mode 0 = Output Compare x continues to operate in CPU Idle mode
bit 12-10	OCTSEL[2:0]: Output Compare x Clock Select bits 111 = Peripheral clock (FP) 110 = Reserved 101 = PTGOx clock ⁽²⁾ 100 = T1CLK is the clock source of OCx (only the synchronous clock is supported) 011 = T5CLK is the clock source of OCx 010 = T4CLK is the clock source of OCx 001 = T3CLK is the clock source of OCx 000 = T2CLK is the clock source of OCx
bit 9	Unimplemented: Read as '0'
bit 8	ENFLTB: Fault B Input Enable bit 1 = Output Compare Fault B input (OCFB) is enabled 0 = Output Compare Fault B input (OCFB) is disabled
bit 7	ENFLTA: Fault A Input Enable bit 1 = Output Compare Fault A input (OCFA) is enabled 0 = Output Compare Fault A input (OCFA) is disabled
bit 6	Unimplemented: Read as '0'
bit 5	OCFLTB: PWM Fault B Condition Status bit 1 = PWM Fault B condition on OCFB pin has occurred 0 = No PWM Fault B condition on OCFB pin has occurred
bit 4	OCFLTA: PWM Fault A Condition Status bit 1 = PWM Fault A condition on OCFA pin has occurred 0 = No PWM Fault A condition on OCFA pin has occurred
bit 3	TRIGMODE: Trigger Status Mode Select bit 1 = TRIGSTAT (OCxCON2[6]) is cleared when OCxRS = OCxTMR or in software 0 = TRIGSTAT is cleared only by software

Note 1: OCxR and OCxRS are double-buffered in PWM mode only.

2: Each Output Compare x module (OCx) has one PTG clock source. See [Section 24.0 “Peripheral Trigger Generator \(PTG\) Module”](#) for more information (PTGO4 = OC1, PTGO5 = OC2, PTGO6 = OC3, PTGO7 = OC4).

dsPIC33EDV64MC205

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

bit 2-0	OCM[2:0]: Output Compare x Mode Select bits
111	= Center-Aligned PWM mode: Output set high when OCxTMR = OCxR and set low when OCxTMR = OCxRS ⁽¹⁾
110	= Edge-Aligned PWM mode: Output set high when OCxTMR = 0 and set low when OCxTMR = OCxR ⁽¹⁾
101	= Double Compare Continuous Pulse mode: Initializes OCx pin low, toggles OCx state continuously on alternate matches of OCxR and OCxRS
100	= Double Compare Single-Shot mode: Initializes OCx pin low, toggles OCx state on matches of OCxR and OCxRS for one cycle
011	= Single Compare mode: Compare event with OCxR, continuously toggles OCx pin
010	= Single Compare Single-Shot mode: Initializes OCx pin high, compare event with OCxR, forces OCx pin low
001	= Single Compare Single-Shot mode: Initializes OCx pin low, compare event with OCxR, forces OCx pin high
000	= Output compare channel is disabled

Note 1: OCxR and OCxRS are double-buffered in PWM mode only.

2: Each Output Compare x module (OCx) has one PTG clock source. See [Section 24.0 “Peripheral Trigger Generator \(PTG\) Module”](#) for more information (PTGO4 = OC1, PTGO5 = OC2, PTGO6 = OC3, PTGO7 = OC4).

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0
FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32
bit 15							bit 8

R/W-0	HS/R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0
OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0
bit 7							bit 0

Legend:	HS = Hardware Settable bit
R = Readable bit	W = Writable bit
-n = Value at POR	U = Unimplemented bit, read as '0' '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15	FLTMD: Fault Mode Select bit 1 = Fault mode is maintained until the Fault source is removed; the corresponding OCFLTx bit is cleared in software and a new PWM period starts 0 = Fault mode is maintained until the Fault source is removed and a new PWM period starts
bit 14	FLTOUT: Fault Out bit 1 = PWM output is driven high on a Fault 0 = PWM output is driven low on a Fault
bit 13	FLTTRIEN: Fault Output State Select bit 1 = OCx pin is tri-stated on a Fault condition 0 = OCx pin I/O state is defined by the FLTOUT bit on a Fault condition
bit 12	OCINV: Output Compare x Invert bit 1 = OCx output is inverted 0 = OCx output is not inverted
bit 11-9	Unimplemented: Read as '0'
bit 8	OC32: Cascade Two OCx Modules Enable bit (32-bit operation) 1 = Cascade module operation is enabled 0 = Cascade module operation is disabled
bit 7	OCTRIG: Output Compare x Trigger/Sync Select bit 1 = Triggers OCx from the source designated by the SYNCSELx bits 0 = Synchronizes OCx with the source designated by the SYNCSELx bits
bit 6	TRIGSTAT: Timer Trigger Status bit 1 = Timer source has been triggered and is running 0 = Timer source has not been triggered and is being held clear
bit 5	OCTRIS: Output Compare x Output Pin Direction Select bit 1 = OCx is tri-stated 0 = Output Compare x module drives the OCx pin

Note 1: Do not use the OCx module as its own Synchronization or Trigger source.

2: When the OCy module is turned off, it sends a trigger out signal. If the OCx module uses the OCy module as a Trigger source, the OCy module must be unselected as a Trigger source prior to disabling it.

3: Each Output Compare x module (OCx) has one PTG Trigger/Synchronization source. See [Section 24.0 "Peripheral Trigger Generator \(PTG\) Module"](#) for more information (PTGO0 = OC1, PTGO1 = OC2, PTGO2 = OC3, PTGO3 = OC4).

dsPIC33EDV64MC205

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

bit 4-0	SYNCSEL[4:0]: Trigger/Synchronization Source Selection bits
	11111 = OCxRS compare event is used for synchronization
	11110 = INT2 pin synchronizes or triggers OCx
	11101 = INT1 pin synchronizes or triggers OCx
	11100 = CTMU module synchronizes or triggers OCx
	11011 = ADC1 module synchronizes or triggers OCx
	11010 = CMP3 module synchronizes or triggers OCx
	11001 = CMP2 module synchronizes or triggers OCx
	11000 = CMP1 module synchronizes or triggers OCx
	10111 = Reserved
	10110 = Reserved
	10101 = Reserved
	10100 = Reserved
	10011 = IC4 input capture event synchronizes or triggers OCx
	10010 = IC3 input capture event synchronizes or triggers OCx
	10001 = IC2 input capture event synchronizes or triggers OCx
	10000 = IC1 input capture event synchronizes or triggers OCx
	01111 = Timer5 synchronizes or triggers OCx
	01110 = Timer4 synchronizes or triggers OCx
	01101 = Timer3 synchronizes or triggers OCx
	01100 = Timer2 synchronizes or triggers OCx (default)
	01011 = Timer1 synchronizes or triggers OCx
	01010 = PTGOx synchronizes or triggers OCx ⁽³⁾
	01001 = Reserved
	01000 = Reserved
	00111 = Reserved
	00110 = Reserved
	00101 = Reserved
	00100 = OC4 module synchronizes or triggers OCx ^(1,2)
	00011 = OC3 module synchronizes or triggers OCx ^(1,2)
	00010 = OC2 module synchronizes or triggers OCx ^(1,2)
	00001 = OC1 module synchronizes or triggers OCx ^(1,2)
	00000 = No Sync or trigger source for OCx

Note 1: Do not use the OCx module as its own Synchronization or Trigger source.

2: When the OCy module is turned off, it sends a trigger out signal. If the OCx module uses the OCy module as a Trigger source, the OCy module must be unselected as a Trigger source prior to disabling it.

3: Each Output Compare x module (OCx) has one PTG Trigger/Synchronization source. See [Section 24.0 “Peripheral Trigger Generator \(PTG\) Module”](#) for more information (PTGO0 = OC1, PTGO1 = OC2, PTGO2 = OC3, PTGO3 = OC4).

16.0 HIGH-SPEED PWM MODULE

Note 1: This data sheet summarizes the features of the dsPIC33EDV64MC205 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to “**High-Speed PWM**” (www.microchip.com/DS70645) in the “*dsPIC33/PIC24 Family Reference Manual*”.

2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 “Memory Organization”** in this data sheet for device-specific register and bit information.

The dsPIC33EDV64MC205 device supports a dedicated Pulse-Width Modulation (PWM) module with up to six outputs.

The high-speed PWMx module consists of the following major features:

- Three PWM Generators
- Two PWM Outputs per PWM Generator
- Individual Period and Duty Cycle for Each PWM Pair
- Duty Cycle, Dead Time, Phase Shift and Frequency Resolution of $T_{CY}/2$ (7.14 ns at $F_{CY} = 70$ MHz)
- Independent Fault and Current-Limit Inputs for Six PWM Outputs
- Redundant Output
- Center-Aligned PWM mode
- Output Override Control
- Chop mode (also known as Gated mode)
- Special Event Trigger
- Prescaler for Input Clock
- PWMxL and PWMxH Output Pin Swapping
- Independent PWM Frequency, Duty Cycle and Phase-Shift Changes for Each PWM Generator
- Dead-Time Compensation
- Enhanced Leading-Edge Blanking (LEB) Functionality
- Frequency Resolution Enhancement
- PWM Capture Functionality

Note: In Edge-Aligned PWM mode, the duty cycle, dead time, phase shift and frequency resolution are 7.14 ns.

The high-speed PWMx module contains up to three PWM generators. Each PWM generator provides two PWM outputs: PWMxH and PWMxL. The master time base generator provides a synchronous signal as a common time base to synchronize the various PWM outputs. The individual PWM outputs are available on the output pins of the device. The input Fault signals and current-limit signals, when enabled, can monitor and protect the system by placing the PWM outputs into a known “Safe” state.

Each PWMx module can generate a trigger to the ADC module to sample the analog signal at a specific instance during the PWM period. In addition, the high-speed PWMx module also generates a Special Event Trigger to the ADC module based on either of the two master time bases.

The high-speed PWMx module can synchronize itself with an external signal or can act as a synchronizing source to any external device. The SYNC1 input pin that utilizes PPS can synchronize the high-speed PWMx module with an external signal. The SYNC01 pin is an output pin that provides a synchronous signal to an external device.

Figure 16-1 illustrates an architectural overview of the high-speed PWMx module and its interconnection with the CPU and other peripherals.

16.1 PWM Faults

The PWMx module incorporates multiple external Fault inputs to include FLT1 and FLT2, which are re-mappable using the PPS feature; FLT3 and FLT32, which have been implemented with Class B safety features and are available on a fixed pin on the dsPIC33EDV64MC205 device.

These Faults provide a safe and reliable way to safely shut down the PWM outputs when the Fault input is asserted.

16.1.1 PWM FAULTS AT RESET

During any Reset event, the PWMx module maintains ownership of the Class B Fault, FLT32. At Reset, this Fault is enabled in Latched mode to ensure the fail-safe power-up of the application. The application software must clear the PWM Fault before enabling the high-speed motor control PWMx module. To clear the Fault condition, the FLT32 pin must first be pulled low externally or the internal pull-down resistor in the CNPDx register can be enabled.

Note: The Fault mode may be changed using the FLTMOD[1:0] bits (FCLCONx[1:0]), regardless of the state of FLT32.

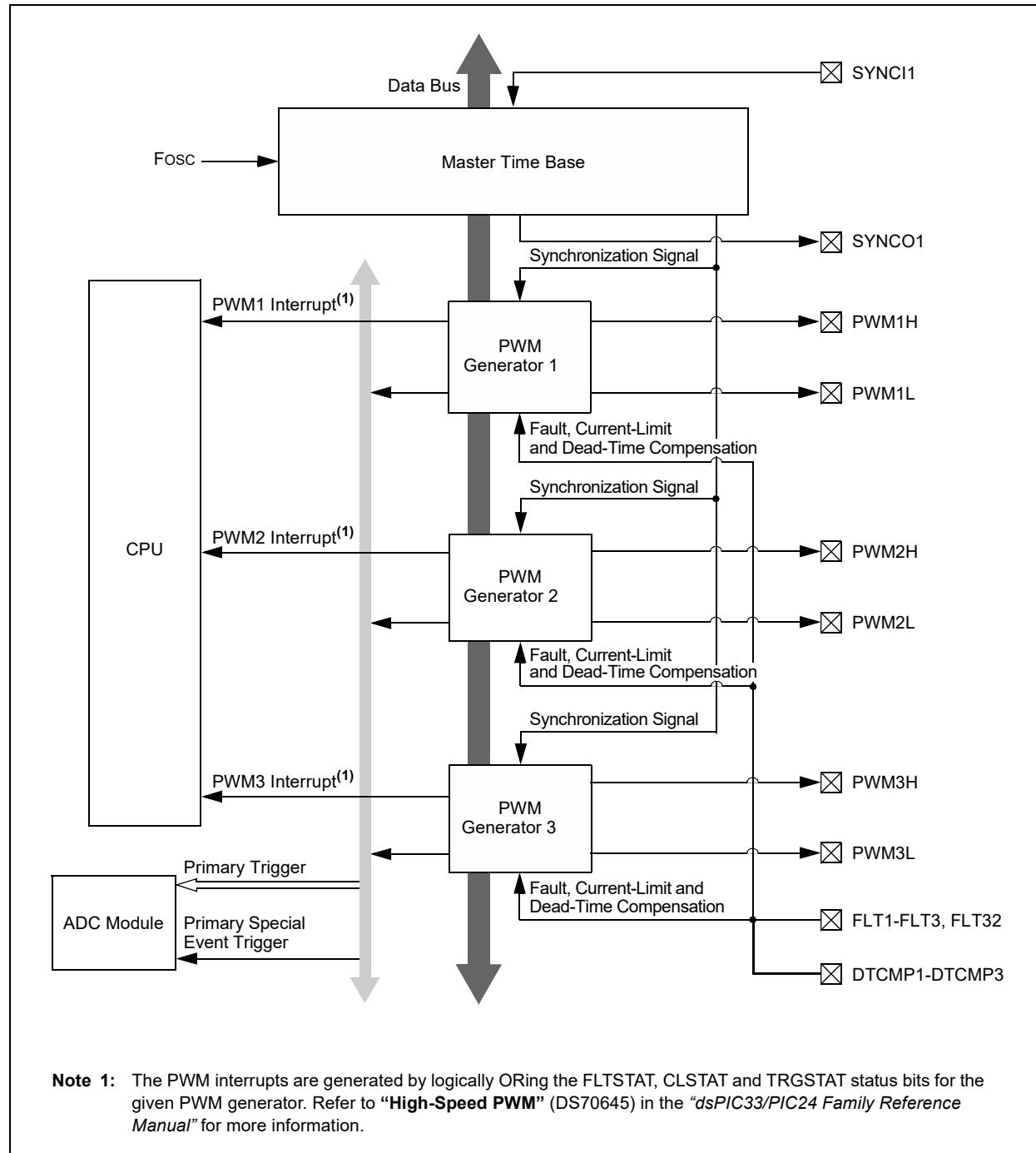
16.1.2 WRITE-PROTECTED REGISTERS

On the dsPIC33EDV64MC205 device, write protection is implemented for the IOCONx and FCLCONx registers. The write protection feature prevents any inadvertent writes to these registers. This protection feature can be controlled by the PWMLOCK Configuration bit (FOSCSEL[6]). The default state of the write protection feature is enabled (PWMLOCK = 1). The write protection feature can be disabled by configuring, PWMLOCK = 0.

To gain write access to these locked registers, the user application must write two consecutive values of (0xABCD and 0x4321) to the PWMKEY register to perform the unlock operation. The write access to the IOCONx or FCLCONx registers must be the next SFR access following the unlock process. There can be no other SFR accesses during the unlock process and subsequent write access. To write to both the IOCONx and FCLCONx registers requires two unlock operations.

The correct unlocking sequence is described in [Example 16-1](#).

EXAMPLE 16-1: PWMx WRITE-PROTECTED REGISTER UNLOCK SEQUENCE


```
; FLT32 pin must be pulled low externally in order to clear and disable the fault
; Writing to FCLCON1 register requires unlock sequence

mov #0xabcd, w10      ; Load first unlock key to w10 register
mov #0x4321, w11      ; Load second unlock key to w11 register
mov #0x0000, w0        ; Load desired value of FCLCON1 register in w0
mov w10, PWMKEY       ; Write first unlock key to PWMKEY register
mov w11, PWMKEY       ; Write second unlock key to PWMKEY register
mov w0, FCLCON1        ; Write desired value to FCLCON1 register

; Set PWM ownership and polarity using the IOCON1 register
; Writing to IOCON1 register requires unlock sequence

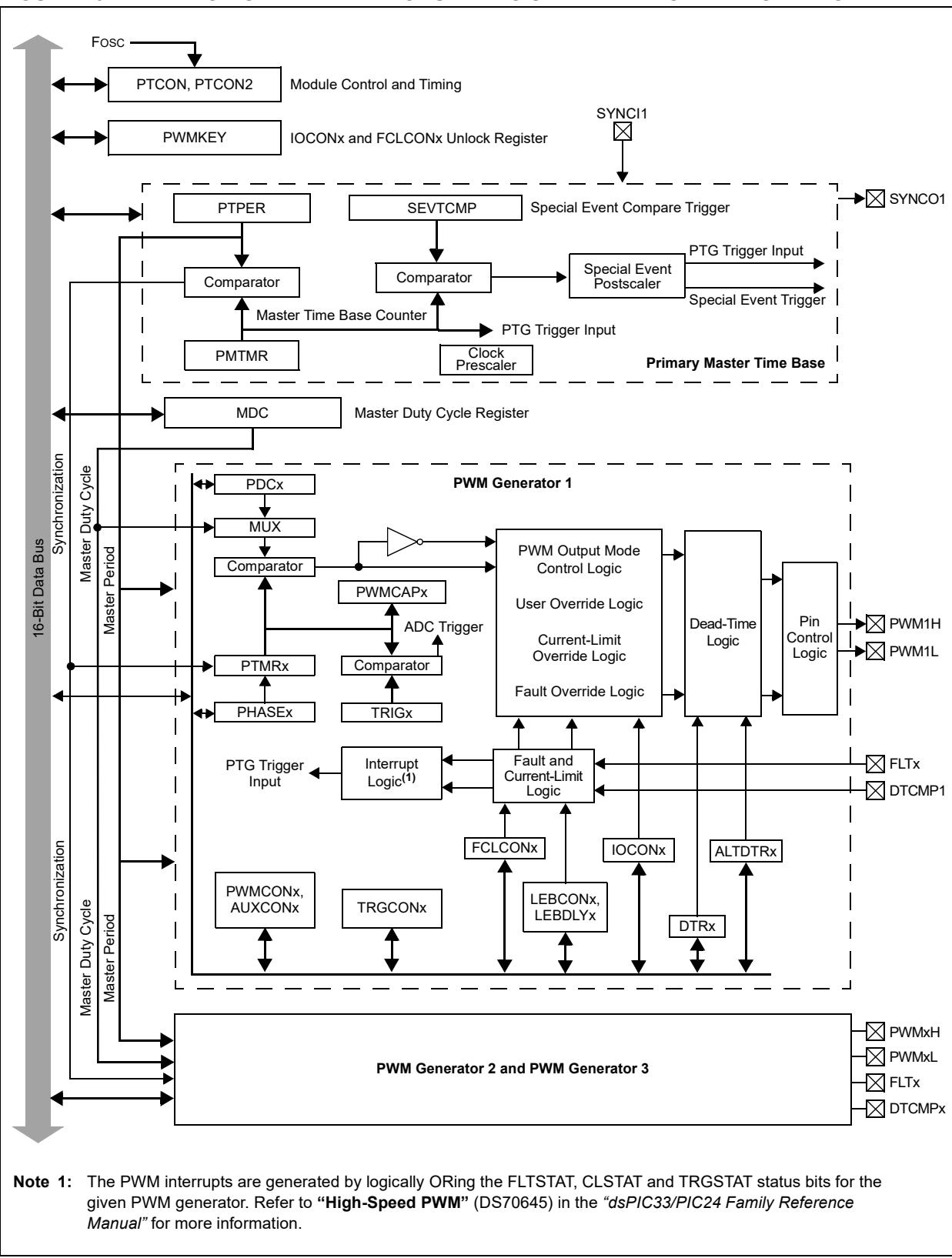

mov #0xabcd, w10      ; Load first unlock key to w10 register
mov #0x4321, w11      ; Load second unlock key to w11 register
mov #0xF000, w0        ; Load desired value of IOCON1 register in w0
mov w10, PWMKEY       ; Write first unlock key to PWMKEY register
mov w11, PWMKEY       ; Write second unlock key to PWMKEY register
mov w0, IOCON1         ; Write desired value to IOCON1 register
```

FIGURE 16-1: HIGH-SPEED PWMx MODULE ARCHITECTURAL OVERVIEW

dsPIC33EDV64MC205

FIGURE 16-2: HIGH-SPEED PWMx MODULE REGISTER INTERCONNECTION DIAGRAM

16.2 PWM Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this [link](#), contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser:
<http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en555464>

16.2.1 KEY RESOURCES

- “**High-Speed PWM**” (DS70645) in the “*dsPIC33/PIC24 Family Reference Manual*”
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related “*dsPIC33/PIC24 Family Reference Manual*” Sections
- Development Tools

dsPIC33EDV64MC205

16.3 PWMx Control Registers

REGISTER 16-1: PTCON: PWMx TIME BASE CONTROL REGISTER

R/W-0	U-0	R/W-0	HC/HS-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹⁾
bit 15							

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYNCEN ⁽¹⁾	SYNCSRC2 ⁽¹⁾	SYNCSRC1 ⁽¹⁾	SYNCSRC0 ⁽¹⁾	SEVTPS3 ⁽¹⁾	SEVTPS2 ⁽¹⁾	SEVTPS1 ⁽¹⁾	SEVTPS0 ⁽¹⁾
bit 7							

Legend:

R = Readable bit

-n = Value at POR

HC = Hardware Clearable bit

W = Writable bit

'1' = Bit is set

HS = Hardware Settable bit

U = Unimplemented bit, read as '0'

'0' = Bit is cleared

x = Bit is unknown

bit 15	PTEN: PWMx Module Enable bit 1 = PWMx module is enabled 0 = PWMx module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	PTSIDL: PWMx Time Base Stop in Idle Mode bit 1 = PWMx time base halts in CPU Idle mode 0 = PWMx time base runs in CPU Idle mode
bit 12	SESTAT: Special Event Interrupt Status bit 1 = Special event interrupt is pending 0 = Special event interrupt is not pending
bit 11	SEIEN: Special Event Interrupt Enable bit 1 = Special event interrupt is enabled 0 = Special event interrupt is disabled
bit 10	EIPU: Enable Immediate Period Updates bit ⁽¹⁾ 1 = Active Period register is updated immediately 0 = Active Period register updates occur on PWMx cycle boundaries
bit 9	SYNCPOL: Synchronize Input and Output Polarity bit ⁽¹⁾ 1 = SYNC1/SYNCO1 polarity is inverted (active-low) 0 = SYNC1/SYNCO1 are active-high
bit 8	SYNCOEN: Primary Time Base Sync Enable bit ⁽¹⁾ 1 = SYNC0 output is enabled 0 = SYNC0 output is disabled
bit 7	SYNCEN: External Time Base Synchronization Enable bit ⁽¹⁾ 1 = External synchronization of primary time base is enabled 0 = External synchronization of primary time base is disabled

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNC1 feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.

2: See [Section 24.0 “Peripheral Trigger Generator \(PTG\) Module”](#) for information on this selection.

REGISTER 16-1: PTCON: PWMx TIME BASE CONTROL REGISTER (CONTINUED)

bit 6-4	SYNCSRC[2:0]: Synchronous Source Selection bits ⁽¹⁾
	111 = Reserved
	•
	•
	•
	100 = Reserved
	011 = PTGO17 ⁽²⁾
	010 = PTGO16 ⁽²⁾
	001 = Reserved
	000 = SYNCI1 input from PPS
bit 3-0	SEVTPS[3:0]: PWMx Special Event Trigger Output Postscaler Select bits ⁽¹⁾
	1111 = 1:16 Postscaler generates Special Event Trigger on every sixteenth compare match event
	•
	•
	•
	0001 = 1:2 Postscaler generates Special Event Trigger on every second compare match event
	0000 = 1:1 Postscaler generates Special Event Trigger on every compare match event

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.

2: See [Section 24.0 “Peripheral Trigger Generator \(PTG\) Module”](#) for information on this selection.

dsPIC33EDV64MC205

REGISTER 16-2: PTCON2: PWMx PRIMARY SERVER CLOCK DIVIDER SELECT REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	PCLKDIV[2:0] ⁽¹⁾		
bit 7	bit 0						

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-3 **Unimplemented:** Read as '0'

bit 2-0 **PCLKDIV[2:0]:** PWMx Input Clock Prescaler (Divider) Select bits⁽¹⁾

111 = Reserved

110 = Divide-by-64

101 = Divide-by-32

100 = Divide-by-16

011 = Divide-by-8

010 = Divide-by-4

001 = Divide-by-2

000 = Divide-by-1, maximum PWMx timing resolution (power-on default)

Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 16-3: PTPER: PWMx PRIMARY TIME BASE PERIOD REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
PTPER[15:8]							
bit 15							bit 8

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
PTPER[7:0]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0

PTPER[15:0]: Primary Master Time Base (PMTMR) Period Value bits

REGISTER 16-4: SEVTCMP: PWMx PRIMARY SPECIAL EVENT COMPARE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SEVTCMP[15:8]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SEVTCMP[7:0]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0

SEVTCMP[15:0]: Special Event Compare Count Value bits

dsPIC33EDV64MC205

REGISTER 16-5: CHOP: PWMx CHOP CLOCK GENERATOR REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
CHPCLKEN	—	—	—	—	—	CHOPCLK[9:8]	
bit 15							

R/W-0	R/W-0						
						CHOPCLK[7:0]	
bit 7							

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15 **CHPCLKEN:** Enable Chop Clock Generator bit

1 = Chop clock generator is enabled

0 = Chop clock generator is disabled

bit 14-10 **Unimplemented:** Read as '0'

bit 9-0 **CHOPCLK[9:0]:** Chop Clock Divider bits

The frequency of the chop clock signal is given by the following expression:

Chop Frequency = (FP/PCLKDIV[2:0])/(CHOPCLK[9:0] + 1)

REGISTER 16-6: MDC: PWMx MASTER DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
						MDC[15:8]	
bit 15							

R/W-0	R/W-0						
						MDC[7:0]	
bit 7							

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0 **MDC[15:0]:** PWMx Master Duty Cycle Value bits

REGISTER 16-7: PWMCONx: PWMx CONTROL REGISTER

HC/HS-0	HC/HS-0	HC/HS-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTSTAT ⁽¹⁾	CLSTAT ⁽¹⁾	TRGSTAT	FLTIEN	CLien	TRGIEN	ITB ⁽²⁾	MDCS ⁽²⁾
bit 15	bit 8						

R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
DTC1	DTC0	DTCP ⁽³⁾	—	MTBS	CAM ^(2,4)	XPRES ⁽⁵⁾	IUE ⁽²⁾
bit 7	bit 0						

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared
		x = Bit is unknown

bit 15	FLTSTAT: Fault Interrupt Status bit ⁽¹⁾ 1 = Fault interrupt is pending 0 = No Fault interrupt is pending This bit is cleared by setting FLTIEN = 0.
bit 14	CLSTAT: Current-Limit Interrupt Status bit ⁽¹⁾ 1 = Current-limit interrupt is pending 0 = No current-limit interrupt is pending This bit is cleared by setting CLien = 0.
bit 13	TRGSTAT: Trigger Interrupt Status bit 1 = Trigger interrupt is pending 0 = No trigger interrupt is pending This bit is cleared by setting TRGIEN = 0.
bit 12	FLTIEN: Fault Interrupt Enable bit 1 = Fault interrupt is enabled 0 = Fault interrupt is disabled and the FLTSTAT bit is cleared
bit 11	CLien: Current-Limit Interrupt Enable bit 1 = Current-limit interrupt is enabled 0 = Current-limit interrupt is disabled and the CLSTAT bit is cleared
bit 10	TRGIEN: Trigger Interrupt Enable bit 1 = A trigger event generates an interrupt request 0 = Trigger event interrupts are disabled and the TRGSTAT bit is cleared
bit 9	ITB: Independent Time Base Mode bit ⁽²⁾ 1 = PHASEx register provides time base period for this PWM generator 0 = PTPER register provides timing for this PWM generator
bit 8	MDCS: Master Duty Cycle Register Select bit ⁽²⁾ 1 = MDC register provides duty cycle information for this PWM generator 0 = PDCx register provides duty cycle information for this PWM generator

Note 1: Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt controller.

2: These bits should not be changed after the PWMx is enabled (PTEN = 1).

3: DTC[1:0] = 11 for DTCP to be effective; otherwise, DTCP is ignored.

4: The Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.

5: To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

dsPIC33EDV64MC205

REGISTER 16-7: PWMCONx: PWMx CONTROL REGISTER (CONTINUED)

bit 7-6	DTC[1:0]: Dead-Time Control bits 11 = Dead-Time Compensation mode 10 = Dead-time function is disabled 01 = Negative dead time is actively applied for Complementary Output mode 00 = Positive dead time is actively applied for all Output modes
bit 5	DTCP: Dead-Time Compensation Polarity bit ⁽³⁾ <u>When Set to '1':</u> If DTCMPx = 0, PWMxL is shortened and PWMxH is lengthened. If DTCMPx = 1, PWMxH is shortened and PWMxL is lengthened. <u>When Set to '0':</u> If DTCMPx = 0, PWMxH is shortened and PWMxL is lengthened. If DTCMPx = 1, PWMxL is shortened and PWMxH is lengthened.
bit 4	Unimplemented: Read as '0'
bit 3	MTBS: Master Time Base Select bit 1 = PWM generator uses the secondary master time base for synchronization and as the clock source for the PWM generation logic (if secondary time base is available) 0 = PWM generator uses the primary master time base for synchronization and as the clock source for the PWM generation logic
bit 2	CAM: Center-Aligned Mode Enable bit ^(2,4) 1 = Center-Aligned mode is enabled 0 = Edge-Aligned mode is enabled
bit 1	XPRES: External PWMx Reset Control bit ⁽⁵⁾ 1 = Current-limit source resets the time base for this PWM generator if it is in Independent Time Base mode 0 = External pins do not affect the PWMx time base
bit 0	IUE: Immediate Update Enable bit ⁽²⁾ 1 = Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are immediate 0 = Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are synchronized to the PWMx period boundary

Note 1: Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt controller.

2: These bits should not be changed after the PWMx is enabled (PTEN = 1).

3: DTC[1:0] = 11 for DTCP to be effective; otherwise, DTCP is ignored.

4: The Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.

5: To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

REGISTER 16-8: PDCx: PWMx GENERATOR DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PDCx[15:8]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PDCx[7:0]							
bit 7							bit 0

Legend:

R = Readable bit

-n = Value at POR

W = Writable bit

'1' = Bit is set

U = Unimplemented bit, read as '0'

'0' = Bit is cleared

x = Bit is unknown

bit 15-0

PDCx[15:0]: PWMx Generator # Duty Cycle Value bits

REGISTER 16-9: PHASEx: PWMx PRIMARY PHASE-SHIFT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PHASEx[15:8]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PHASEx[7:0]							
bit 7							bit 0

Legend:

R = Readable bit

-n = Value at POR

W = Writable bit

'1' = Bit is set

U = Unimplemented bit, read as '0'

'0' = Bit is cleared

x = Bit is unknown

bit 15-0

PHASEx[15:0]: PWMx Phase-Shift Value or Independent Time Base Period for the PWM Generator bits

Note 1: If ITB (PWMCONx[9]) = 0, the following applies based on the mode of operation:
 Complementary, Redundant and Push-Pull Output mode (PMOD[1:0] (IOCONx[11:10]) = 00, 01 or 10),
 PHASEx[15:0] = Phase-shift value for the PWMxH and PWMxL outputs.

2: If ITB (PWMCONx[9]) = 1, the following applies based on the mode of operation:
 Complementary, Redundant and Push-Pull Output mode (PMOD[1:0] (IOCONx[11:10]) = 00, 01 or 10),
 PHASEx[15:0] = Independent time base period value for PWMxH and PWMxL.

dsPIC33EDV64MC205

REGISTER 16-10: DTRx: PWMx DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			DTRx[13:8]			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DTRx[7:0]				
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-0 **DTRx[13:0]:** Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 16-11: ALTDTRx: PWMx ALTERNATE DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			ALTDTRx[13:8]			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ALTDTRx[7:0]				
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-0 **ALTDTRx[13:0]:** Unsigned 14-Bit Alternate Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 16-12: TRGCONx: PWMx TRIGGER CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
			TRGDIV[3:0]	—	—	—	—
bit 15	bit 8						

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			TRGSTART[5:0] ⁽¹⁾			
bit 7	bit 0						

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-12 **TRGDIV[3:0]:** Trigger # Output Divider bits
 1111 = Trigger output for every 16th trigger event
 1110 = Trigger output for every 15th trigger event
 1101 = Trigger output for every 14th trigger event
 1100 = Trigger output for every 13th trigger event
 1011 = Trigger output for every 12th trigger event
 1010 = Trigger output for every 11th trigger event
 1001 = Trigger output for every 10th trigger event
 1000 = Trigger output for every 9th trigger event
 0111 = Trigger output for every 8th trigger event
 0110 = Trigger output for every 7th trigger event
 0101 = Trigger output for every 6th trigger event
 0100 = Trigger output for every 5th trigger event
 0011 = Trigger output for every 4th trigger event
 0010 = Trigger output for every 3rd trigger event
 0001 = Trigger output for every 2nd trigger event
 0000 = Trigger output for every trigger event

bit 11-6 **Unimplemented:** Read as '0'

bit 5-0 **TRGSTART[5:0]:** Trigger Postscaler Start Enable Select bits⁽¹⁾

111111 = Waits 63 PWM cycles before generating the first trigger event after the module is enabled

•
 •
 •

000010 = Waits 2 PWM cycles before generating the first trigger event after the module is enabled

000001 = Waits 1 PWM cycle before generating the first trigger event after the module is enabled

000000 = Waits 0 PWM cycles before generating the first trigger event after the module is enabled

Note 1: The secondary PWM generator cannot generate PWMx trigger interrupts.

dsPIC33EDV64MC205

REGISTER 16-13: IOCONx: PWMx I/O CONTROL REGISTER⁽²⁾

R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PENH	PENL	POLH	POLL	PMOD1 ⁽¹⁾	PMOD0 ⁽¹⁾	OVRENH	OVRENL
bit 15	bit 8						

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP ⁽³⁾	OSYNC ⁽⁴⁾
bit 7	bit 0						

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15	PENH: PWMxH Output Pin Ownership bit 1 = PWMx module controls the PWMxH pin 0 = GPIO module controls the PWMxH pin
bit 14	PENL: PWMxL Output Pin Ownership bit 1 = PWMx module controls the PWMxL pin 0 = GPIO module controls the PWMxL pin
bit 13	POLH: PWMxH Output Pin Polarity bit 1 = PWMxH pin is active-low 0 = PWMxH pin is active-high
bit 12	POLL: PWMxL Output Pin Polarity bit 1 = PWMxL pin is active-low 0 = PWMxL pin is active-high
bit 11-10	PMOD[1:0]: PWMx I/O Pin Mode bits ⁽¹⁾ 11 = Reserved; do not use 10 = PWMx I/O pin pair is in the Push-Pull Output mode 01 = PWMx I/O pin pair is in the Redundant Output mode 00 = PWMx I/O pin pair is in the Complementary Output mode
bit 9	OVRENH: Override Enable for PWMxH Pin bit 1 = OVRDAT[1] controls the output on the PWMxH pin 0 = PWMx generator controls the PWMxH pin
bit 8	OVRENL: Override Enable for PWMxL Pin bit 1 = OVRDAT[0] controls the output on the PWMxL pin 0 = PWMx generator controls the PWMxL pin
bit 7-6	OVRDAT[1:0]: Data for PWMxH, PWMxL Pins if Override is Enabled bits If OVRENH = 1, PWMxH is driven to the state specified by OVRDAT[1]. If OVRENL = 1, PWMxL is driven to the state specified by OVRDAT[0].
bit 5-4	FLTDAT[1:0]: Data for PWMxH and PWMxL Pins if FLTMOD[1:0] are Enabled bits If Fault is active, PWMxH is driven to the state specified by FLTDAT[1]. If Fault is active, PWMxL is driven to the state specified by FLTDAT[0].

Note 1: These bits should not be changed after the PWMx module is enabled (PTEN = 1).

2: If the PWMLOCK Configuration bit (FOSCSEL[6]) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

3: The OSYNC bit (IOCON[0]) must be set to '1' prior to changing the state of the SWAP bit (IOCON[1]), else the SWAP function will attempt to occur in the middle of the PWM cycle and unpredictable results may occur.

4: In Edge-aligned mode, output overrides are updated when the local time base is equal to zero. In Center-aligned mode, output overrides are updated when the local time base matches the PHASEx register.

REGISTER 16-13: IOCONx: PWMx I/O CONTROL REGISTER⁽²⁾ (CONTINUED)

bit 3-2	CLDAT[1:0]: Data for PWMxH and PWMxL Pins if CLMOD is Enabled bits If current-limit is active, PWMxH is driven to the state specified by CLDAT[1]. If current-limit is active, PWMxL is driven to the state specified by CLDAT[0].
bit 1	SWAP: SWAP PWMxH and PWMxL Pins bit ⁽³⁾ 1 = PWMxH output signal is connected to the PWMxL pins; PWMxL output signal is connected to the PWMxH pins 0 = PWMxH and PWMxL pins are mapped to their respective pins
bit 0	OSYNC: Output Override Synchronization bit ⁽⁴⁾ 1 = Output overrides via the OVRDAT[1:0] bits are synchronized to the PWMx timebase 0 = Output overrides via the OVDDAT[1:0] bits occur on the next CPU clock boundary

Note 1: These bits should not be changed after the PWMx module is enabled (PTEN = 1).

2: If the PWMLOCK Configuration bit (FOSCSEL[6]) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

3: The OSYNC bit (IOCON[0]) must be set to '1' prior to changing the state of the SWAP bit (IOCON[1]), else the SWAP function will attempt to occur in the middle of the PWM cycle and unpredictable results may occur.

4: In Edge-aligned mode, output overrides are updated when the local time base is equal to zero. In Center-aligned mode, output overrides are updated when the local time base matches the PHASEx register.

REGISTER 16-14: TRIGx: PWMx PRIMARY TRIGGER COMPARE VALUE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TRGCM[15:8]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TRGCM[7:0]							
bit 7							bit 0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 15-0 **TRGCM[15:0]:** Trigger Control Value bits
When the primary PWMx functions in the local time base, this register contains the compare values that can trigger the ADC module.

dsPIC33EDV64MC205

REGISTER 16-15: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER⁽¹⁾

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL ⁽²⁾	CLMOD
bit 15							

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL ⁽²⁾	FLTMOD1	FLTMOD0
bit 7							

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-10 **CLSRC[4:0]:** Current-Limit Control Signal Source Select for PWM Generator # bits

11111 = Fault 32

11110 = Reserved

•

•

•

01100 = Reserved

01011 = Comparator 4

01010 = Op Amp/Comparator 3

01001 = Op Amp/Comparator 2

01000 = Op Amp/Comparator 1

00111 = Reserved

00110 = Reserved

00101 = Reserved

00100 = Reserved

00011 = Fault 4

00010 = Fault 3

00001 = Fault 2

00000 = Fault 1 (**default**)

bit 9 **CLPOL:** Current-Limit Polarity for PWM Generator # bit⁽²⁾

1 = The selected current-limit source is active-low

0 = The selected current-limit source is active-high

bit 8 **CLMOD:** Current-Limit Mode Enable for PWM Generator # bit

1 = Current-Limit mode is enabled

0 = Current-Limit mode is disabled

Note 1: If the PWMLOCK Configuration bit (FOSCSEL[6]) is a '1', the FCLCONx register can only be written after the unlock sequence has been executed.

2: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 16-15: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 7-3	FLTSRC[4:0]: Fault Control Signal Source Select for PWM Generator # bits
	11111 = Fault 32 (default)
	11110 = Reserved
	•
	•
	•
	01100 = Reserved
	01011 = Comparator 4
	01010 = Op Amp/Comparator 3
	01001 = Op Amp/Comparator 2
	01000 = Op Amp/Comparator 1
	00111 = Reserved
	00110 = Reserved
	00101 = Reserved
	00100 = Reserved
	00011 = Fault 4
	00010 = Fault 3
	00001 = Fault 2
	00000 = Fault 1
bit 2	FLTPOL: Fault Polarity for PWM Generator # bit ⁽²⁾
	1 = The selected Fault source is active-low
	0 = The selected Fault source is active-high
bit 1-0	FLTMOD[1:0]: Fault Mode for PWM Generator # bits
	11 = Fault input is disabled
	10 = Reserved
	01 = The selected Fault source forces the PWMxH, PWMxL pins to FLT DAT values (cycle)
	00 = The selected Fault source forces the PWMxH, PWMxL pins to FLT DAT values (latched condition)

Note 1: If the PWMLOCK Configuration bit (FOSCSEL[6]) is a '1', the FCLCONx register can only be written after the unlock sequence has been executed.

2: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

dsPIC33EDV64MC205

REGISTER 16-16: LEBCONx: PWMx LEADING-EDGE BLANKING CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	BCH ⁽¹⁾	BCL ⁽¹⁾	BPHH	BPHL	BPLH	BPLL
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15	PHR: PWMxH Rising Edge Trigger Enable bit 1 = Rising edge of PWMxH will trigger the Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores the rising edge of PWMxH
bit 14	PHF: PWMxH Falling Edge Trigger Enable bit 1 = Falling edge of PWMxH will trigger the Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores the falling edge of PWMxH
bit 13	PLR: PWMxL Rising Edge Trigger Enable bit 1 = Rising edge of PWMxL will trigger the Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores the rising edge of PWMxL
bit 12	PLF: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL will trigger the Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores the falling edge of PWMxL
bit 11	FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit 1 = Leading-Edge Blanking is applied to the selected Fault input 0 = Leading-Edge Blanking is not applied to the selected Fault input
bit 10	CLLEBEN: Current-Limit Leading-Edge Blanking Enable bit 1 = Leading-Edge Blanking is applied to the selected current-limit input 0 = Leading-Edge Blanking is not applied to the selected current-limit input
bit 9-6	Unimplemented: Read as '0'
bit 5	BCH: Blanking in Selected Blanking Signal High Enable bit ⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is high 0 = No blanking when selected blanking signal is high
bit 4	BCL: Blanking in Selected Blanking Signal Low Enable bit ⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when selected blanking signal is low
bit 3	BPHH: Blanking in PWMxH High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking when PWMxH output is high
bit 2	BPHL: Blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low
bit 1	BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is high
bit 0	BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is low 0 = No blanking when PWMxL output is low

Note 1: The blanking signal is selected via the BLANKSELx bits in the AUXCONx register.

REGISTER 16-17: LEBDLYx: PWMx LEADING-EDGE BLANKING DELAY REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—	—	—	LEB[11:8]						
bit 15								bit 8		

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—	—	—	—	—	—	
bit 7	LEB[7:0]							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-12 **Unimplemented:** Read as '0'

bit 11-0 **LEB[11:0]:** Leading-Edge Blanking Delay for Current-Limit and Fault Inputs bits

dsPIC33EDV64MC205

REGISTER 16-18: AUXCONx: PWMx AUXILIARY CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—	—	—	BLANKSEL[3:0]						
bit 15							bit 8			

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-12 **Unimplemented:** Read as '0'

bit 11-8 **BLANKSEL[3:0]:** PWMx State Blank Source Select bits

The selected state blank signal will block the current-limit and/or Fault input signals (if enabled via the BCH and BCL bits in the LEBCONx register).

1001 = Reserved

•
•
•

0100 = Reserved

0011 = PWM3H is selected as the state blank source

0010 = PWM2H is selected as the state blank source

0001 = PWM1H is selected as the state blank source

0000 = No state blanking

bit 7-6 **Unimplemented:** Read as '0'

bit 5-2 **CHOPSEL[3:0]:** PWMx Chop Clock Source Select bits

The selected signal will enable and disable (CHOP) the selected PWMx outputs.

1001 = Reserved

•
•
•

0100 = Reserved

0011 = PWM3H is selected as the chop clock source

0010 = PWM2H is selected as the chop clock source

0001 = PWM1H is selected as the chop clock source

0000 = Chop clock generator is selected as the chop clock source

bit 1 **CHOPHEN:** PWMxH Output Chopping Enable bit

1 = PWMxH chopping function is enabled

0 = PWMxH chopping function is disabled

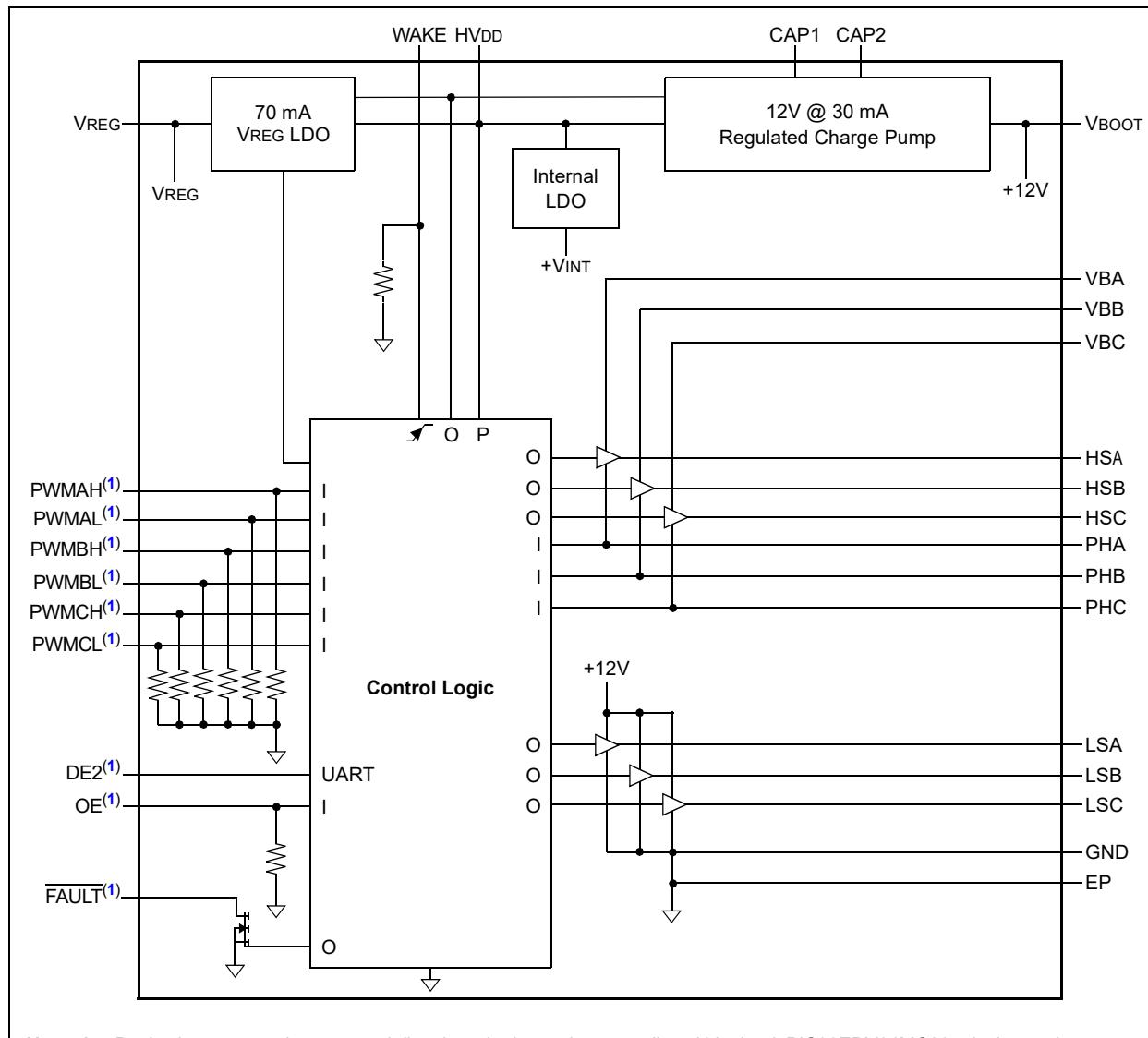
bit 0 **CHOPLEN:** PWMxL Output Chopping Enable bit

1 = PWMxL chopping function is enabled

0 = PWMxL chopping function is disabled

17.0 MOSFET GATE DRIVER MODULE

17.1 Functional Overview


The MOSFET Gate Driver module (MOSFET Driver module) incorporates a number of functions, that when paired with the host dsPIC® DSC, provides a single chip solution for controlling low-voltage motors. The MOSFET Driver module includes:

- Bias Generator:
 - +12V Low-Dropout (LDO) Linear Regulator
 - Charge Pump
 - +3.3V @ 70 mA LDO can be used to power the host dsPIC DSC
 - Input supply and temperature supervisor

- Motor Control Unit:
 - External drive for a three-phase bridge with NMOS/NMOS MOSFET pairs
- Communication Port:
 - Half-duplex UART with internal connection to the host dsPIC DSC

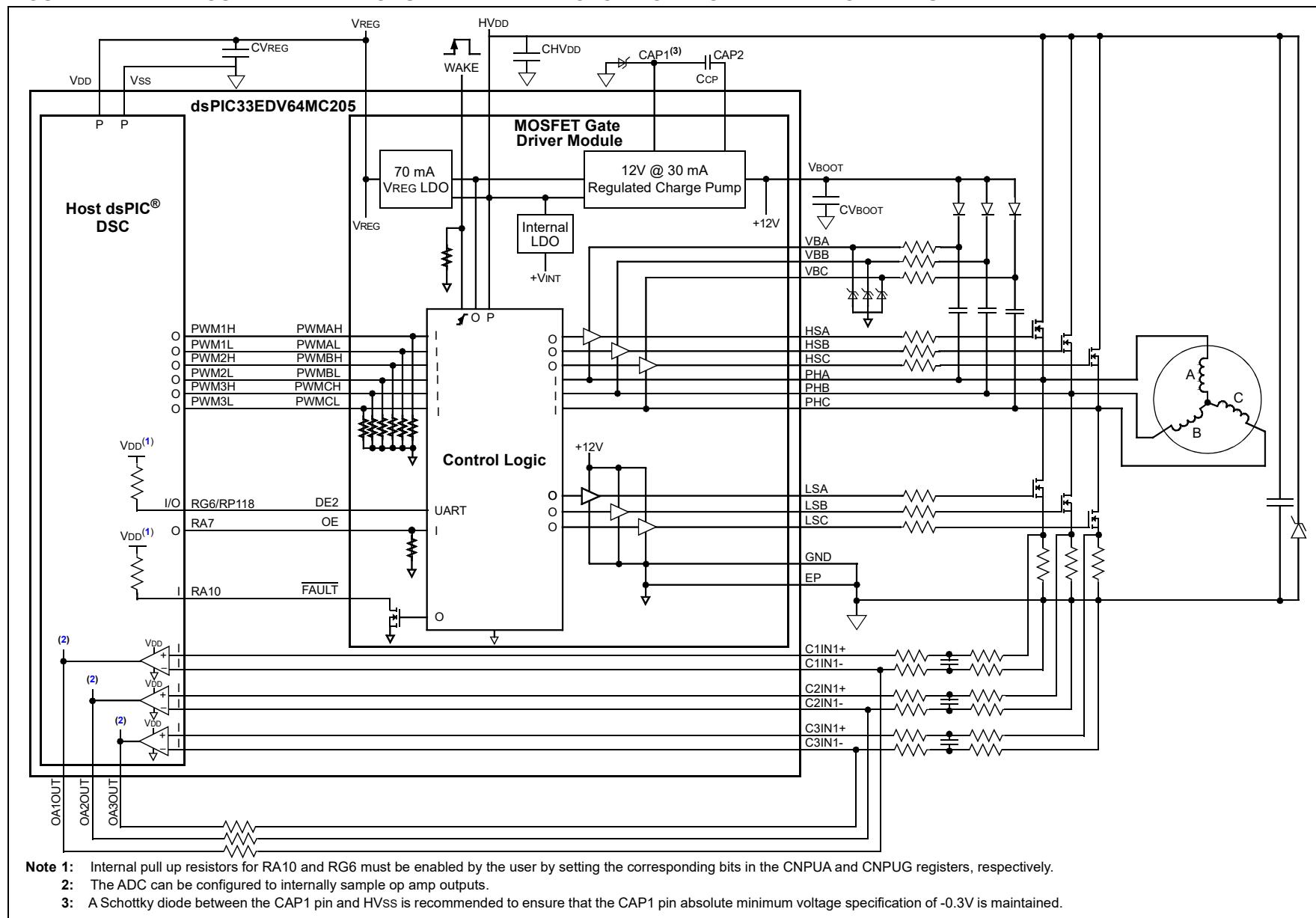

Figure 17-1 depicts the functional block diagram of the MOSFET Driver module and Figure 17-2 depicts a typical application circuit.

FIGURE 17-1: FUNCTIONAL BLOCK DIAGRAM – MOSFET DRIVER MODULE

Note 1: Device interconnect is connected directly to the host microcontroller within the dsPIC33EDV64MC205 device package.

FIGURE 17-2: MOSFET DRIVER MODULE – TYPICAL MOTOR CONTROL APPLICATION CIRCUIT

17.2 Communications Port (DE2)

Open-drain communications node. The DE2 communications is a half-duplex, 9600 baud, 8-bit, no parity communications link. The open-drain DE2 pin must be pulled high by an external pull-up resistor. The pin has a minimum drive capability of 1 mA with a VDE2 of ≤ 50 mV when driving low.

17.3 Low-Side PWM Inputs (PWMA_L, PWMB_L, PWMCL)

Digital PWM Inputs for low-side driver control. Each input has a 47 k Ω pull-down to ground. The PWM signals may contain dead-time timing or the system may use the CFG2 Configuration register to set the dead time.

17.4 High-Side PWM Inputs (PWMA_H, PWMB_H, PWMCH)

Digital PWM Inputs for high-side driver control. Each input has a 47 k Ω pull-down to ground. The PWM signals may contain dead-time timing or the system may use the CFG2 Configuration register to set the dead time.

17.5 Output Enable (OE) Input

The Output Enable Input pin is used to enable/disable the output driver and the on-board functions. When OE is high, all device functions are enabled. When OE is low, the device operates in Standby or Sleep mode. When Standby mode is active, the VBOOT output supply and charge pump are disabled. The high-side and low-side gate drive outputs are all set to a Low state within 100 ns of OE going low. The device transitions to Standby or Sleep mode, 1 ms after OE goes low.

The OE pin may be used to clear any hardware Faults. When a Fault occurs, the OE input may be used to clear the Fault by setting the pin low and then high again. The Fault is cleared by the rising edge of the OE signal if the hardware Fault is no longer active.

The OE pin is used to enable Sleep mode when the SLEEP bit in the CFG0 Configuration register is set to a '1'. OE must be low for a minimum of 1 ms before the transition to Standby or Sleep mode will occur. This allows time for OE to be toggled, to clear any Faults, without going into Sleep mode.

The OE pin has an internal 47 k Ω pull-down to ground.

17.6 Fault Output (FAULT)

FAULT Output pin. The latched open-drain output will go low while a Fault is active. Table 17-4 shows the Faults that cause the FAULT pin to go low. The pin will stay low until the Fault is inactive and the OE pin is toggled, from low-to-high, to clear the internal Fault latch.

The FAULT pin is able to sink 1 mA of current while maintaining less than a 50 mV drop across the output.

The FAULT pin will also be active (low) upon initial power-up until the state machine completes the VREG state. This may be used to signal an external host that the driver is ready.

17.7 Wake Input (WAKE)

The WAKE pin has an internal 47 k Ω pull-down to ground.

The device will awaken from Sleep mode, on the rising edge of the WAKE pin, after detecting a Low state lasting $>$ tWAIT_SETUP on the pin. The WAKE pin is capable of operating at voltage levels up to HVDD.

17.8 Motor Phase Inputs (PHA, PHB, PHC)

Phase signals from the motor. These signals provide high-side N-channel MOSFET driver bias reference and Back EMF sense input. The phase signals are also used with the bootstrap capacitors to provide a high-side gate drive via the VBx inputs.

17.9 High-Side N-MOSFET Gate Driver Outputs (HSA, HSB, HSC)

High-Side N-Channel MOSFET Gate Drive signal. Connect to the gate of the external MOSFETs. A resistor and gate-to-source capacitor may be used between these pins and the MOSFET gates to limit phase node slew rate and MOSFET current.

17.10 Bootstrap Inputs (VBA, VBB, VBC)

High-side MOSFET driver bias. Connect these pins between the bootstrap charge pump diode cathode and the bootstrap charge pump capacitor. The VBOOT output is used to provide the bootstrap supply voltage at the diode anodes. The phase signals are connected to the other side of the bootstrap charge pump capacitors. The bootstrap capacitors charge to VBOOT when the phase signals are pulled low by the low-side drivers. When the low-side drivers turn off and the high-side drivers turn on, the phase signal is pulled to HVDD, causing the bootstrap voltage to rise to HVDD + 12V.

17.11 Low-Side N-MOSFET Gate Driver Outputs (LSA, LSB, LSC)

Low-Side N-Channel MOSFET Drive signal. Connect to the gate of the external MOSFETs. A resistor and gate-to-source capacitor may be used between these pins and the MOSFET gates to limit current and slew rate.

17.12 Bootstrap Supply (VBOOT)

Bootstrap Supply voltage regulator output. The VBOOT regulator output may be used to power external devices, such as Hall effect sensors or amplifiers. The regulator output requires an output capacitor for stability. The positive side of the output capacitor should be physically located as close to the VBOOT pin as is practical. A minimum capacitance of 4.7 μ F is required to ensure stable operation of the VBOOT circuit. Larger capacitances may be used to increase transient performance. The VBOOT regulator is supplied by the internal charge pump when the charge pump is active. When the charge pump is inactive, the VBOOT regulator is supplied by HVDD.

The type of capacitor used may be ceramic, tantalum or aluminum electrolytic. The low-ESR characteristics of the ceramic will yield better noise and PSRR performance at high frequency.

17.13 +3.3V (VREG)

The VREG LDO may be used to power external devices, such as Hall effect sensors, amplifiers or host processors. The VREG LDO is enabled when the device is not in Sleep mode. The LDO requires an output capacitor for stability. The positive side of the output capacitor should be physically located as close to the VREG pin as is practical. For most applications, a minimum 4.7 μ F of capacitance will ensure stable operation of the LDO circuit. Larger capacitances may be used to increase transient performance.

The type of capacitor used may be ceramic, tantalum or aluminum electrolytic. The low-ESR characteristics of the ceramic will yield better noise and PSRR performance at high frequency.

17.14 Power Supply Input (HVDD)

Connect HVDD to the main supply voltage. This voltage should be the same as the motor voltage. The driver overcurrent features is relative to the HVDD pin. When the HVDD voltage is separate from the motor voltage, the overcurrent protection feature may not be available.

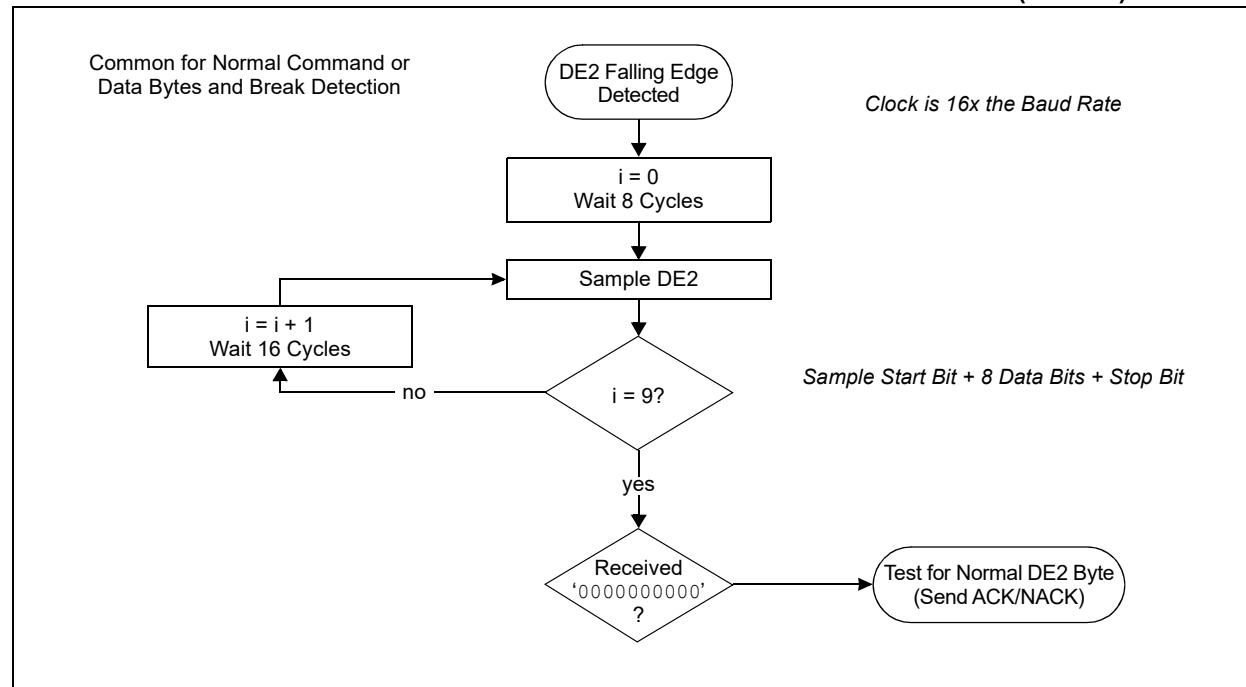
The HVDD voltage must not exceed the maximum operating limits of the device. Connect a bulk capacitor close to this pin for good load step performance and transient protection. The actual capacitance should be equal to or larger than the sum of the capacitors attached to the driver supply outputs. The attached capacitors are the VREG, VBOOT and VBx (three bootstrap capacitors), and the charge pump capacitances.

EQUATION 17-1: HV_{DD} BULK CAPACITOR CALCULATION

$$CHV_{DD} \geq CV_{REG} + CV_{BOOT} + (3 \times CV_{BX}) + C_{CAPx}$$

The type of capacitor used may be ceramic, tantalum or aluminum electrolytic. The low-ESR characteristics of the ceramic will yield lower voltage drop, better noise and PSRR performance at high frequency.

17.15 Charge Pump Flying Capacitor (CAP1, CAP2)


Charge pump flying capacitor connection. Connect the charge pump capacitor across these two pins. The Charge Pump Flying Capacitor, CCP, supplies the power for the VBOOT voltage regulator when the charge pump is active.

A Schottky diode between CAP1 pin and HVss is recommended to ensure that CAP1 pin absolute minimum voltage spec of -0.3V is maintained.

17.16 State Diagrams

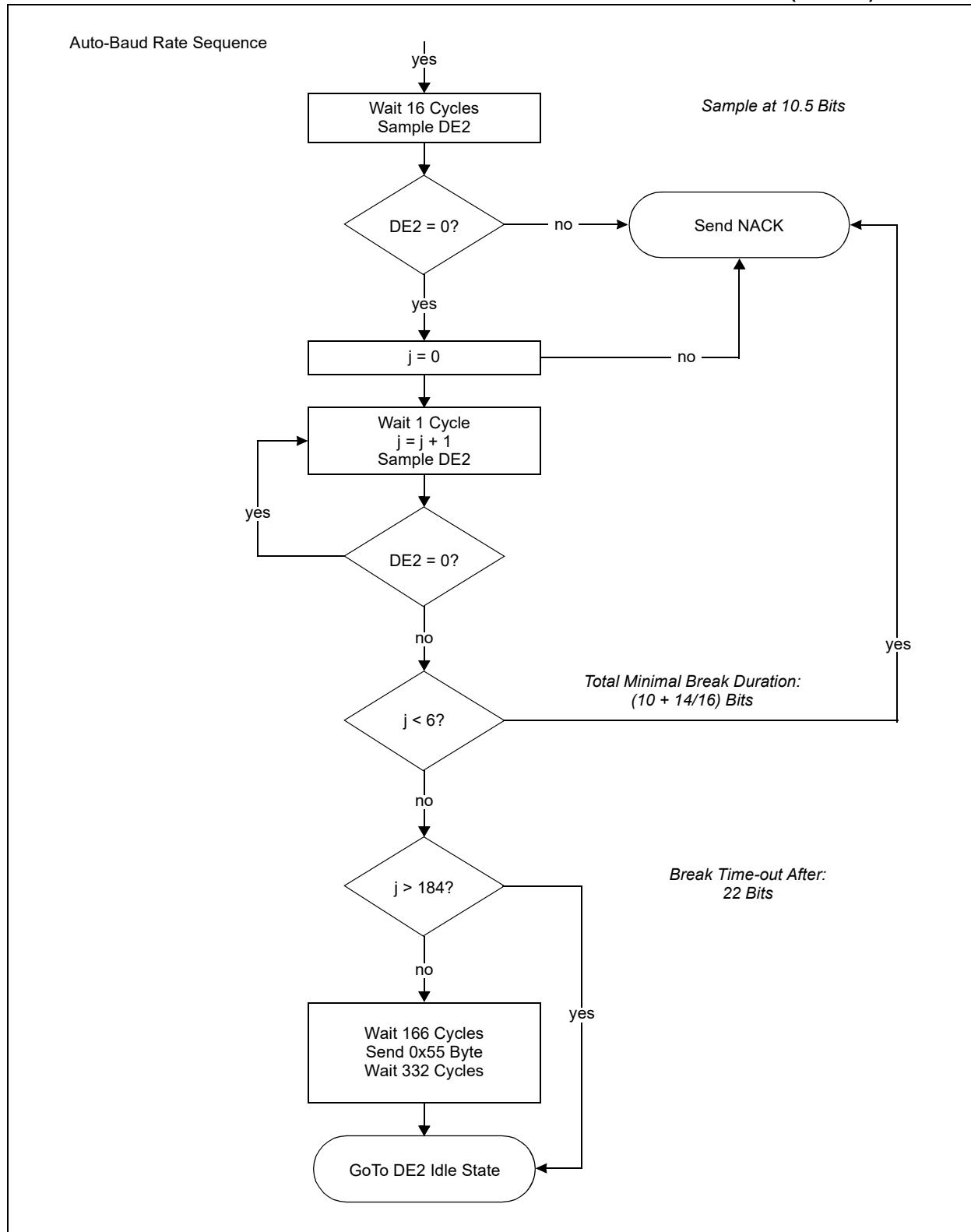

17.16.1 DE2 RECEIVE AND AUTO-BAUD SEQUENCE

FIGURE 17-3: DE2 DATA RECEPTION AND AUTO-BAUD RATE SEQUENCE (PART 1)

dsPIC33EDV64MC205

FIGURE 17-4: DE2 DATA RECEPTION AND AUTO-BAUD RATE SEQUENCE (PART 2)

17.17 Bias Generator

The internal bias generator controls several voltage rails. Two fixed output Low-Dropout linear regulators, internal bias supply LDOs and a charge pump are controlled through the bias generator. In addition, the bias generator performs supervisory functions.

17.17.1 CHARGE PUMP

An unregulated charge pump is utilized to boost the input to the VBOOT voltage regulator during low input supply voltage conditions. When the HVDD supply voltage drops below the CPSTART voltage, the charge pump is activated. When activated, 2 x HVDD is presented to the input of the VBOOT regulator. The charge pump is capable of maintaining a VBOOT output of +9V @ 15 mA for a HVDD supply voltage of 5.25V to 7V. The charge pump is capable of maintaining a VBOOT output of +12V @ 20 mA for a supply input voltage of 7V to 13.5V. The charge pump is disabled and bypassed at HVDD voltages above 13.5V, allowing an output voltage of +12V @ 30 mA.

The charge pump requires a capacitor between pins, CAP1 and CAP2. The typical Charge Pump Flying Capacitor, CCP, is a 0.1 μ F to 1.0 μ F ceramic capacitor.

17.17.2 VBOOT VOLTAGE REGULATOR

The VBOOT voltage regulator rail is used to supply bias voltage for the integrated three-phase power MOSFET bridge drivers.

The regulator is capable of supplying 30 mA of external load current. The regulator has a minimum overcurrent limit of 40 mA.

The regulator gets its power from the integrated charge pump. When operating at supply voltages (HVDD) that are above +13.5V, the integrated charge pump will be disabled and the HVDD supply will power the VBOOT voltage regulator. The VBOOT regulator output may be lower than the designed voltage, while operating in the HVDD range of +12.5V to +13.0V, due to the dropout voltage of the regulator.

The VBOOT regulator requires an output capacitor, connected from VBOOT to GND, to stabilize the internal control loop and to sustain the bootstrap capacitor energy. A minimum of 4.7 μ F ceramic output capacitance is required for the VBOOT voltage regulator output; 10 μ F is recommended when switching large MOSFET gate loads. The output capacitor forces a time delay between setting the OE pin high (to transition from Standby mode to Active mode) and the VBOOT regulator voltage output rising above the voltage required to set an internal VBootReady flag. The PWM inputs must not be activated while the VBOOT output is charging the output capacitors to the VBootReady voltage (typically 6.0V). The time required before allowing the PWM inputs to become

active, after setting OE high to transition from Standby mode to Active mode, is dependent on output capacitance, any extra loads and supply voltage ramp-up time. The user should allow a minimum time of 0.94 ms for the VBOOT output voltage to rise above the VBOOT ready voltage. A voltage of 6V and supply current of 30 mA may be used for this delay estimation. See [Equation 17-2](#).

EQUATION 17-2: OE PIN HIGH TO VBOOT READY

$$dt = (C \times dV)/(I)$$
$$dt = (4.7 \mu F \times 6V)/(30 mA)$$
$$dt = 0.94 ms$$

There is a time-out function that allows the state machine to move from VBOOT to active after 15 ms, regardless of the VBOOT ready voltage. This time-out function prevents the driver from hanging up if the VBOOT voltage is overloaded.

There is also a capacitive voltage divider formed by the three bootstrap capacitors and the VBOOT capacitor. The VBOOT capacitor should be selected so that when the VBOOT supply is active and the bootstrap capacitors are charged, the voltage at the bootstrap capacitors will be greater than the driver undervoltage shutdown voltage, 4.5V. For a system with VBOOT = 12V, $V_{MIN} = 4.5V$ and $N = 3 \times 1 \mu F$ CBOOTSTRAP capacitors charging at the same time, the desired CVBOOT capacitor is 1.8 μ F (see [Equation 17-3](#)). Since the VBOOT supply requires a 4.7 μ F capacitor, a 4.7 μ F capacitor should be used. The initial voltage seen by the bootstrap capacitors using a 4.7 μ F VBOOT capacitor will be 7.32V. See [Equation 17-4](#).

EQUATION 17-3: VBOOT CAPACITOR

$$CV_{BOOT} = \frac{(N \times C_{BOOTSTRAP})}{(V_{BOOT}) \div (V_{MIN}) - 1}$$

EQUATION 17-4: BOOTSTRAP VOLTAGE

$$V_{BOOTSTRAP} = \frac{(V_{BOOT} \times CV_{BOOT})}{(CV_{BOOT} + N \times C_{BOOTSTRAP})}$$

The VBOOT output is disabled when the driver transitions to Standby or Sleep mode.

[Table 17-4](#) shows the Faults that will also disable the VBOOT voltage regulator.

17.17.3 VREG LOW-DROPOUT (LDO) LINEAR REGULATOR

The 3.3V VREG LDO is used for internal gate control logic and can also be used to power the host dsPIC DSC.

The VREG LDO is capable of supplying 70 mA of external load current. The regulator has a minimum overcurrent limit of 80 mA. When the regulator current exceeds the overcurrent limit, the regulator will enter a True Current and Voltage Foldback mode based upon load impedance. As the load impedance decreases towards zero ohms, the regulator output current and voltage will also decrease until the final foldback current and voltage are attained.

When the regulator output voltage drops below the VREG undervoltage limit, the VREGUVF Undervoltage Fault bit will be set in the STAT1 register. The regulator will remain active during the Fault. [Table 17-1](#) shows the registers and bits associated with Faults.

The VREG LDO will be disabled when the HVDD supply voltage Undervoltage Fault occurs. The VREG LDO will be re-enabled when the conditions in [Section 17.18.1 "Voltage Supervisor"](#) are met.

A minimum of 4.7 μ F ceramic output capacitance is required for the VREG LDO; 10 μ F is recommended to increase transient performance if supplying the host dsPIC DSC.

The VREG LDO is disabled while the system is in Sleep mode. In the case of Sleep mode, the VREG LDO output voltage is held down with a 1 kOhm pull-down resistor.

17.18 Supervisor

The bias generator incorporates a voltage supervisor and a temperature supervisor.

17.18.1 VOLTAGE SUPERVISOR

The voltage supervisor protects the MOSFET Gate Driver, external power MOSFETs and the host dsPIC DSC from damage due to overvoltage or undervoltage of the input supply, HVDD.

In the event of an undervoltage condition, $HVDD < UVLOACT$, or overvoltage condition, $HVDD > OVLOACT$, or VREG LDO undervoltage condition, $VREG < VREGUVFACT$, the gate drivers, charge pump and VBOOT regulator are switched off. The bias generator, communication port, operational amplifiers and the remainder of the motor control unit remain active. The Failure state is flagged on the FAULT pin and a DE2 status message is sent.

In the event of a severe undervoltage condition, $HVDD < UVSHDNACT$, the entire device will shut down except for the minimal circuitry required for a Power-on Reset recovery. A UVSHDN Fault will be set. The VREG output will be turned off and pulled low to create

a "clean" shutdown of an attached host processor. The undervoltage shutdown condition is a Latched state. The state machine will be restarted from the Power-on Reset state when either of the following two conditions are met:

1. HVDD power is cycled.
2. HVDD rises above UVLOINACT (6.0V).

17.18.2 TEMPERATURE SUPERVISOR

An integrated temperature sensor self-protects the device circuitry. If the temperature rises above the Overtemperature Shutdown threshold, all device functions are turned off except for those required to send a DE2 Fault message. A Fault will be generated and a DE2 Fault message will be sent. The functions required to send the DE2 Fault message will then be shut down if pin OE is set to a low level. Active operation resumes when the temperature has cooled down below a set hysteresis value and the Fault has been cleared by toggling the OE pin from a logic low to a logic high.

It is desirable to signal the host dsPIC DSC with a warning message before the overtemperature threshold is reached. When the Thermal Warning Temperature (TWARN) set point is exceeded, the DE2 temperature warning will be sent to the host dsPIC DSC. The warning message has no effect upon driver operation. The host dsPIC DSC may then take appropriate actions to reduce the temperature rise.

17.19 Output Enable (OE)

The Output Enable (OE) pin allows the device outputs to be disabled by external control. The Output Enable pin has three modes of operation.

17.19.1 FAULT CLEARING STATE

The OE pin is used to clear any Faults and re-enable the driver. After toggling the OE pin low-to-high, the system requires a minimum time period to re-enable and start up all of the driver blocks. The start-up time is approximately 35 μ s. The maximum pulse time for the high-low-high transition to clear the Faults should be less than 900 μ s to prevent the system from transitioning through Standby mode. If the high-low-high transition is longer than 1 ms, the device will start up from the Standby state.

Any Fault status bits that are set will be cleared by the low-to-high transition of the OE pin, if and only if, the Fault condition has ceased to exist. If the Fault condition still exists, the active Fault status bit will remain active. No additional Fault messages will be sent for a Fault that remains active.

17.19.2 STANDBY STATE

Standby state is entered when the OE pin goes low for longer than 1 ms and the SLEEP Configuration bit is inactive. When Standby mode is entered, the following subsystems are disabled:

- High-side gate drives (HSA, HSB, HSC) forced low
- Low-side gate drives (LSA, LSB, LSC) forced low
- VBOOT LDO
- Charge pump
- The VREG LDO and DE2 communications stay active.

17.19.3 SLEEP MODE

Sleep mode is entered when both a SLEEP command is sent to the device via DE2 communications and the OE pin is low. The two conditions may occur in any order. The transition to Sleep mode occurs after the last of the two conditions occurs. The SLEEP bit in the CFG0 Configuration register indicates when the device should transition to a low-power mode. The device will operate normally until the OE pin is transitioned low by an external device. At that point in time, the SLEEP bit value determines whether the device transitions to Standby mode or low-power Sleep mode. The Supply Current (Isup) during Sleep mode will typically be 5 μ A. When Sleep mode is activated, most functions will be shut off, including the VREG LDO. Only the Power-on Reset monitor and minimal state machine will remain active to detect a wake-up event. This indicates that the host processor will be shut down if the host is using the VREG LDO regulator for power. The device will stay in the low-power Sleep mode until either of the following conditions is met:

- The WAKE pin transitions high after being in a Low state lasting longer than tWAIT_SETUP
- Power is cycled

The MOSFET Gate Driver is not required to retain configuration data while in Sleep mode. When exiting Sleep mode, the host should send a new configuration message to configure the device if the default configuration values are not desired. The same configuration sequence used during power-up may be used when exiting Sleep mode.

When activated, Sleep mode will always be entered regardless of any active Fault. This allows a transition to Sleep mode when the host is powered by the VREG LDO and the regulator is in an unreliable state. The SLEEP bit in the Configuration register will be ignored at power-up until the system has enabled the VREG LDO and the VREG LDO has entered regulation.

17.20 Faults

17.20.1 FAULT PIN OUTPUT (FAULT)

The FAULT pin is used as a Fault indicator. The pin is capable of sinking a minimum of 1 mA of current while maintaining less than 50 mV of voltage across the output. An external pull-up resistor to the logic supply is required.

The open-drain FAULT pin transitions low when a Fault occurs. [Table 17-1](#) lists the Faults that activate the FAULT signal. Warnings do not activate the FAULT signal; [Table 17-2](#) lists the warnings.

17.20.2 FAULT HANDLING SEQUENCE

When a Fault occurs, the following steps will occur in sequence.

1. The gate drive outputs will be immediately turned off.
2. The FAULT pin output will go low.
3. A message will be sent via the DE2 communications link.
4. The VREG LDO will be disabled immediately if the Fault is an HVDD Ovoltage Shutdown (UVSHDNACT).
5. The VREG LDO will be disabled 5 ms after the DE2 message has been sent for an Overtemperature Shutdown (OTSHDN) Fault.

17.20.3 FAULT INDICATOR

A "FAULT" indicator bit resides in the STAT0 register. The bit is the logical 'OR' of all of the Fault bits in the two Status registers. Warnings are not included in the FAULT indicator bit.

The FAULT bit will allow the user to read the STAT0 register in order to determine if a Fault is present in the system. If the bit is set, then the user may request the STAT1 message and interrogate the bits of both status messages to determine what Faults exist.

The Faults that are logically OR'd together to generate the FAULT bit are as follows:

- STAT0:OTPF
- STAT0:UVLOF
- STAT0:OVLOF
- STAT1:REGUVF
- STAT1:XUVLOF
- STAT1:XOCPF

TABLE 17-1: FAULTS

Fault	DE2 Message
Fault Active ('OR' of all Faults)	0x85 0x01
Overtemperature	0x85 0x04
HVDD Input Undervoltage	0x85 0x08
HVDD Input Overvoltage	0x85 0x10
VREG Output Undervoltage	0x86 0x01
External MOSFET Undervoltage Lockout	0x86 0x04
External MOSFET Overcurrent Detection	0x86 0x08

TABLE 17-2: WARNINGS

Fault	DE2 Message
Temperature Warning	0x85 0x02

17.20.4 POWER CONTROL STATUS (PCON)

The PCON[2:0] (STAT0[7:5]) bits are power control status bits that can be used to determine the cause of a shutdown. These bits are not Fault latches. The PCON power status bits will contain the cause of the power cycle.

[Table 17-3](#) lists the Power Status register bits in the STAT0 register.

TABLE 17-3: POWER STATUS

PCON[2:0] Status Bits (STAT0[7:5])	DE2 Message
Overtemperature Shutdown (OTSHDN) Occurred	0x85 0xA0
Sleep Occurred	0x85 0x60
HVDD Undervoltage Shutdown (UVSHDN) Occurred	0x85 0x40
Power-on Reset (POR) Occurred	0x85 0x20
Normal Operation	0x85 0x00

17.20.4.1 Internal Function Block Status

[Table 17-4](#) shows the effects of the OE pin, Faults and the SLEEP bit upon the functional status of the internal blocks of the MOSFET Gate Driver.

17.20.4.2 Start-up/FAULT Pin State

During device start-up or Power-on Reset (POR), the FAULT pin will stay active (low) to indicate to the host that the device is initializing. The FAULT pin will stay active until the state machine powers up the VREG LDO and completes the VREG state. After the VREG LDO is powered up, the FAULT pin logic checks the state of all of the latched FAULT bits. If any FAULT bit is still active, the FAULT pin will stay active and remain low.

TABLE 17-4: INTERNAL FUNCTION BLOCK STATUS

System State	Fault	Conditions	Sleep Latch	VREG LDO	VBOOT LDO	Motor Drivers	DE2	Op Amps (MCP8026)	Internal UVLO, OVLO, OTP
Sleep		OE = 0, SLEEP = 1	W	—	—	—	—	—	—
Standby		OE = 0, SLEEP = 0	—	A	—	—	A	C	A
Operating		OE = 1, <u>FAULT</u> = 1	—	A	A	A	A	A	A
Faults <u>FAULT</u> = 0	Driver OTPF	T _J Temperature > +160°C	—	—	—	—	D	—	A
	HVDDUVLO	HVDD ≤ UVLOINACT	—	A	—	—	A	A	A
	HVDDUVSHDN	HVDD ≤ UVSHDNINACT	—	—	—	—	E	—	—
	HVDDOVLO	HVDD ≥ OVLOINACT	—	A	—	—	A	A	A
	VREG LDO UVF	VREG ≤ 88% VREG	—	A	—	—	A	A	A
	MOSFET UVLO	VHS[A:C] < VDUVLO VLS[A:C] < VDUVLO	—	A	A	—	A	A	A
	MOSFET OCPF	VDRAIN SOURCE > EXTOC[1:0] setting	—	A	A	—	A	A	A
Warnings <u>FAULT</u> = 1	Driver Temperature	T _J Temperature > 72% TSD_MIN (+115°C for +160°C driver OTP)	—	A	A	A	A	A	A
Power Status	Configuration lost if Power-on Reset, wake from Sleep or recover from HVDD undervoltage shutdown occurred	Set at initial power-up when HVDD < UVSHDNACT or when waking from Sleep	—	A	A	A	A	A	A

Legend: — = Inactive (Off); A = Active (On); C = Configurable; D = Inactive (Off) 5 ms after sent Fault message;
 E = Inactive (Off); R = Receiver Only; W = Wake-up (from Sleep); OCPF = Overcurrent Protection;
 OTPF = Overtemperature Protection; UVLO = Undervoltage Lockout; OVLO = Overvoltage Lockout;
 UVF = Undervoltage Fault; UVSHDN = Undervoltage Shutdown

17.21 Motor Control Unit

The motor control unit is comprised of the following:

- External Drive for a 3-Phase Bridge with NMOS/NMOS MOSFET Pairs
- MOSFET Driver Undervoltage Lockout
- External MOSFET Short-Circuit Current
- FAULT Pin Output
- Cross Conduction Protection
- Programmable Dead Time
- Programmable Blanking Time

17.21.1 EXTERNAL DRIVE FOR A 3-PHASE BRIDGE WITH NMOS/NMOS MOSFET PAIRS

Each motor phase is driven with external NMOS/NMOS MOSFET pairs. These are controlled by a low-side and a high-side gate driver. The gate drivers are controlled by the host dsPIC PWM interconnects found in [Table 1-1](#). A logic high turns the associated gate driver on and a logic low turns the associated gate driver off.

The low-side gate drivers are biased by the VBOOT regulator output, referenced to ground. The high-side gate drivers are a floating drive biased by a bootstrap capacitor circuit. The bootstrap capacitor is charged by the VBOOT regulator whenever the accompanying low-side MOSFET is turned on.

The high-side and low-side driver outputs all go to a Low state whenever there is a Fault, when OE = 0 for more than 1 ms or when Sleep mode is active, regardless of the PWM[A:C]H/L inputs.

The gate driver output stages have lower dynamic RDSONDYN in the time frame up to 1 ms after output activation. This is the relevant drain source on resistance for charging or discharging the external MOSFET gates.

After elapsing 1 ms or later, the high side gate driver RDSON increases slightly up to the static RDSON value.

17.21.2 MOSFET GATE DRIVER UNDERVOLTAGE LOCKOUT (UVLO)

The MOSFET Gate Driver Undervoltage Lockout Fault detection monitors the available voltage used to drive the external MOSFET gates. The Fault detection is only active while the driver is actively driving the external MOSFET gate. Any time the driver bias voltage is below the gate drive Undervoltage Lockout Threshold (V_{DUVLO}) for a time longer than specified by the t_{DUVLO} parameter, the driver will not turn on when commanded on. A driver Fault will be indicated to the host dsPIC DSC on the FAULT open-drain output pin and also via a DE2 communications Status_1 message. This is a latched Fault. Clearing the Fault requires either removal of device power or disabling and re-enabling the device

via the device Output Enable (OE) input. The EXTUVLO bit in the CFG0 register is used to enable or disable the driver Undervoltage Lockout feature. This protection feature prevents the external MOSFETs from being controlled with a gate voltage not suitable to fully enhance the device.

17.21.3 EXTERNAL MOSFET SHORT-CIRCUIT CURRENT

Short-circuit protection monitors the voltage across the external MOSFETs during an On condition. The high-side driver voltage is measured from HVDD to PH[A:C]. The low-side driver voltage is measured from PH[A:C] to ground. If a monitored voltage rises above a user-configurable threshold after the driver HS[A:C] or LS[A:C] output voltage has been driven high, all drivers will be turned off. A driver Fault will be indicated to the host dsPIC DSC on the open-drain FAULT output pin and also via a DE2 communications Status_1 message. This is a latched Fault. Clearing the Fault requires either removal of device power or toggling the OE input pin low-to-high. This protection feature helps detect internal motor failures, such as winding to case shorts.

Note: The driver short-circuit protection is dependent on application parameters. A configuration message is provided for a set number of threshold levels. The MOSFET Gate Driver UVLO and short-circuit protection features have the option to be disabled.

The short-circuit voltage may be set via a DE2 Set_Cfg_0 message. The EXTOC[1:0] bits of the CFG0 register are used to select the voltage level for the short-circuit comparison. If a monitored voltage differential between HVDD and PH[A:C], or between PH[A:C] and PGND, exceeds the selected voltage level when the MOSFET Gate Driver is active, a Fault will be triggered. The selectable voltage levels are 250 mV, 500 mV, 750 mV and 1000 mV. The EXTSC bit of the CFG0 register is used to enable or disable the MOSFET Gate Driver short-circuit detection.

17.21.4 GATE CONTROL LOGIC

The gate control logic enables level shifting of the digital inputs, polarity control and cross conduction protection.

17.21.4.1 Cross Conduction Protection

If both MOSFETs in the same half-bridge are commanded on by the digital PWM inputs, both will be turned off.

17.21.4.2 Programmable Dead Time

The gate control logic employs a break-before-make dead-time delay that is programmable. A configuration message is provided to configure the driver dead time. The programmable dead times range from 250 ns to 2000 ns (default) in 250 ns increments. The dead time allows the PWM inputs to be direct inversions of each other and still allow proper motor operation. The dead time internally modifies the PWMH/L gate drive timing to prevent cross conduction. The DRVDT[2:0] bits of the CFG2 register are used to set the dead-time value.

17.21.4.3 Programmable Blanking Time

A configuration message is provided to configure the driver current limit blanking time. The blanking time allows the driver to ignore any current spikes that may occur when switching the driver outputs. The allowable blanking times are 500 ns, 1 μ s, 2 μ s and 4 μ s (default). The blanking time will start after the dead-time circuitry has timed out. The DRVBL[1:0] bits of the CFG2 register are used to set the blanking time value.

The blanking time also affects the driver Undervoltage Lockout. The driver Undervoltage Lockout latches the external MOSFET Undervoltage Lockout Fault if the undervoltage condition lasts longer than the time specified by the tDUVLO parameter. The tDUVLO parameter takes into account the blanking time if blanking is in progress.

17.22 Motor Control

The commutation loop of a BLDC motor control is a Phase-Locked Loop (PLL), which locks to the rotor's position. Note that this inner loop does not attempt to modify the position of the rotor, but modifies the commutation times to match whatever position the rotor has. An outer speed loop changes the rotor velocity and the commutation loop locks to the rotor's position to commute the phases at the correct times.

17.22.1 SIX-STEP SENSORLESS MOTOR CONTROL

Many control algorithms can be implemented using the dsPIC33EDV64MC205 device with internal MOSFET Gate Driver.

The following information provides a starting point for implementing a three-phase sensorless motor control application. The motor is driven by energizing two windings at a time and sequencing the windings in a six-step per electrical revolution method. This method leaves one winding unenergized at all times. The voltage (Back EMF or BEMF) on that unenergized winding can be monitored to determine the rotor position.

17.22.1.1 Start-up Sequence

When the motor being driven is at rest, the BEMF voltage is equal to zero. The motor needs to be rotating for the BEMF sensor to lock onto the rotor position and commutate the motor. The recommended start-up sequence is to bring the rotor from rest, up to a speed fast enough to allow BEMF sensing. Motor operation is comprised of five modes: Disabled mode, Bootstrap mode, Lock or Align mode, Ramp mode and Run mode. Refer to the commutation state machine in [Table 17-5](#). The order in which the host dsPIC DSC steps through the commutation state machine determines the direction that the motor rotates.

17.22.1.2 Disabled Mode (OE = 0)

When the driver output is disabled (OE = 0), all of the MOSFET driver outputs are set low.

17.22.1.3 Bootstrap Mode

The high-side driver obtains the high-side biasing voltage from the VBOOT LDO, bootstrap diode and bootstrap capacitor. The bootstrap capacitors must first be charged before the high-side drives may be used. The bootstrap capacitors are all charged by activating all three low-side drivers. The active low-side drivers pull their respective phase nodes low, charging the bootstrap capacitors to the VBOOT LDO voltage. The three low-side drivers should be active for at least 1.2 ms per 1 μ F of bootstrap capacitance. This assumes a 12V voltage change and 30 mA (10 mA per phase) of current coming from the VBOOT LDO.

17.22.1.4 Lock Mode

Before the motor can be started, the rotor should be in a known position. In Lock mode, the host dsPIC DSC drives Phase B low and Phases A and C high. This aligns the rotor 30 electrical degrees before the center of the first commutation state. Lock mode must last long enough to allow the motor and its load to settle into this position.

17.22.1.5 Ramp Mode

At the end of Lock mode, Ramp mode is entered. In Ramp mode, the host dsPIC DSC steps through the commutation state machine, increasing the step rate linearly, until a minimum speed is reached that will result in a usable BEMF voltage. Ramp mode is an open-loop commutation. No knowledge of the rotor position is used.

17.22.1.6 Run Mode

At the end of Ramp mode, Run mode is entered. In Run mode, the Back EMF sensor is enabled and commutation is now under the control of the Phase-Locked Loop. Motor speed can be regulated by an outer speed control loop.

dsPIC33EDV64MC205

TABLE 17-5: COMMUTATION STATE MACHINE

State	Outputs						BEMF Phase
	HSA	HSB	HSC	LSA	LSB	LSC	
OE = 0	OFF	OFF	OFF	OFF	OFF	OFF	N/A
BOOTSTRAP	OFF	OFF	OFF	ON	ON	ON	N/A
LOCK	ON	OFF	ON	OFF	ON	OFF	N/A
1	ON	OFF	OFF	OFF	OFF	ON	Phase B
2	OFF	ON	OFF	OFF	OFF	ON	Phase A
3	OFF	ON	OFF	ON	OFF	OFF	Phase C
4	OFF	OFF	ON	ON	OFF	OFF	Phase B
5	OFF	OFF	ON	OFF	ON	OFF	Phase A
6	ON	OFF	OFF	OFF	ON	OFF	Phase C

17.22.1.7 PWM Speed Control

The inner commutation loop is a Phase-Locked Loop, which locks to the rotor's position. This inner loop does not attempt to modify the position of the rotor, but modifies the commutation times to match whatever position the rotor has. The outer speed loop changes the rotor velocity and the inner commutation loop locks to the rotor's position to commutate the phase at the correct times.

The outer speed loop pulse width modulates the motor drive inverter to produce the desired wave shape and voltage at the motor. The inductance of the motor then integrates this PWM pattern to produce the desired average current, thus controlling the desired torque and speed of the motor. For a trapezoidal BLDC motor drive with six-step commutation, the PWM is used to generate the average voltage to produce the desired motor current and motor speed.

There are two basic methods to PWM the inverter switches. The first method returns the reactive energy in the motor inductance to the source by reversing the voltage on the motor winding during the current decay period. This method is referred to as fast decay or chop-chop. The second method circulates the reactive current in the motor with minimal voltage applied to the inductance. This method is referred to as slow decay or chop-coast.

The preferred control method employs a chop-chop PWM for any situations where the motor is being accelerated, either positively or negatively. For improved efficiency, chop-coast PWM is employed during steady-state conditions. The chop-chop speed loop is implemented by hysteretic control, fixed off time control or Average Current mode control of the motor current. This makes for a very robust controller, since the motor current is always in instantaneous control. The motor speed presented to the chop-chop loop is reduced by approximately 9%. A fixed frequency PWM that only modulates the high-side switches implements the chop-coast loop. The chop-coast loop is presented with the full motor speed, so if it is able to control the speed, the chop-chop loop will never be satisfied and will remain saturated. The chop-chop remains able to assume full control if the motor torque is exceeded, either through a load change or a change in speed that produces acceleration torque. The chop-coast loop will remain saturated, with the chop-chop loop in full control, during start-up and acceleration to full speed. The bandwidth of the chop-coast loop is set to be slower than the chop-chop loop so that any transients will be handled by the chop-chop loop and the chop-coast loop will only be active in steady-state operation.

17.23 DE2 Communication Port

A half-duplex 9600 baud UART interface is available to communicate with the host dsPIC DSC. The port is used to configure the MOSFET Gate Driver and also for status and Fault messages.

17.23.1 COMMUNICATIONS INTERFACE

A half-duplex, 9600 baud, 8-bit bidirectional communications interface is implemented on the DE2 interconnect. The interface consists of eight data bits, one Stop bit and one Start bit.

Dedicated UART hardware may be configured through PPS to transmit and receive messages over the DE2 communications interconnect.

The MOSFET Gate Driver side of the interface is an open-drain configuration and requires that the host dsPIC DSC uses an internal pull-up resistor to pull the DE2 interconnect high.

The auto-baud frequency is temperature-dependent, as illustrated in [Figure 17-4](#). To establish proper DE2 communication, it is recommended to synchronize the host frequency by proceeding the auto-baud function alternatively, as described in [Section 17.23.5 “Auto-Baud Function”](#). The time from receiving the last bit of a command message to sending the first bit of the response message ranges from t_{DE2_RSP} to t_{DE2_WAIT} , corresponding to 0 μ s to 3.125 ms. The host should refrain from sending additional messages until the previously requested message has been received in order to prevent overwriting the driver response message.

17.23.2 PACKET FORMAT

Every internal driver status change will cause the driver to send a message to the host dsPIC DSC. The interface uses a standard UART baud rate of 9600 bits per second.

In the DE2 protocol, the transmitter and the receiver do not share a clock signal. A clock signal does not emanate from one transmitter to the other receiver. Due to this reason, the protocol is asynchronous. The protocol uses only one line to communicate, so the transmit/receive packet must be done in Half-Duplex mode. A new transmit message is allowed only when a complete packet has been transmitted and responded to.

The host must listen to the DE2 line in order to check for contentions. In case of contention, the host must release the line and wait for at least three packet length times before initiating a new transfer.

[Figure 17-5](#) illustrates a basic DE2 data packet.

17.23.3 PACKET TIMING

While no data are being transmitted, a logic ‘1’ must be placed on the open-drain DE2 line by the host dsPIC DSC using an internal pull-up resistor. A data packet is composed of one Start bit, which is always a logic ‘0’, followed by eight data bits and a Stop bit. The Stop bit must always be a logic ‘1’. It takes ten bits to transmit a byte of data.

The DE2 interface detects the Start bit by detecting the transition from logic ‘1’ to logic ‘0’ (note that while the data line is Idle, the logic level is high). Once the Start bit is detected, the next data bit’s “center” can be assured to be 24 ticks minus 2 (worst-case synchronizer uncertainty) later. From then on, every next data bit center is 16 clock ticks later. [Figure 17-6](#) illustrates this point.

17.23.4 MESSAGE HANDLING

The driver will not transition to Sleep mode while a message is being received. If a message reception is in progress before the $OE = 0$ to Sleep Mode Transition (t_{SLEEP}) delay times out, the message will be fully received and the contents applied to the Configuration registers if applicable. The SLEEP bit will then be checked and the system enters Sleep mode if the SLEEP bit is still active.

17.23.5 AUTO-BAUD FUNCTION

The MOSFET Gate Driver provides an auto-baud feature that allows the host dsPIC DSC, communicating on the DE2 communications interconnect, to determine the actual baud rate being used by the MOSFET Gate Driver. The feature allows the host to request a 0x55 byte transmission from the MOSFET Gate Driver. The host then determines the MOSFET Gate Driver baud rate and adjusts the host internal Baud Rate Generator (BRG) to match the MOSFET Gate Driver baud rate.

The DE2 pin is used to trigger the auto-baud feature. The host sets the DE2 signal to a logic low for a period of time (auto-baud Break window) that ranges between 1.29 ms and 2.0 ms. The host then releases the DE2 pin back to the host UART control. The host UART then raises the DE2 pin to a logic high value. The MOSFET Gate Driver will respond with a standard NACK ('0b00nnnnnn', where 'nnnnnn' are the six Least Significant bits (LSbs) received) if the DE2 link was held low for less than 1.29 ms and the byte was not interpreted as a valid command. The MOSFET Gate Driver will ignore the current message if the DE2 link is held low for more than 2.0 ms.

If the driver receives a valid auto-baud request in the allotted time frame, the driver will enter an Auto-Baud state, indicating an auto-baud message has been requested. When the auto-baud function is activated, the DE2 subsystem will disable sending all unsolicited messages to the host. The auto-baud request must not be proceeded before a message was sent by the host after a Power-on Reset.

If the internal Auto-Baud state is set, the driver will wait for a minimum of 0.86 ms and a maximum of 1.19 ms. After the wait time has expired, a 0x55 data byte will be immediately sent on the DE2 link by the driver.

The driver will wait 2.00 ms after sending the 0x55 baud rate data over the DE2 link before transmitting any other messages. The driver will then exit the Auto-Baud state and resume normal DE2 operations. The 2.00 ms wait is needed to allow the host to complete the auto-baud verification and update the host UART Baud Rate Generator.

The MOSFET Gate Driver will always monitor the DE2 link for a logic low before attempting to transmit.

The MOSFET Gate Driver will preempt all DE2 communications upon receiving a logic low on the DE2 link which lasts longer than ten bit times at 9600 baud (Break sequence).

The MOSFET Gate Driver will wait for a period up to 2 ms for the DE2 link to change to a Logic High state after the initial detection of a logic low on the DE2 link. If the DE2 link fails to rise to a logic high level within 2 ms of the initial logic low level, the auto-baud message will be canceled and no message will be sent. The auto-baud function will then be complete.

The driver will send any pending unsolicited messages after the auto-baud function has finished.

17.23.6 MESSAGING INTERFACE

A command byte will always have the Most Significant bit (MSb) 7 set to '1'. Bits 6 and 5 are reserved for future use and should be set to '0'. Bits[4:0] are used for commands. That allows for 32 possible commands.

17.23.6.1 Host dsPIC DSC to MOSFET Gate Driver

Messages sent from the host dsPIC DSC to the MOSFET Gate Driver consist of either one or two 8-bit bytes. The first byte transmitted is the command byte. The second byte transmitted, if required, is the data for the command.

If a multibyte command is sent to the MOSFET Gate Driver and no second byte is received by the MOSFET Gate Driver, then a "Command Not Acknowledged" message will be sent back to the host afterwards. The host must start sending the 2nd byte of a two-byte command within 1 ms of completion of the first byte to prevent a NACK message. Once the second byte Start bit is received, the MOSFET Gate Driver internal receiver logic will handle the reception of the data byte. If the data byte Stop bit is not received within the expected reception time for the last received bit, the driver will respond with a NACK message.

17.23.6.2 MOSFET Gate Driver to Host dsPIC DSC

A solicited response byte from the MOSFET Gate Driver will always echo the command byte with bit 7 set to '0' (response) and with bit 6 set to '1' for Acknowledged (ACK) or '0' for Not Acknowledged (NACK). The second byte, if required, will be the data for the host command. Any command that causes an error or is not supported will receive a NACK response.

The MOSFET Gate Driver may send unsolicited command messages to the host dsPIC DSC. All messages to the host controller do not require a response from the host controller.

17.23.7 MESSAGES

17.23.7.1 SET_CFG_0

There is a `SET_CFG_0` message that is sent by the host dsPIC DSC to the MOSFET Gate Driver to configure the driver. The `SET_CFG_0` message may be sent to the driver at any time. The host is responsible for making sure the system is in a state that will not be compromised by sending the `SET_CFG_0` message. The `SET_CFG_0` message format is indicated in [Table 17-6](#). The response is indicated in [Table 17-7](#).

17.23.7.2 GET_CFG_0

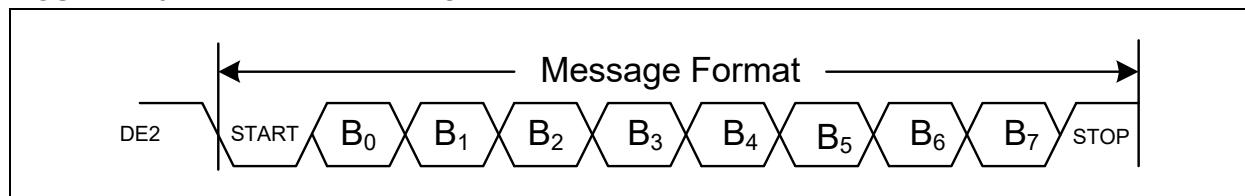
There is a `GET_CFG_0` message that is sent by the host dsPIC DSC to the dsPIC33EDV64MC205 devices to retrieve the device Configuration register. The `GET_CFG_0` message format is indicated in [Table 17-6](#). The response is indicated in [Table 17-7](#).

17.23.7.3 STATUS_0 and STATUS_1

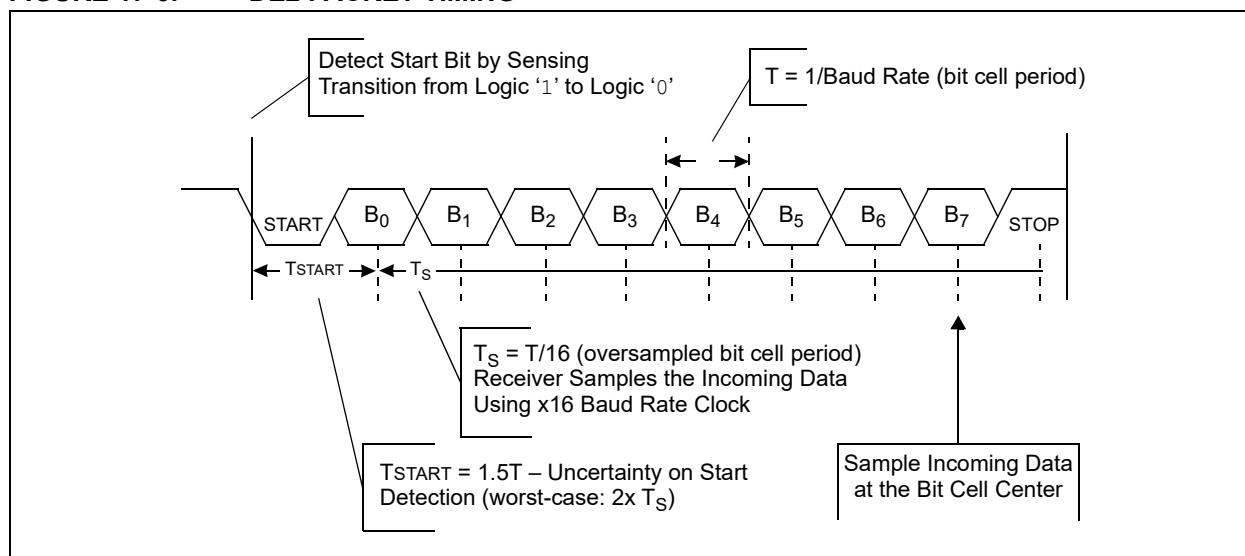
There are `STATUS_0` and `STATUS_1` messages that are sent by the host dsPIC DSC to the MOSFET Gate Driver to retrieve the device STAT0 and STAT1 registers. Unsolicited `STATUS_0` and `STATUS_1` messages may also be sent to the host by the MOSFET Gate Driver to inform the host of status changes. The unsolicited `STATUS_0` and `STATUS_1` messages will only be sent when a status bit changes to an Active state. The `STATUS_0` and `STATUS_1` message format is indicated in [Table 17-6](#). The response is indicated in [Table 17-7](#).

When a `STATUS_0` or `STATUS_1` message is sent to the host dsPIC DSC in response to a new Fault becoming active, the FAULT bit will be cleared, either by the host issuing a `STATUS_0` or `STATUS_1` request message, or by the host toggling the OE pin low then high. The FAULT bit will stay active and not be cleared if the Fault condition still exists at the time the host attempted to clear the Fault.

The PCONx bits of the STAT0 register will be set every time the device restarts due to various events (see [Table 17-3](#)). When the driver resumes operation, a single unsolicited STATUS_0 message will be sent to the host dsPIC DSC indicating a Reset has occurred. The message will be sent five milliseconds (5 ms) after the VREG LDO has reached its Active state. The host should check the PCONx bits to determine the cause of the power cycle. In all cases, the configuration data may have been lost and should be re-sent to the driver. The PCONx flags are reset by a host STATUS_0 request message. If the host misses the unsolicited STATUS_0 message at start-up, the host may manually request the status by sending a STATUS_0 message to the driver. The PCONx bits of the STAT0 register will contain the source of the Power-on Reset until the STAT0 register is requested by the host.


17.23.7.4 SET_CFG_2

There is a SET_CFG_2 message that is sent by the host dsPIC DSC to the MOSFET Gate Driver to configure the driver current limit blanking time. The SET_CFG_2 message may be sent to the devices at any time. The host is responsible for making sure the system is in a state that will not be compromised by sending the SET_CFG_2 message. The SET_CFG_2 message format is indicated in [Table 17-6](#). The response is indicated in [Table 17-7](#).


17.23.7.5 GET_CFG_2

There is a GET_CFG_2 message that is sent by the host dsPIC DSC to the MOSFET Gate Driver to retrieve the device Configuration Register #2. The GET_CFG_2 message format is indicated in [Table 17-6](#). The response is indicated in [Table 17-7](#).

FIGURE 17-5: DE2 PACKET FORMAT

FIGURE 17-6: DE2 PACKET TIMING

dsPIC33EDV64MC205

TABLE 17-6: DE2 COMMUNICATION COMMANDS FROM dsPIC TO MOSFET GATE DRIVER MODULE

Command	Byte	Bit	Value	Description
SET_CFG_0	1		10000001 (81h)	Set Configuration Register 0
SET_CFG_0	2	7	0	Reserved
		6	0	Reserved
		5	0	System enters Standby mode when OE = 0, SLEEP = 0 for more than 1 ms
		5	1	System enters Sleep mode when OE = 0, SLEEP = 1 for more than 1 ms
		4	0	Reserved
		3	0	Enable external MOSFET Undervoltage Lockout (default)
		3	1	Disable external MOSFET Undervoltage Lockout
		2	0	Enable external MOSFET short-circuit detection (default)
		2	1	Disable external MOSFET short-circuit detection
		1:0	00	Set external MOSFET overcurrent limit to 0.250V (default)
		1:0	01	Set external MOSFET overcurrent limit to 0.500V
		1:0	10	Set external MOSFET overcurrent limit to 0.750V
		1:0	11	Set external MOSFET overcurrent limit to 1.000V
GET_CFG_0	1		10000010 (82h)	Get Configuration Register 0
STATUS_0	1		10000101 (85h)	Get Status Register 0
STATUS_1	1		10000110 (86h)	Get Status Register 1
SET_CFG_2	1		10000111 (87h)	Set Configuration Register 2
SET_CFG_2	2	7:5	00h	Reserved
		4:2	—	Driver dead time (for PWMH /PWML inputs)
		4:2	000	2000 ns (default)
		4:2	001	1750 ns
		4:2	010	1500 ns
		4:2	011	1250 ns
		4:2	100	1000 ns
		4:2	101	750 ns
		4:2	110	500 ns
		4:2	111	250 ns
GET_CFG_2	1	1:0	—	Driver blanking time (ignore switching current spikes)
		1:0	00	4 μ s (default)
		1:0	01	2 μ s
		1:0	10	1 μ s
		1:0	11	500 ns
GET_CFG_2	1		10001000 (88h)	Get Configuration Register 2
GET_REV_ID	1		10010000 (90h)	Get device hardware revision

TABLE 17-7: DE2 COMMUNICATION MESSAGES FROM MOSFET GATE DRIVER MODULE TO HOST dsPIC

Message	Byte	Bit	Value	Description
SET_CFG_0	1	7:0	00000001 (01h)	Command not Acknowledged (response)
			01000001 (41h)	Command Acknowledged (response)
	2	7	0	Reserved
		6	0	Reserved
		5	0	System enters Standby mode when OE = 0, SLEEP = 0 for more than 1 ms
			1	System enters Sleep mode when OE = 0, SLEEP = 1 for more than 1 ms
		4	0	Reserved
		3	0	External MOSFET Undervoltage Lockout enabled (default)
			1	External MOSFET Undervoltage Lockout disabled
	2	0	0	External MOSFET short-circuit detection enabled (default)
		1	1	External MOSFET short-circuit detection disabled
	1:0	00	00	0.250V external MOSFET overcurrent limit (default)
		01	01	0.500V external MOSFET overcurrent limit
		10	10	0.750V external MOSFET overcurrent limit
		11	11	1.000V external MOSFET overcurrent limit
GET_CFG_0	1	7:0	00000010 (02h)	Command not Acknowledged (response)
			01000010 (42h)	Command Acknowledged (response)
	2	7	0	Reserved
		6	0	Reserved
		5	0	System enters Standby mode when OE = 0, SLEEP = 0 for more than 1 ms
			1	System enters Sleep mode when OE = 0, SLEEP = 1 for more than 1 ms
		4	0	Reserved
		3	0	External MOSFET Undervoltage Lockout enabled
			1	External MOSFET Undervoltage Lockout disabled
	2	0	0	External MOSFET short-circuit detection enabled
		1	1	External MOSFET short-circuit detection disabled
	1:0	00	00	0.250V external MOSFET overcurrent limit
		01	01	0.500V external MOSFET overcurrent limit
		10	10	0.750V external MOSFET overcurrent limit
		11	11	1.000V external MOSFET overcurrent limit

dsPIC33EDV64MC205

TABLE 17-7: DE2 COMMUNICATION MESSAGES FROM MOSFET GATE DRIVER MODULE TO HOST dsPIC (CONTINUED)

Message	Byte	Bit	Value	Description
STATUS_0	1	7:0	00000101 (05h)	Command not Acknowledged (response)
			01000101 (45h)	Command Acknowledged (response)
			10000101 (85h)	Command sent to host (unsolicited)
	2	7:5	101	Overtemperature Shutdown (OTSHDN) occurred
			100	Overvoltage Shutdown (OVSHDN) occurred
			011	Sleep Shutdown (SLEEP) occurred
			010	Undervoltage Shutdown (UVSHDN) occurred
			001	Power-on Reset (POR) occurred
			000	Normal operation
	4	1	1	Input Overvoltage (OVLOF), HVDD > 32V
		1	1	Input Undervoltage (UVLOF), HVDD < 5.5V
		1	1	Overtemperature (OTPF), $T_J > +160^{\circ}\text{C}$
		1	1	Overtemperature Warning (OTPW), $T_J > +115^{\circ}\text{C}$
		0	0	No Fault condition exists
		1	1	A Fault condition exists
STATUS_1	1	7:0	00000110 (06h)	Command not Acknowledged (response)
			01000110 (46h)	Command Acknowledged (response)
			10000110 (86h)	Command sent to host (unsolicited)
	2	7:4	0	Reserved
			1	External MOSFET Overcurrent (XOCPF) detected
			1	External MOSFET Undervoltage Lockout (XUVLOF)
			0	Reserved
			1	VREG LDO Undervoltage Fault (VREGUVF)
SET_CFG_2	1	7:0	00000111 (07h)	Command not Acknowledged (response)
			01000111 (47h)	Command Acknowledged (response)
	2	7:5	00h	Reserved
			—	Driver dead time (for PWMH /PWML inputs)
			000	2000 ns (default)
			001	1750 ns
			010	1500 ns
			011	1250 ns
			100	1000 ns
			101	750 ns
			110	500 ns
			111	250 ns
	1:0	1:0	—	Driver blanking time (ignore Faults)
			00	4000 ns (default)
			01	2000 ns
			10	1000 ns
			11	500 ns

TABLE 17-7: DE2 COMMUNICATION MESSAGES FROM MOSFET GATE DRIVER MODULE TO HOST dsPIC (CONTINUED)

Message	Byte	Bit	Value	Description
GET_CFG_2	1	7:0	00001000 (08h)	Command not Acknowledged (response)
			01001000 (48h)	Command Acknowledged (response)
	2	7:5	00h	Reserved
		4:2	—	Driver dead time (for PWMH /PWML inputs)
			000	2000 ns
			001	1750 ns
			010	1500 ns
			011	1250 ns
			100	1000 ns
			101	750 ns
			110	500 ns
			111	250 ns
		1:0	—	Driver blanking time (ignore Faults)
			00	4000 ns
			01	2000 ns
			10	1000 ns
			11	500 ns
GET_REV_ID	1	7:0	00010000 (10h)	Command not Acknowledged (response)
			01010000 (50h)	Command Acknowledged (response)
	2	7:3	00h	Reserved
		2:0	00h-07h	Device hardware revision

dsPIC33EDV64MC205

17.24 Register Definitions

REGISTER 17-1: CFG0: CONFIGURATION REGISTER 0

U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	SLEEP	—	EXTUVLO	EXTSC	EXTOC1	EXTOC0
bit 7							

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 7-6 **Unimplemented:** Read as '0'

bit 5 **SLEEP:** Sleep Mode bit

Bit may only be changed while in Standby mode.

1 = System enters Sleep mode when OE = 0

0 = System enters Standby mode when OE = 0

bit 4 **Unimplemented:** Read as '0'

bit 3 **EXTUVLO:** External MOSFET Undervoltage Lockout bit

1 = Disables

0 = Enables

bit 2 **EXTSC:** External MOSFET Short-Circuit Detection bit

1 = Disables

0 = Enables

bit 1-0 **EXTOC[1:0]:** External MOSFET Overcurrent Limit Value bits

11 = Overcurrent limit set to 1.000V

10 = Overcurrent limit set to 0.750V

01 = Overcurrent limit set to 0.500V

00 = Overcurrent limit set to 0.250V

REGISTER 17-2: CFG2: CONFIGURATION REGISTER 2

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	DRVDT2	DRVDT1	DRVDT0	DRVBL1	DRVBL0
bit 7							

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 7-5 **Unimplemented:** Read as '0'bit 4-2 **DRVDT[2:0]:** Driver Dead-Time Selection bits

111 = 250 ns

110 = 500 ns

101 = 750 ns

100 = 1000 ns

011 = 1250 ns

010 = 1500 ns

001 = 1750 ns

000 = 2000 ns

bit 1-0 **DRVBL[1:0]:** Driver Blanking Time Selection bits

Bits may only be changed while in Standby mode.

11 = 500 ns

10 = 1000 ns

01 = 2000 ns

00 = 4000 ns

dsPIC33EDV64MC205

REGISTER 17-3: STAT0: STATUS REGISTER 0

R-0	R-0	R-1	R-0	R-0	R-0	R-0	R-0
PCON2	PCON1	PCON0	OVLOF	UVLOF	OTPF	OTPW	FAULT
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 7-5

PCON[2:0]: Power Control Status bits (configuration lost if non-zero value)

101 = Overtemperature Shutdown (OTSHDN) occurred

011 = Sleep (SLEEP) shutdown occurred

110 = Undervoltage Shutdown (UVSHDN) occurred

001 = Power-on Reset (POR) occurred

000 = Normal operation

bit 4

OVLOF: Input Overvoltage Lockout Fault bit

1 = HVDD input voltage > 32V

0 = HVDD input voltage < 32V

bit 3

UVLOF: Input Undervoltage Fault bit

1 = HVDD input voltage < 5.5V

0 = HVDD input voltage > 5.5V

bit 2

OTPF: Overtemperature Protection Fault bit

1 = Device junction temperature is > +165°C

0 = Device junction temperature is < +165°C

bit 1

OTPW: Overtemperature Protection Warning bit

1 = Device junction temperature is > +115°C

0 = Device junction temperature is < +115°C

bit 0

FAULT: Fault Status bit

1 = At least one Fault is active

0 = No active Faults

REGISTER 17-4: STAT1: STATUS REGISTER 1

U-0	U-0	U-0	U-0	R-0	R-0	U-0	R-0
—	—	—	—	XOCPF	XUVLOF	—	VREGUVF
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 7-4	Unimplemented: Read as '0'
bit 3	XOCPF: External MOSFET Overcurrent Protection Fault bit Only Valid when EXTSC (CFG0[2]) = 0. 1 = External MOSFET V _{DS} > EXTOC[1:0] (CFG0[1:0]) value 0 = External MOSFET V _{DS} < EXTOC[1:0] (CFG0[1:0]) value
bit 2	XUVLOF: External MOSFET Gate Drive Undervoltage Fault bit Only Valid when EXTUVLO (CFG0[3]) = 0. 1 = HSx output voltage < V _{DUVLO} 0 = HSx output voltage > V _{DUVLO}
bit 1	Unimplemented: Read as '0'
bit 0	VREGUVF: VREG LDO Undervoltage Fault bit 1 = VREG LDO output voltage < 88% of target VREG 0 = VREG LDO output voltage > 92% of target VREG

REGISTER 17-5: REV_ID: HARDWARE REVISION ID

U-0	U-0	U-0	U-0	R-0/1	R-0/1	R-0/1	R-0/1
—	—	—	—	REVID[3:0]			
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown


bit 7-4	Unimplemented: Read as '0'
bit 3-0	REVID[3:0]: Device Revision bits

17.25 Application Information

17.25.1 COMPONENT CALCULATIONS

17.25.1.1 Charge Pump Capacitors

FIGURE 17-7: CHARGE PUMP

Let:

- $I_{OUT} = 20 \text{ mA}$
- $f_{CP} = 75 \text{ kHz}$ (charge/discharge in one cycle)
- 50% duty cycle
- $V_{DDH} = 5.5V$ (worst case)
- $R_{DSON} = 7.5\Omega$ (RPMOS), 3.5Ω (RN莫斯)
- $V_{12P} = 2 \times V_{DDH}$ (ideal)
- $C_{ESR} = 20 \text{ m}\Omega$ (ceramic capacitors)
- $V_{DROP} = 100 \text{ mV}$ (V_{OUT} ripple)
- $T_{CHG} = T_{DCHG} = 0.5 \times 1/75 \text{ kHz} = 6.67 \mu\text{s}$

17.25.1.2 Flying Capacitor

The flying capacitor should be chosen to charge to a minimum of 95% (3τ) of V_{DDH} within one half of a switching cycle.

- $3 \times \tau = T_{CHG}$
- $\tau = T_{CHG}/3$
- $RC = T_{CHG}/3$
- $C = T_{CHG}/(R \times 3)$
- $C = 6.67 \mu\text{s}/(7.5\Omega + 3.5\Omega + 0.02\Omega) \times 3$
- $C = 202 \text{ nF}$

Choose a 180 nF capacitor.

17.25.1.3 Charge Pump Output Capacitor

Solve for the charge pump output capacitance, connected between V_{12P} and ground, that will supply the 20 mA load for one switch cycle. The V_{BOOT} LDO pin on the MOSFET Gate Driver Module is the “ V_{12P} ” pin referenced in the calculations.

- $C = I_{OUT} \times dt/dV$
- $C = I_{OUT} \times 13.3 \mu\text{s}/(V_{DROP} + I_{OUT} \times C_{ESR})$
- $C = 20 \text{ mA} \times 13.3 \mu\text{s}/(0.1V + 20 \text{ mA} \times 20 \text{ m}\Omega)$
- $C \geq 2.65 \mu\text{F}$

For stability reasons, the V_{BOOT} LDO and V_{REG} LDO capacitors must be at least 4.7 μF , so choose: $C \geq 4.7 \mu\text{F}$.

17.25.1.4 Charging Path (Flying Capacitor Across CAP1 and CAP2)

- $V_{CAPD} = V_{DDH} \times (1 - e^{-T/\tau})$
- $V_{CAPD} = 5.5V \times (1 - e^{-[6.67 \mu\text{s}/(7.5\Omega + 3.5\Omega + 20 \text{ m}\Omega) \times 180 \text{ nF}]})$

$V_{CAPD} = 5.31V$ is available for transfer on the first cycle.

17.25.1.5 Transfer Path (Flying and Output Capacitors)

- $V_{12P} = V_{DDH} + V_{CAPD} - I_{OUT} \times dt/C$
- $V_{12P} = 5.5V + 5.31V - (20 \text{ mA} \times 6.67 \mu\text{s}/180 \text{ nF})$
- $V_{12P} = 10.066V$

17.25.1.6 Calculate the Flying Capacitor Voltage Drop in One Cycle While Supplying 20 mA

- $dV = I_{OUT} \times dt/C$
- $dV = 20 \text{ mA} \times 6.67 \mu\text{s}/180 \text{ nF}$
- $dV = 0.741V @ 20 \text{ mA}$

The second and subsequent transfer cycles will have a higher voltage available for transfer, since the capacitor is not completely depleted with each cycle. V_{CAP} will then be $V_{CAP} - dV$ after the first transfer, plus $V_{DDH} - (V_{CAP} - dV)$ times the RC constant. This repeats for each subsequent cycle, allowing a larger charge pump capacitor to be used if the system will tolerate several charge transfers before requiring full output voltage and current.

Repeating [Section 17.25.1.4 “Charging Path \(Flying Capacitor Across CAP1 and CAP2\)”](#) for the second cycle (and subsequent by recalculating for each new value of V_{CAP} after each transfer):

- $V_{CAP} = (V_{CAP} - dV) + (V_{DDH} - (V_{CAP} - dV)) (1 - e^{-T/\tau})$
- $V_{CAP} = (5.31V - 0.741V) + (5.5V - (5.31V - 0.741V)) \times (1 - e^{-[6.67 \mu\text{s}/(7.5\Omega + 3.5\Omega + 20 \text{ m}\Omega) \times 180 \text{ nF}]})$
- $V_{CAP} = 4.567V + 0.934V \times 0.96535$

$V_{CAP} = 5.468V$ is available for transfer on the second cycle.

17.25.1.7 Charge Pump Results

The maximum charge pump flying capacitor value is 202 nF to maintain a 95% voltage transfer ratio on the first charge pump cycle. Larger capacitor values may be used, but they will require more cycles to charge to maximum voltage. The minimum required output capacitor value is 2.65 μF to supply 20 mA for 13.3 μs with a 100 mV drop. A larger output capacitor may be used to cover losses due to capacitor tolerance over temperature, capacitor dielectric and PCB losses.

These are approximate calculations. The actual voltages may vary due to incomplete charging or discharging of capacitors per cycle due to load changes. The charge pump calculations assume the charge pump is able to charge up the external boot cap within a few cycles.

17.25.2 BOOTSTRAP CAPACITOR

The high-side driver bootstrap capacitor needs to power the high-side driver and gate for 1/3 of the motor electrical period for a three-phase BLDC motor operating in Six-Step mode.

Let:

$$\begin{aligned}
 \text{MOSFET Driver Current} &= 300 \text{ mA} \\
 \text{PWM Period} &= 50 \mu\text{s} (20 \text{ kHz}) \\
 \text{Minimum Duty Cycle} &= 1\% (500 \text{ ns}) \\
 \text{Maximum Duty Cycle} &= 99\% (49.5 \mu\text{s}) \\
 \text{VIN} &= 12\text{V} \\
 \text{Minimum Gate Drive Voltage} &= 8\text{V} (\text{VGS}) \\
 \text{Total Gate Charge} &= 130 \text{ nC} \\
 &\quad (80\text{A MOSFET}) \\
 \text{Allowable VGS Drop (VDROP)} &= 3\text{V} \\
 \text{Switch RDSON} &= 100 \text{ mW} \\
 \text{Driver Internal Bias Current} &= 20 \mu\text{A} (\text{IBIAS})
 \end{aligned}$$

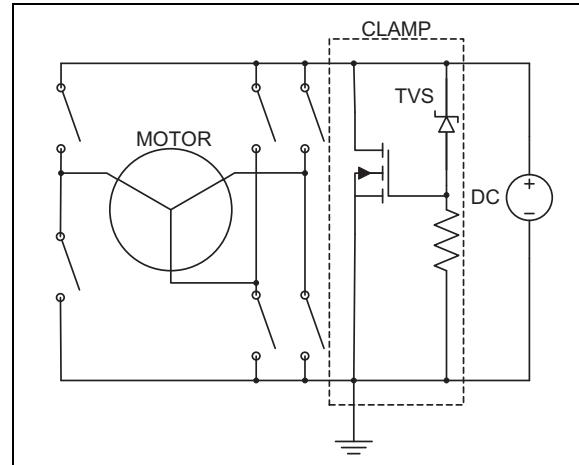
Solve for the smallest capacitance that can supply:

- 130 nC of charge to the MOSFET gate
- 1 Megohm gate source resistor current
- Driver bias current and switching losses

$$\begin{aligned}
 \text{QMOSFET} &= 130 \text{ nC} \\
 \text{QRESISTOR} &= [(\text{VGS}/\text{R}) \times \text{TON}] \\
 \text{QDRIVER} &= (\text{IBIAS} \times \text{TON}) \\
 \text{TON} &= 49.5 \mu\text{s} (99\% \text{ DC}) \text{ for worst case} \\
 \text{QRESISTOR} &= \text{QRESISTOR} \\
 \text{QDRIVER} &= 20 \mu\text{A} \times 49.5 \mu\text{s} = 0.99 \text{ nC}
 \end{aligned}$$

Sum all of the energy requirements:

- $C = (\text{QMOSFET} + \text{QRESISTOR} + \text{QDRIVER})/\text{VDROP}$
- $C = (130 \text{ nC} + 0.594 \text{ nC} + 0.99 \text{ nC})/3\text{V}$
- $C = 43.86 \text{ nF}$


Choose a bootstrap capacitor value that is larger than 43.86 nF.

17.26 Device Protection

17.26.1 MOSFET VOLTAGE SUPPRESSION

When a motor shaft is rotating and power is removed, the magnetism of the motor components will cause the motor to act like a generator. The current that was flowing into the motor will now flow out of the motor. As the motor magnetic field decays, the generator output will also decay. The voltage across the generator terminals will be proportional to the generator current and circuit impedance of the generator circuit. If the power supply is part of the return path for the current and the power supply is disconnected, then the voltage at the generator terminals will increase until the current flows. This voltage increase must be handled externally to the driver. A voltage suppression device may be used to clamp the motor terminal voltage to a level that will not exceed the maximum system operating voltage during the high-voltage transients. A voltage suppressor circuit may be connected from power ground to the motor power supply rail to create a path for the motor current when the supply is disconnected (Figure 17-8). The PCB traces must be capable of carrying the motor current with minimum voltage and temperature rise.

FIGURE 17-8: TRANSIENT VOLTAGE CLAMP

An additional method is to inactivate the high-side drivers and to activate the low-side drivers. This allows current to flow through the low-side external MOSFETs and prevents the voltage from increasing at the power supply terminals.

17.26.2 BOOTSTRAP VOLTAGE SUPPRESSION

The pins which handle the highest voltage during motor operation are the bootstrap pins (VBx). The bootstrap pin voltage is typically VBOOT (12V) higher than the associated phase voltage. When the high-side MOSFET is conducting, the phase pin voltage is typically at HVDD and the bootstrap pin voltage is typically at HVDD + 12V. When the phase MOSFETs switch, current induced voltage transients occur on the phase pins. These currents are caused by the MOSFET body diode reverse recovery and MOSFET turn-on/turn-off times. Those induced voltages cause the bootstrap pin voltages to also increase. Depending on the magnitude of the phase pin voltage, the bootstrap pin voltage may exceed the safe operating voltage of the device. The current induced transients may be reduced by slowing down the turn-on and turn-off times of the MOSFETs. The external MOSFETs may be slowed down by adding a 10 to 100 ohm resistor in series with the gate drive. A 1 nF to 10 nF ceramic capacitor may be added that connects each MOSFET gate and source terminal. The added capacitance slows down the switching times of the MOSFET, while allowing the gate resistance to remain small enough to keep the gate clamped off. The added capacitance also results in a lower slew rate of the phase node and limits the shoot-through current caused by the body diode reverse recovery.

The high-side MOSFETs may also be slowed down by inserting a 10 Ω to 25 Ω resistor between each bootstrap pin and the associated bootstrap diode capacitor junction. Another 25 Ω to 50 Ω resistor is then added between the gate drive and the MOSFET gate. This results in a high-side turn-on resistance of 25 Ω plus the series gate resistor. The high-side turn-off resistance only consists of the series gate resistance and allows for a faster shut-off time. Care must be taken to make sure the voltage drop across the bootstrap pin resistor does not cause an external MOSFET Undervoltage Fault.

When a system motor power supply voltage clamp is not used, 33V or 36V transzorbs may be connected from each bootstrap pin (VBx) to the ground. This will ensure that the bootstrap voltage does not exceed the absolute maximum voltage allowed on the pins. The resistors connected between the bootstrap pins and the bootstrap diode/capacitor junctions, mentioned in the previous paragraph, may also be used in order to limit the transzorb current and reduce the transzorb package size.

17.26.3 FLOATING GATE SUPPRESSION

The gate drive pins may float when the supply voltage is lost or an overvoltage situation shuts down the driver. When an overvoltage condition exists, the driver high-side and low-side outputs are tri-state. Each external MOSFET that is connected to the gate driver should have a gate-to-source resistor to bleed off any charge that may accumulate due to the tri-state. This will help prevent inadvertent turn-on of the MOSFET.

[Figure 17-9](#) shows the location of the overvoltage transzorbs (or equivalent circuits), gate resistors, bootstrap resistors and gate-to-source resistors.

17.26.4 MOSFET BODY DIODE REVERSE RECOVERY SNUBBER

When motor current is flowing through the external MOSFET body diodes and the complimentary MOSFET of the phase pair turns on, the body diode reverse recovery creates a momentary short circuit until the reverse recovery time is complete. When the body diode reverse recovery is complete, the current path is opened, causing the phase node voltage to slew rapidly towards ground or HVDD levels. The rapid slew rate may cause an inversion of the gate-to-source voltage on the MOSFET that is turning on and result in that MOSFET turning off.

The fast slew rate may also cause ringing on the phase node and the sense resistor if the turn-off is too fast.

The first remedy for the low-side turn-off is to slow down the MOSFET gate-to-source turn-off. That causes the RDSON of the low-side MOSFET to gradually increase as the gate voltage drops and the low-side MOSFET slowly turns off. The slow turn-off allows the phase voltage, generated by the motor current flowing through the low-side MOSFET RDSON, to slowly rise towards the positive motor supply level.

The same scenario is also valid for turning on the low-side MOSFET when the high-side MOSFET has just been turned off and current was flowing from the high side into the motor.

The MOSFET body diode reverse recovery situation occurs when the low-side MOSFETs are turned on while the motor current is flowing to the positive source through the high-side MOSFET body diode. The diode reverse recovery time allows a short circuit to exist between the positive supply and the low-side MOSFET drain until the high-side diode is reverse biased and the reverse recovery time has elapsed. The first remedies above should be used to slow the switching speeds of the MOSFETs. Then, a snubber is added to each MOSFET to fine-tune the phase node slew rate and eliminate any further transients. Adding a drain-to-source snubber slows down the slew rate of the phase node and results in a more controlled excursion of the phase node voltage. The snubber consists of a resistor and a capacitor connected in series between the drain and source of the MOSFET. The resistor is chosen to keep the initial snubber voltage below a few volts when peak motor current is flowing through the body diode. The capacitor is then chosen to provide an RC time constant longer than the MOSFET body diode reverse recovery time. A 0.1Ω resistor is typically used, along with a $0.1\ \mu\text{F}$ capacitor to provide an RC of 10 ns.

The power dissipated by the capacitor is calculated by applying [Equation 17-5](#).

EQUATION 17-5: SNUBBER CAPACITOR POWER DISSIPATION

$$P_{DISS} = 2 \times \pi \times f \times C \times V^2 \times \text{Dissipation Factor}$$

Where:

f = PWM Frequency

C = Capacitance

V = Motor Voltage

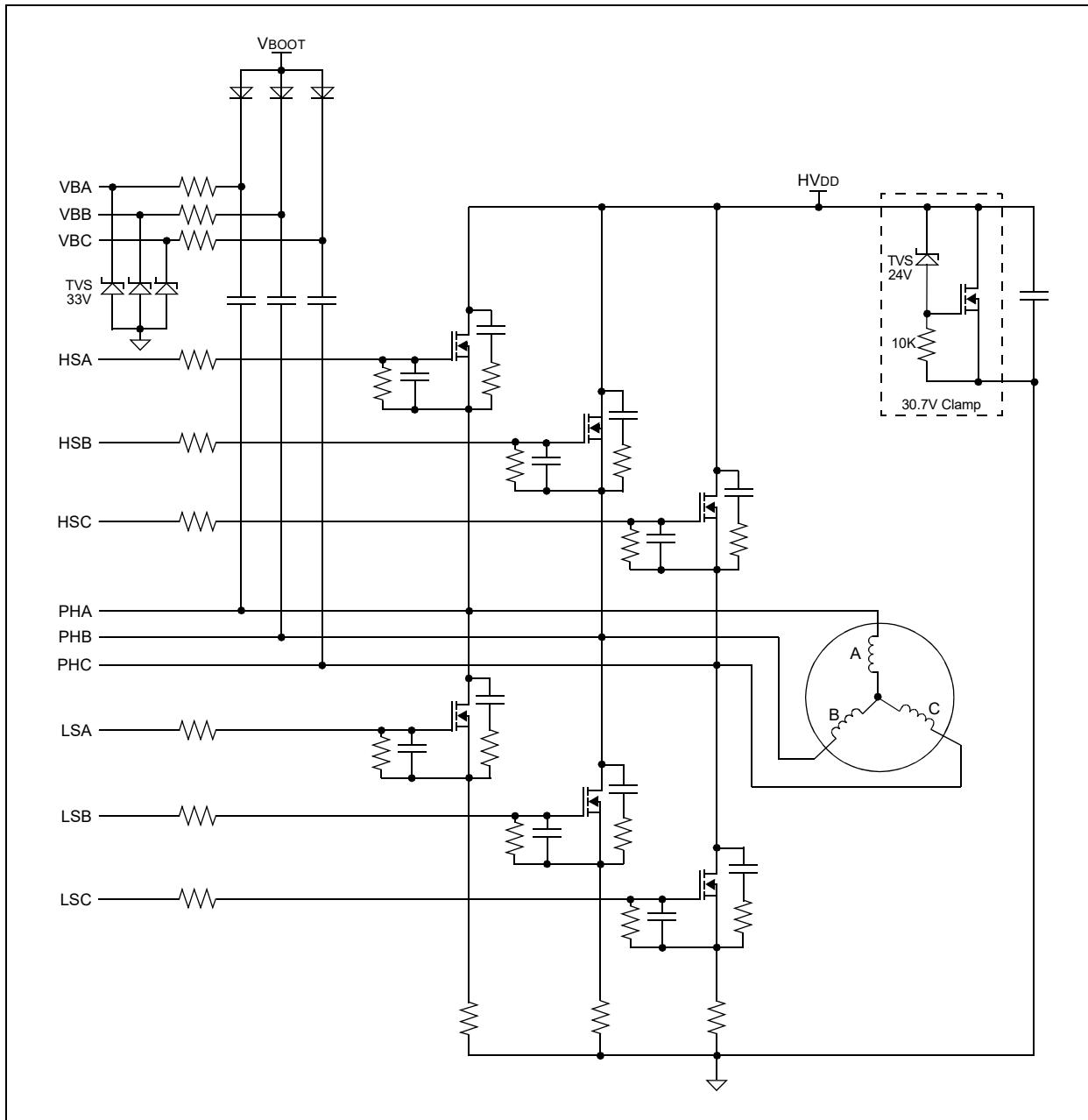
$\text{Dissipation Factor} = 2 \times \rho \times f \times C \times \text{ESR} = \text{ESR}/X_C$

The capacitor and resistor form factors are chosen to handle the dissipated power.

17.26.5 MOTOR CURRENT SENSE CIRCUITRY

A sense resistor in series with the bridge ground return provides a current signal for feedback. This resistor should be non-inductive to minimize ringing from high di/dt . Any inductance in the power circuit represents potential problems in the form of additional voltage stress and ringing, as well as increasing switching times. While impractical to eliminate, careful layout and bypassing will minimize these effects. The output stage should be as compact as heat sinking will allow, with wide, short traces carrying all pulsed currents. Each half-bridge should be separately bypassed with a low-ESR/ESL capacitor, decoupling it from the rest of the circuit. Some layouts will allow the input filter capacitor to be split into three smaller values and serve double duty as the half-bridge bypass capacitors.

dsPIC33EDV64MC205


17.26.6 AUTO-BAUD CODE EXAMPLE

Example 17-1 is a dsPIC® DSC code example using the auto-baud function.

EXAMPLE 17-1: dsPIC® DSC AUTO-BAUD EXAMPLE

```
/* create autobaud function using dsPIC built-in BREAK function
 * Fcy = Fosc/2
 * U1BRG_9600 = U1BRG = (Fcy/(16 * Baudrate)) - 1 where default Baudrate = 9600
 * Baudrate = FCY / ((U1BRG + 1) * 16)
 */
U1MODEbits.ABAUD = 0;                      // stop the ABAUD counter
U1MODEbits.UARTEN = 1;                      // enable UART
U1STAbits.UTXEN = 1;                      // Transmit enabled, UxTX pin controlled by UARTx
while(U1STAbits.UTXBF);                    // Wait for transmit buffer to empty
while(!U1STAbits.TRMT);                    // wait for last byte to finish transmitting
U1STAbits.UTXBRK = 1;                      // Send BREAK command
U1TXREG = 0x00;                            // Dummy write to start BREAK command
while (U1STAbits.UTXBRK);                  // wait for completion of BREAK sequence
while (!U1STAbits.TRMT);                  // wait for last break bit to transmit
U1RXREG = 0;                                // reset UART - Required to abort sync
U1RXREG = 1;                                // enable UART
__delay_us(100);                           // make sure DE2 link is ready
U1MODEbits.ABAUD = 1;                      // start the ABAUD counter upon receipt of next byte (0x55)
__delay_ms(5);                            // wait for ABAUD to complete
if (U1MODEbits.ABAUD) __delay_ms(5);        // wait another 5 ms if ABAUD is not complete
                                            // NewBaudrate = FCY / ((U1BRG + 1) * 16);
                                            // new baudrate
if (!U1MODEbits.ABAUD)                      // verify calculated baud rate is valid.
                                            // If not, use default 9600 baud rate.
{
    if ((U1BRG > U1BRG_9600_MINUS_5_PERCENT) &&
        (U1BRG < U1BRG_9600_PLUS_5_PERCENT))
    {
        // success, use new baudrate generator value
    }
    else
    {
        // failed, reload default 9600 baud rate clock
        U1BRG = U1BRG_9600;
    }
}
else
{
    // Autobaud never completed, reload default 9600 baud rate clock
    U1MODEbits.ABAUD = 0;                      // stop the ABAUD counter
    U1BRG = U1BRG_9600;
}
```

FIGURE 17-9: OVERVOLTAGE PROTECTION

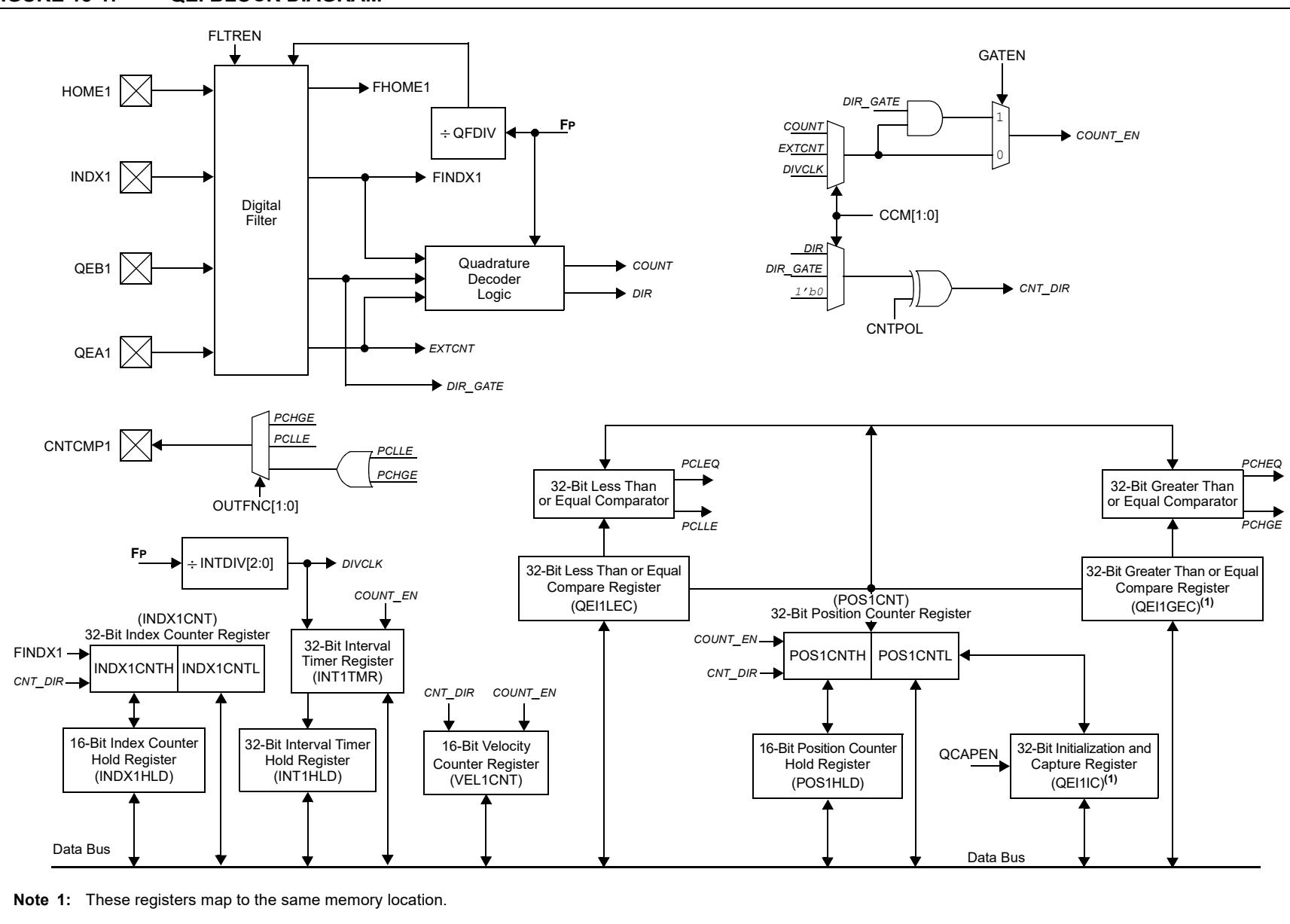
dsPIC33EDV64MC205

NOTES:

18.0 QUADRATURE ENCODER INTERFACE (QEI) MODULE

Note 1: This data sheet summarizes the features of the dsPIC33EDV64MC205 device. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to “**Quadrature Encoder Interface (QEI)**” (www.microchip.com/DS70000601) in the “*dsPIC33/PIC24 Family Reference Manual*”.

2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 “Memory Organization”** in this data sheet for device-specific register and bit information.


This chapter describes the Quadrature Encoder Interface (QEI) module and associated operational modes. The QEI module provides the interface to incremental encoders for obtaining mechanical position data.

The operational features of the QEI module include:

- 32-Bit Position Counter
- 32-Bit Index Pulse Counter
- 32-Bit Interval Timer
- 16-Bit Velocity Counter
- 32-Bit Position Initialization/Capture/Compare High Register
- 32-Bit Position Compare Low Register
- x4 Quadrature Count mode
- External Up/Down Count mode
- External Gated Count mode
- External Gated Timer mode
- Internal Timer mode

[Figure 18-1](#) illustrates the QEI block diagram.

FIGURE 18-1: QEI BLOCK DIAGRAM

18.1 QEI Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this [link](#), contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser:
<http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en555464>

18.1.1 KEY RESOURCES

- “**Quadrature Encoder Interface (QEI)**” (DS70000601) in the “*dsPIC33/PIC24 Family Reference Manual*”
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related “*dsPIC33/PIC24 Family Reference Manual*” Sections
- Development Tools

dsPIC33EDV64MC205

18.2 QEI Control/Status Registers

REGISTER 18-1: QEI1CON: QEI1 CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QEIEN	—	QEISIDL	PIMOD2 ⁽¹⁾	PIMOD1 ⁽¹⁾	PIMOD0 ⁽¹⁾	IMV1 ⁽²⁾	IMV0 ⁽²⁾
bit 15							

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	INTDIV2 ⁽³⁾	INTDIV1 ⁽³⁾	INTDIV0 ⁽³⁾	CNTPOL	GATEN	CCM1	CCM0
bit 7							

Legend:

R = Readable bit
-n = Value at POR

W = Writable bit
'1' = Bit is set

U = Unimplemented bit, read as '0'
'0' = Bit is cleared
x = Bit is unknown

bit 15	QEIEN: QEI Module Counter Enable bit 1 = Module counters are enabled 0 = Module counters are disabled, but SFRs can be read or written to
bit 14	Unimplemented: Read as '0'
bit 13	QEISIDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12-10	PIMOD[2:0]: Position Counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Modulo Count mode for position counter 101 = Resets the position counter when the position counter equals the QEI1GEC register 100 = Second index event after home event initializes the position counter with the contents of the QEI1IC register 011 = First index event after home event initializes the position counter with the contents of the QEI1IC register 010 = Next index input event initializes the position counter with the contents of the QEI1IC register 001 = Every index input event resets the position counter 000 = Index input event does not affect position counter
bit 9	IMV1: Index Match Value for Phase B bit ⁽²⁾ 1 = Phase B match occurs when QEB = 1 0 = Phase B match occurs when QEB = 0
bit 8	IMV0: Index Match Value for Phase A bit ⁽²⁾ 1 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 0
bit 7	Unimplemented: Read as '0'

Note 1: When CCM[1:0] = 10 or 11, all of the QEI counters operate as timers and the PIMOD[2:0] bits are ignored.

2: When CCM[1:0] = 00, and QEA and QEB values match the Index Match Value (IMV), the POS1CNTH and POS1CNTL registers are reset. QEA/QEB signals used for the index match have swap and polarity values applied, as determined by the SWPAB and QEAPOL/QEBPOL bits.

3: The selected clock rate should be at least twice the expected maximum quadrature count rate.

REGISTER 18-1: QEI1CON: QEI1 CONTROL REGISTER (CONTINUED)

bit 6-4	INTDIV[2:0]: Timer Input Clock Prescale Select bits ⁽³⁾ (interval timer, main timer (position counter), velocity counter and index counter internal clock divider select)
	111 = 1:128 prescale value
	110 = 1:64 prescale value
	101 = 1:32 prescale value
	100 = 1:16 prescale value
	011 = 1:8 prescale value
	010 = 1:4 prescale value
	001 = 1:2 prescale value
	000 = 1:1 prescale value
bit 3	CNTPOL: Position and Index Counter/Timer Direction Select bit
	1 = Counter direction is negative unless modified by external up/down signal
	0 = Counter direction is positive unless modified by external up/down signal
bit 2	GATE1: External Count Gate Enable bit
	1 = External gate signal controls position counter operation
	0 = External gate signal does not affect position counter/timer operation
bit 1-0	CCM[1:0]: Counter Control Mode Selection bits
	11 = Internal Timer mode with optional external count is selected
	10 = External clock count with optional external count is selected
	01 = External clock count with external up/down direction is selected
	00 = Quadrature Encoder Interface Count mode (x4 mode) is selected

Note 1: When CCM[1:0] = 10 or 11, all of the QEI counters operate as timers and the PIMOD[2:0] bits are ignored.

2: When CCM[1:0] = 00, and QEA and QEB values match the Index Match Value (IMV), the POS1CNTH and POS1CNTL registers are reset. QEA/QEB signals used for the index match have swap and polarity values applied, as determined by the SWPAB and QEAPOL/QEBPOL bits.

3: The selected clock rate should be at least twice the expected maximum quadrature count rate.

dsPIC33EDV64MC205

REGISTER 18-2: QEI1IOC: QEI1 I/O CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QCAPEN	FILTREN	QFDIV2	QFDIV1	QFDIV0	OUTFNC1	OUTFNC0	SWPAB
bit 15	bit 8						

R/W-0	R/W-0	R/W-0	R/W-0	R-x	R-x	R-x	R-x
HOMPOL	IDXPOL	QEWPOL	QEAPOL	HOME	INDEX	QEB	QEA
bit 7	bit 0						

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15	QCAPEN: QEI Position Counter Input Capture Enable bit 1 = Index match event triggers a position capture event 0 = Index match event does not trigger a position capture event
bit 14	FILTREN: QEA1/QEB1/IDX1/HOME1 Digital Filter Enable bit 1 = Input pin digital filter is enabled 0 = Input pin digital filter is disabled (bypassed)
bit 13-11	QFDIV[2:0]: QEA1/QEB1/IDX1/HOME1 Digital Input Filter Clock Divide Select bits 111 = 1:128 clock divide 110 = 1:64 clock divide 101 = 1:32 clock divide 100 = 1:16 clock divide 011 = 1:8 clock divide 010 = 1:4 clock divide 001 = 1:2 clock divide 000 = 1:1 clock divide
bit 10-9	OUTFNC[1:0]: QEI Module Output Function Mode Select bits 11 = The CTNCMP1 pin goes high when $QEI1LEC \geq POS1CNT \geq QEI1GEC$ 10 = The CTNCMP1 pin goes high when $POS1CNT \leq QEI1LEC$ 01 = The CTNCMP1 pin goes high when $POS1CNT \geq QEI1GEC$ 00 = Output is disabled
bit 8	SWPAB: Swap QEA1 and QEB1 Inputs bit 1 = QEA1 and QEB1 are swapped prior to quadrature decoder logic 0 = QEA1 and QEB1 are not swapped
bit 7	HOMPOL: HOME1 Input Polarity Select bit 1 = Input is inverted 0 = Input is not inverted
bit 6	IDXPOL: IDX1 Input Polarity Select bit 1 = Input is inverted 0 = Input is not inverted
bit 5	QEWPOL: QEB1 Input Polarity Select bit 1 = Input is inverted 0 = Input is not inverted
bit 4	QEAPOL: QEA1 Input Polarity Select bit 1 = Input is inverted 0 = Input is not inverted
bit 3	HOME: Status of HOME1 Input Pin After Polarity Control bit 1 = Pin is at logic '1' 0 = Pin is at logic '0'

REGISTER 18-2: QEI1IOC: QEI1 I/O CONTROL REGISTER (CONTINUED)

bit 2	INDEX: Status of INDX1 Input Pin After Polarity Control bit 1 = Pin is at logic '1' 0 = Pin is at logic '0'
bit 1	QEB: Status of QEB1 Input Pin After Polarity Control and SWPAB Pin Swapping bit 1 = Pin is at logic '1' 0 = Pin is at logic '0'
bit 0	QEA: Status of QEA1 Input Pin After Polarity Control and SWPAB Pin Swapping bit 1 = Pin is at logic '1' 0 = Pin is at logic '0'

dsPIC33EDV64MC205

REGISTER 18-3: QEI1STAT: QEI1 STATUS REGISTER

U-0	U-0	HS/R/C-0	R/W-0	HS/R/C-0	R/W-0	HS/R/C-0	R/W-0
—	—	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN
bit 15							bit 8

HS/R/C-0	R/W-0	HS/R/C-0	R/W-0	HS/R/C-0	R/W-0	HS/R/C-0	R/W-0
PCIIRQ ⁽¹⁾	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN
bit 7							bit 0

Legend:	HS = Hardware Settable bit	C = Clearable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared
		x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13 **PCHEQIRQ:** Position Counter Greater Than or Equal Compare Status bit
1 = POS1CNT \geq QEI1GEC
0 = POS1CNT < QEI1GEC

bit 12 **PCHEQIEN:** Position Counter Greater Than or Equal Compare Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 11 **PCLEQIRQ:** Position Counter Less Than or Equal Compare Status bit
1 = POS1CNT \leq QEI1LEC
0 = POS1CNT > QEI1LEC

bit 10 **PCLEQIEN:** Position Counter Less Than or Equal Compare Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 9 **POSOVIRQ:** Position Counter Overflow Status bit
1 = Overflow has occurred
0 = No overflow has occurred

bit 8 **POSOVIEN:** Position Counter Overflow Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 7 **PCIIRQ:** Position Counter (Homing) Initialization Process Complete Status bit⁽¹⁾
1 = POS1CNT was reinitialized
0 = POS1CNT was not reinitialized

bit 6 **PCIIEN:** Position Counter (Homing) Initialization Process Complete interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 5 **VELOVIRQ:** Velocity Counter Overflow Status bit
1 = Overflow has occurred
0 = No overflow has not occurred

bit 4 **VELOVIEN:** Velocity Counter Overflow Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 3 **HOMIRQ:** Status Flag for Home Event Status bit
1 = Home event has occurred
0 = No Home event has occurred

Note 1: This status bit is only applicable to PIMOD[2:0] modes, '011' and '100'.

REGISTER 18-3: QEI1STAT: QEI1 STATUS REGISTER (CONTINUED)

bit 2	HOMIEN: Home Input Event Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled
bit 1	IDXIRQ: Status Flag for Index Event Status bit 1 = Index event has occurred 0 = No Index event has occurred
bit 0	IDXIEN: Index Input Event Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled

Note 1: This status bit is only applicable to PIMOD[2:0] modes, '011' and '100'.

dsPIC33EDV64MC205

REGISTER 18-4: POS1CNTH: POSITION COUNTER 1 HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
POSCNT[31:24]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
POSCNT[23:16]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0

POSCNT[31:16]: High Word Used to Form 32-Bit Position Counter Register (POS1CNT) bits

REGISTER 18-5: POS1CNTRL: POSITION COUNTER 1 LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
POSCNT[15:8]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
POSCNT[7:0]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0

POSCNT[15:0]: Low Word Used to Form 32-Bit Position Counter Register (POS1CNT) bits

REGISTER 18-6: POS1HLD: POSITION COUNTER 1 HOLD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
POSHLD[15:8]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
POSHLD[7:0]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0

POSHLD[15:0]: Hold Register for Reading and Writing POS1CNTH bits

REGISTER 18-7: VEL1CNT: VELOCITY COUNTER 1 REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
VELCNT[15:8]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
VELCNT[7:0]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0

VELCNT[15:0]: Velocity Counter bits

dsPIC33EDV64MC205

REGISTER 18-8: INDX1CNTH: INDEX COUNTER 1 HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INDXCNT[31:24]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INDXCNT[23:16]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0 **INDXCNT[31:16]:** High Word Used to Form 32-Bit Index Counter Register (INDX1CNT) bits

REGISTER 18-9: INDX1CNTRL: INDEX COUNTER 1 LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INDXCNT[15:8]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INDXCNT[7:0]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0 **INDXCNT[15:0]:** Low Word Used to Form 32-Bit Index Counter Register (INDX1CNT) bits

REGISTER 18-10: INDX1HLD: INDEX COUNTER 1 HOLD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INDXHLD[15:8]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INDXHLD[7:0]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0

INDXHLD[15:0]: Hold Register for Reading and Writing INDX1CNTH bits

dsPIC33EDV64MC205

REGISTER 18-11: QEI1ICH: QEI1 INITIALIZATION/CAPTURE HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QEIIC[31:24]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QEIIC[23:16]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0

QEIIC[31:16]: High Word Used to Form 32-Bit Initialization/Capture Register (QEI1IC) bits

REGISTER 18-12: QEI1ICL: QEI1 INITIALIZATION/CAPTURE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QEIIC[15:8]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QEIIC[7:0]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0

QEIIC[15:0]: Low Word Used to Form 32-Bit Initialization/Capture Register (QEI1IC) bits

REGISTER 18-13: QEI1LECH: QEI1 LESS THAN OR EQUAL COMPARE HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QEILEC[31:24]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QEILEC[23:16]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0

QEILEC[31:16]: High Word Used to Form 32-Bit Less Than or Equal Compare Register (QEI1LEC) bits

REGISTER 18-14: QEI1LECL: QEI1 LESS THAN OR EQUAL COMPARE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QEILEC[15:8]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QEILEC[7:0]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0

QEILEC[15:0]: Low Word Used to Form 32-Bit Less Than or Equal Compare Register (QEI1LEC) bits

dsPIC33EDV64MC205

REGISTER 18-15: QE1GECH: QEI1 GREATER THAN OR EQUAL COMPARE HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QEIGEC[31:24]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QEIGEC[23:16]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0 **QEIGEC[31:16]**: High Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEI1GEC) bits

REGISTER 18-16: QE1GECL: QEI1 GREATER THAN OR EQUAL COMPARE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QEIGEC[15:8]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QEIGEC[7:0]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0 **QEIGEC[15:0]**: Low Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEI1GEC) bits

REGISTER 18-17: INT1TMRH: INTERVAL 1 TIMER HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INTTMR[31:24]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INTTMR[23:16]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0 **INTTMR[31:16]:** High Word Used to Form 32-Bit Interval Timer Register (INT1TMR) bits

REGISTER 18-18: INT1TMRL: INTERVAL 1 TIMER LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INTTMR[15:8]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INTTMR[7:0]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0 **INTTMR[15:0]:** Low Word Used to Form 32-Bit Interval Timer Register (INT1TMR) bits

dsPIC33EDV64MC205

REGISTER 18-19: INT1HLDH: INTERVAL 1 TIMER HOLD HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INTHLD[31:24]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INTHLD[23:16]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0

INTHLD[31:16]: Hold Register for Reading and Writing INT1TMRH bits

REGISTER 18-20: INT1HLDL: INTERVAL 1 TIMER HOLD LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INTHLD[15:8]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INTHLD[7:0]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0

INTHLD[15:0]: Hold Register for Reading and Writing INT1TMRL bits

19.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note 1: This data sheet summarizes the features of the dsPIC33EDV64MC205 device. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to “Serial Peripheral Interface (SPI)” (www.microchip.com/DS70005185) in the “dsPIC33/PIC24 Family Reference Manual”.

2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 “Memory Organization”** in this data sheet for device-specific register and bit information.

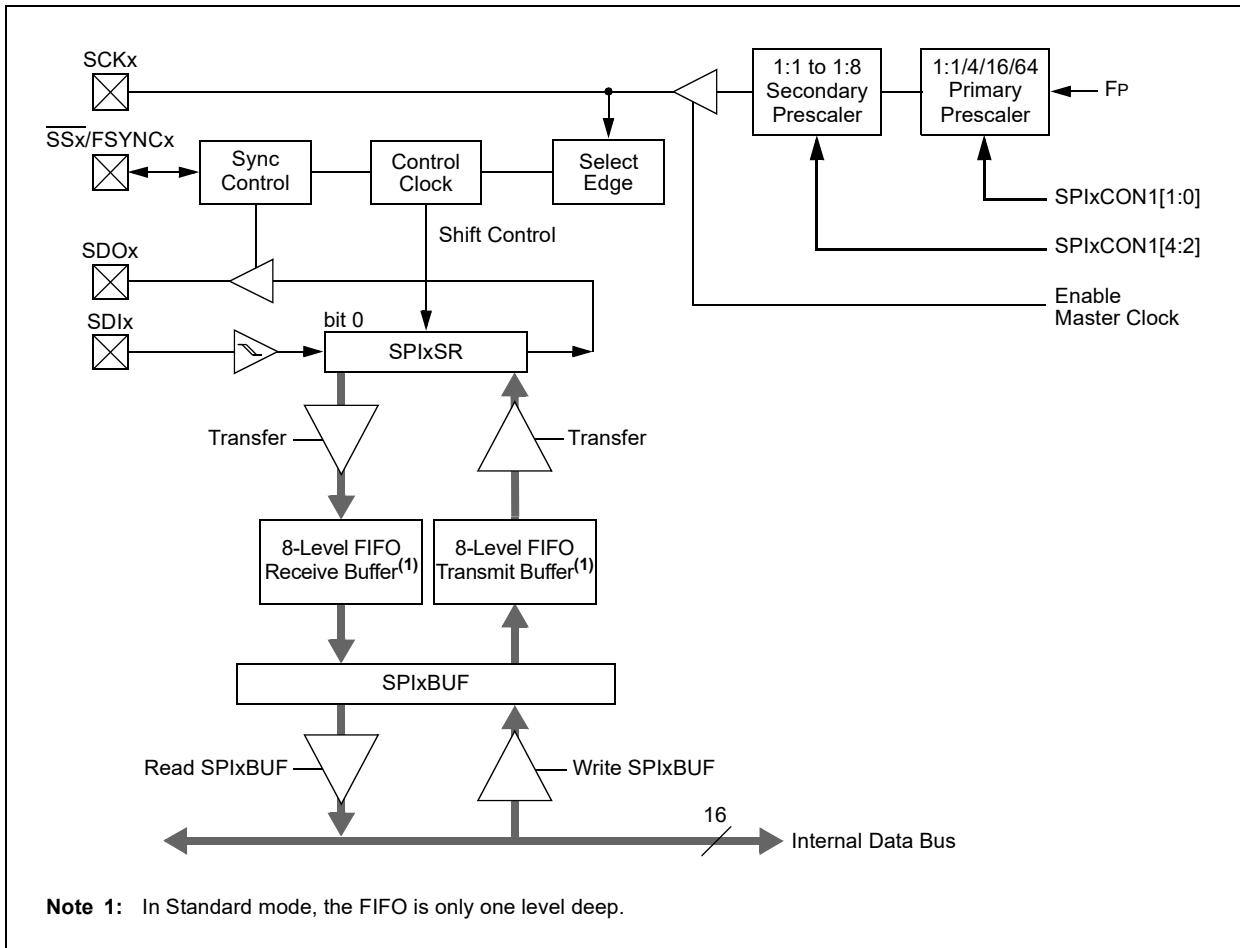
The SPI module is a synchronous serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, ADC Converters, etc. The SPI module is compatible with Motorola® SPI and SIOP interfaces.

The dsPIC33EDV64MC205 device offers two SPI modules on a single device. These modules, which are designated as SPI1 and SPI2, are functionally identical. Each SPI module includes an eight-word FIFO buffer and allows DMA bus connections. When using the SPI module with DMA, FIFO operation can be disabled.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1 and SPI2. Special Function Registers follow a similar notation. For example, SPIxCON refers to the control register for the SPI1 and SPI2 modules.

The SPI1 module uses dedicated pins which allow for a higher speed when using SPI1. The SPI2 module takes advantage of the Peripheral Pin Select (PPS) feature to allow for greater flexibility in pin configuration of the SPI2 module, but results in a lower maximum speed for SPI2. See **Section 30.0 “Electrical Characteristics”** for more information.

The SPIx serial interface consists of four pins, as follows:


- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx/FSYNCx: Active-Low Client Select or Frame Synchronization I/O Pulse

The SPIx module can be configured to operate with two, three or four pins. In 3-pin mode, SSx is not used. In 2-pin mode, neither SDOx nor SSx is used.

Figure 19-1 illustrates the block diagram of the SPIx module in Standard and Enhanced modes.

dsPIC33EDV64MC205

FIGURE 19-1: SPIx MODULE BLOCK DIAGRAM

19.1 SPI Helpful Tips

1. In Frame mode, if there is a possibility that the Host may not be initialized before the Client:
 - a) If FRMPOL (SPIxCON2[13]) = 1, use a pull-down resistor on SSx.
 - b) If FRMPOL = 0, use a pull-up resistor on SSx.

Note: This insures that the first frame transmission after initialization is not shifted or corrupted.

2. In Non-Framed Three-Wire mode (i.e., not using SSx from a Host):
 - a) If CKP (SPIxCON1[6]) = 1, always place a pull-up resistor on SSx.
 - b) If CKP = 0, always place a pull-down resistor on SSx.

Note: This will insure that during power-up and initialization, the Host/Client will not lose sync due to an errant SCKx transition that would cause the Client to accumulate data shift errors for both transmit and receive appearing as corrupted data.

3. FRMEN (SPIxCON2[15]) = 1 and SSEN (SPIxCON1[7]) = 1 are exclusive and invalid. In Frame mode, SCKx is continuous and the Frame Sync pulse is active on the SSx pin, which indicates the start of a data frame.

Note: Not all third-party devices support Frame mode timing. Refer to the SPIx specifications in [Section 30.0 “Electrical Characteristics”](#) for details.

4. In Host mode only, set the SMP bit (SPIxCON1[9]) to a ‘1’ for the fastest SPIx data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPIxCON1[5]) is set.

To avoid invalid Client read data to the Host, the user's Host software must ensure enough time for Client software to fill its write buffer before the user application initiates a Host write/read cycle. It is always advisable to preload the SPIxBUF Transmit register in advance of the next Host transaction cycle. SPIxBUF is transferred to the SPIx Shift register and is empty once the data transmission begins.

19.2 SPI Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this [link](#), contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser:
<http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en555464>

19.2.1 KEY RESOURCES

- **“Serial Peripheral Interface (SPI)”**
(DS70005185) in the “*dsPIC33/PIC24 Family Reference Manual*”
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related “*dsPIC33/PIC24 Family Reference Manual*” Sections
- Development Tools

dsPIC33EDV64MC205

19.3 SPIx Control/Status Registers

REGISTER 19-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
SPIEN	—	SPISIDL	—	—	SPIBEC2	SPIBEC1	SPIBEC0
bit 15							

R/W-0	HS/R/C-0	R/W-0	R/W-0	R/W-0	R/W-0	HS/HC/R-0	HS/HC/R-0
SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF
bit 7							

Legend:	C = Clearable bit	HS = Hardware Settable bit	HC = Hardware Clearable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	SPIEN: SPIx Enable bit 1 = Enables the module and configures SCKx, SDOx, SDIx and <u>SSx</u> as serial port pins 0 = Disables the module
bit 14	Unimplemented: Read as '0'
bit 13	SPISIDL: SPIx Stop in Idle Mode bit 1 = Discontinues the module operation when device enters Idle mode 0 = Continues the module operation in Idle mode
bit 12-11	Unimplemented: Read as '0'
bit 10-8	SPIBEC[2:0]: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode) <u>Host mode:</u> Number of SPIx transfers that are pending. <u>Client mode:</u> Number of SPIx transfers that are unread.
bit 7	SRMPT: SPIx Shift Register (SPIxSR) Empty bit (valid in Enhanced Buffer mode) 1 = SPIx Shift register is empty and is ready to send or receive data 0 = SPIx Shift register is not empty
bit 6	SPIROV: SPIx Receive Overflow Flag bit 1 = A new byte/word is completely received and discarded; the user application has not read the previous data in the SPIxBUF register 0 = No overflow has occurred
bit 5	SRXMPT: SPIx Receive FIFO Empty bit (valid in Enhanced Buffer mode) 1 = RX FIFO is empty 0 = RX FIFO is not empty
bit 4-2	SISEL[2:0]: SPIx Buffer Interrupt Mode bits (valid in Enhanced Buffer mode) 111 = Interrupt when the SPIx transmit buffer is full (SPITBF bit is set) 110 = Interrupt when last bit is shifted into SPIxSR, and as a result, the TX FIFO is empty 101 = Interrupt when the last bit is shifted out of SPIxSR and the transmit is complete 100 = Interrupt when one datum is shifted into the SPIxSR, and as a result, the TX FIFO has one open memory location 011 = Interrupt when the SPIx receive buffer is full (SPIRBF bit is set) 010 = Interrupt when the SPIx receive buffer is 3/4 or more full 001 = Interrupt when data are available in the receive buffer (SRMPT bit is set) 000 = Interrupt when the last data in the receive buffer are read, and as a result, the buffer is empty (SRXMPT bit is set)

REGISTER 19-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

bit 1	SPITBF: SPIx Transmit Buffer Full Status bit 1 = Transmit not yet started, SPIxTXB is full 0 = Transmit started, SPIxTXB is empty <u>Standard Buffer mode:</u> Automatically set in hardware when core writes to the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR. <u>Enhanced Buffer mode:</u> Automatically set in hardware when the CPU writes to the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write operation.
bit 0	SPIRBF: SPIx Receive Buffer Full Status bit 1 = Receive is complete, SPIxRXB is full 0 = Receive is incomplete, SPIxRXB is empty <u>Standard Buffer mode:</u> Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when the core reads the SPIxBUF location, reading SPIxRXB. <u>Enhanced Buffer mode:</u> Automatically set in hardware when SPIx transfers data from SPIxSR to the buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

dsPIC33EDV64MC205

REGISTER 19-2: SPIxCON1: SPIx CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽²⁾	CKP	MSTEN	SPRE2 ⁽³⁾	SPRE1 ⁽³⁾	SPRE0 ⁽³⁾	PPRE1 ⁽³⁾	PPRE0 ⁽³⁾
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	DISSCK: Disable SCKx Pin bit (SPIx Host modes only) 1 = Internal SPIx clock is disabled; pin functions as I/O 0 = Internal SPIx clock is enabled
bit 11	DISSDO: Disable SDOx Pin bit 1 = SDOx pin is not used by the module; pin functions as I/O 0 = SDOx pin is controlled by the module
bit 10	MODE16: Word/Byte Communication Select bit 1 = Communication is word-wide (16 bits) 0 = Communication is byte-wide (8 bits)
bit 9	SMP: SPIx Data Input Sample Phase bit <u>Host mode:</u> 1 = Input data are sampled at the end of data output time 0 = Input data are sampled at the middle of data output time <u>Client mode:</u> SMP must be cleared when SPIx is used in Client mode.
bit 8	CKE: SPIx Clock Edge Select bit ⁽¹⁾ 1 = Serial output data changes on transition from Active Clock state to Idle Clock state (refer to bit 6) 0 = Serial output data changes on transition from Idle Clock state to Active Clock state (refer to bit 6)
bit 7	SSEN: Client Select Enable bit (Client mode) ⁽²⁾ 1 = <u>SSx</u> pin is used for Client mode 0 = <u>SSx</u> pin is not used by the module; pin is controlled by port function
bit 6	CKP: Clock Polarity Select bit 1 = Idle state for clock is a high level; Active state is a low level 0 = Idle state for clock is a low level; Active state is a high level
bit 5	MSTEN: Host Mode Enable bit 1 = Host mode 0 = Client mode

Note 1: The CKE bit is not used in Framed SPI modes. Program this bit to '0' for Framed SPI modes (FRMEN = 1).

2: This bit must be cleared when FRMEN = 1.

3: Do not set both primary and secondary prescalers to the value of 1:1.

REGISTER 19-2: SPIxCON1: SPIx CONTROL REGISTER 1 (CONTINUED)

bit 4-2	SPRE[2:0]: Secondary Prescale bits (Host mode) ⁽³⁾
	111 = Secondary prescale 1:1
	110 = Secondary prescale 2:1
	•
	•
	000 = Secondary prescale 8:1
bit 1-0	PPRE[1:0]: Primary Prescale bits (Host mode) ⁽³⁾
	11 = Primary prescale 1:1
	10 = Primary prescale 4:1
	01 = Primary prescale 16:1
	00 = Primary prescale 64:1

Note 1: The CKE bit is not used in Framed SPI modes. Program this bit to '0' for Framed SPI modes (FRMEN = 1).

2: This bit must be cleared when FRMEN = 1.

3: Do not set both primary and secondary prescalers to the value of 1:1.

dsPIC33EDV64MC205

REGISTER 19-3: SPIxCON2: SPIx CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
FRMEN	SPIFSD	FRMPOL	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	FRMDLY	SPIBEN
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15 **FRMEN:** Framed SPIx Support bit
1 = Framed SPIx support is enabled (\overline{SSx} pin is used as Frame Sync pulse input/output)
0 = Framed SPIx support is disabled

bit 14 **SPIFSD:** Frame Sync Pulse Direction Control bit
1 = Frame Sync pulse input (Client)
0 = Frame Sync pulse output (Host)

bit 13 **FRMPOL:** Frame Sync Pulse Polarity bit
1 = Frame Sync pulse is active-high
0 = Frame Sync pulse is active-low

bit 12-2 **Unimplemented:** Read as '0'

bit 1 **FRMDLY:** Frame Sync Pulse Edge Select bit
1 = Frame Sync pulse coincides with first bit clock
0 = Frame Sync pulse precedes first bit clock

bit 0 **SPIBEN:** Enhanced Buffer Enable bit
1 = Enhanced buffer is enabled
0 = Enhanced buffer is disabled (Standard mode)

20.0 INTER-INTEGRATED CIRCUIT (I²C)

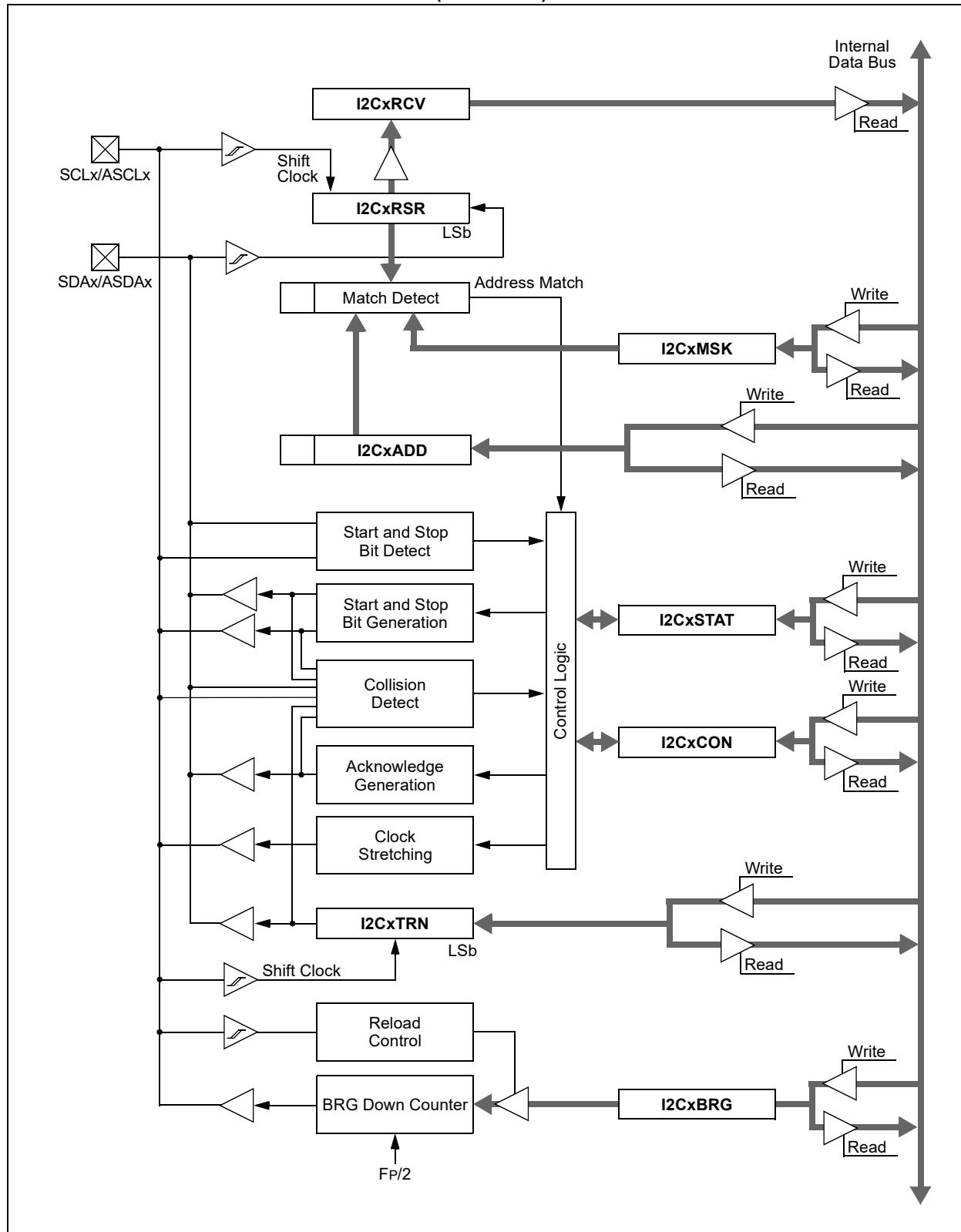
Note 1: This data sheet summarizes the features of the dsPIC33EDV64MC205 device. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to “**Inter-Integrated Circuit (I²C)**” (www.microchip.com/DS70000195) in the “**dsPIC33/PIC24 Family Reference Manual**”.

- 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 “Memory Organization”** in this data sheet for device-specific register and bit information.
- 3: There are minimum bit rates of approximately FCY/512. As a result, high processor speeds may not support 100 Kbit/second operation. See Parameters **IM10** and **IM11** in **Section 30.0 “Electrical Characteristics”**.

The dsPIC33EDV64MC205 device contains two Inter-Integrated Circuit (I²C) modules: I2C1 and I2C2.

The I²C module provides complete hardware support for both Client and Multi-Host modes of the I²C serial communication standard with a 16-bit interface.

The I²C module has a 2-pin interface:


- The SCLx pin is clock
- The SDAx pin is data

The I²C module offers the following key features:

- I²C Interface Supporting Both Host and Client modes of Operation
- I²C Client mode Supports 7 and 10-Bit Addressing
- I²C Host mode Supports 7 and 10-Bit Addressing
- I²C Port allows Bidirectional Transfers between Host and Clients
- Serial Clock Synchronization for I²C Port can be Used as a Handshake Mechanism to Suspend and Resume Serial Transfer (SCLREL control)
- I²C Supports Multi-Host Operation, Detects Bus Collision and Arbitrates Accordingly
- Intelligent Platform Management Interface (IPMI) Support
- System Management Bus (SMBus) Support

dsPIC33EDV64MC205

FIGURE 20-1: I2Cx BLOCK DIAGRAM (x = 1 OR 2)

20.1 I²C Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this [link](#), contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser:
<http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en555464>

20.1.1 KEY RESOURCES

- “**Inter-Integrated Circuit (I²C)**” (DS70000195) in the “*dsPIC33/PIC24 Family Reference Manual*”
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related “*dsPIC33/PIC24 Family Reference Manual*” Sections
- Development Tools

dsPIC33EDV64MC205

20.2 I²C Control/Status Registers

REGISTER 20-1: I2CxCON: I2Cx CONTROL REGISTER

R/W-0	U-0	R/W-0	HC/R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	—	I2CSIDL	SCLREL	IPMIEN ⁽¹⁾	A10M	DISSLW	SMEN
bit 15							

R/W-0	R/W-0	R/W-0	HC/R/W-0	HC/R/W-0	HC/R/W-0	HC/R/W-0	HC/R/W-0
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							

Legend:

HC = Hardware Clearable bit

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15	I2CEN: I2Cx Enable bit 1 = Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins 0 = Disables the I2Cx module; all I ² C pins are controlled by port functions
bit 14	Unimplemented: Read as '0'
bit 13	I2CSIDL: I2Cx Stop in Idle Mode bit 1 = Discontinues module operation when device enters an Idle mode 0 = Continues module operation in Idle mode
bit 12	SCLREL: SCLx Release Control bit (when operating as I ² C Client) 1 = Releases SCLx clock 0 = Holds SCLx clock low (clock stretch) If STREN = 1: Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware is clear at the beginning of every Client data byte transmission. Hardware is clear at the end of every Client address byte reception. Hardware is clear at the end of every Client data byte reception. If STREN = 0: Bit is R/S (i.e., software can only write '1' to release clock). Hardware is clear at the beginning of every Client data byte transmission. Hardware is clear at the end of every Client address byte reception.
bit 11	IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit ⁽¹⁾ 1 = IPMI mode is enabled; all addresses are Acknowledged 0 = IPMI mode is disabled
bit 10	A10M: 10-Bit Client Address bit 1 = I2CxADD is a 10-bit Client address 0 = I2CxADD is a 7-bit Client address
bit 9	DISSLW: Disable Slew Rate Control bit 1 = Slew rate control is disabled 0 = Slew rate control is enabled
bit 8	SMEN: SMBus Input Levels bit 1 = Enables I/O pin thresholds compliant with SMBus specification 0 = Disables SMBus input thresholds
bit 7	GCEN: General Call Enable bit (when operating as I ² C Client) 1 = Enables interrupt when a general call address is received in I2CxRSR (module is enabled for reception) 0 = General call address is disabled

Note 1: When performing Host operations, ensure that the IPMIEN bit is set to '0'.

REGISTER 20-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 6	STREN: SCL _x Clock Stretch Enable bit (when operating as I ² C Client) Used in conjunction with the SCLREL bit. 1 = Enables software or receives clock stretching 0 = Disables software or receives clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C Host, applicable during Host receive) Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C Host, applicable during Host receive) 1 = Initiates Acknowledge sequence on SDAx and SCL _x pins and transmits ACKDT data bit; hardware is clear at the end of the Host Acknowledge sequence 0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C Host) 1 = Enables Receive mode for I ² C; hardware is clear at the end of the eighth bit of the Host receive data byte 0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C Host) 1 = Initiates Stop condition on SDAx and SCL _x pins; hardware is clear at the end of the Host Stop sequence 0 = Stop condition is not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C Host) 1 = Initiates Repeated Start condition on SDAx and SCL _x pins; hardware is clear at the end of the Host Repeated Start sequence 0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C Host) 1 = Initiates Start condition on SDAx and SCL _x pins; hardware is clear at the end of the Host Start sequence 0 = Start condition is not in progress

Note 1: When performing Host operations, ensure that the IPMIEN bit is set to '0'.

dsPIC33EDV64MC205

REGISTER 20-2: I2CxSTAT: I2Cx STATUS REGISTER

HSC/R-0	HSC/R-0	U-0	U-0	U-0	HS/R/C-0	HSC/R-0	HSC/R-0
ACKSTAT	TRSTAT	—	—	—	BCL	GCSTAT	ADD10
bit 15							bit 8

HS/R/C-0	HS/R/C-0	HSC/R-0	HSC/R/C-0	HSC/R/C-0	HSC/R-0	HSC/R-0	HSC/R-0
IWCOL	I2COV	D_A	P	S	R_W	RBF	TBF
bit 7							bit 0

Legend:	C = Clearable bit	HS = Hardware Settable bit	HSC = Hardware Settable/Clearable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 **ACKSTAT:** Acknowledge Status bit (when operating as I²C Host, applicable to Host transmit operation)
1 = NACK received from Client
0 = ACK received from Client
Hardware is set or clear at the end of Client Acknowledge.

bit 14 **TRSTAT:** Transmit Status bit (when operating as I²C Host, applicable to Host transmit operation)
1 = Host transmit is in progress (eight bits + ACK)
0 = Host transmit is not in progress
Hardware is set at the beginning of Host transmission. Hardware is clear at the end of Client Acknowledge.

bit 13-11 **Unimplemented:** Read as '0'

bit 10 **BCL:** Host Bus Collision Detect bit
1 = A bus collision has been detected during a Host operation
0 = No bus collision has been detected
Hardware is set at detection of a bus collision.

bit 9 **GCSTAT:** General Call Status bit
1 = General call address was received
0 = General call address was not received
Hardware is set when address matches general call address. Hardware is clear at Stop detection.

bit 8 **ADD10:** 10-Bit Address Status bit
1 = 10-bit address was matched
0 = 10-bit address was not matched
Hardware is set at the match of the 2nd byte of the matched 10-bit address. Hardware is clear at Stop detection.

bit 7 **IWCOL:** I2Cx Write Collision Detect bit
1 = An attempt to write to the I2CxTRN register failed because the I²C module is busy
0 = No collision
Hardware is set at the occurrence of a write to I2CxTRN while busy (cleared by software).

bit 6 **I2COV:** I2Cx Receive Overflow Flag bit
1 = A byte was received while the I2CxRCV register was still holding the previous byte
0 = No overflow
Hardware is set at an attempt to transfer I2CxRSR to I2CxRCV (cleared by software).

bit 5 **D_A:** Data/Address bit (when operating as I²C Client)
1 = Indicates that the last byte received was data
0 = Indicates that the last byte received was a device address
Hardware is clear at a device address match. Hardware is set by reception of a Client byte.

bit 4 **P:** Stop bit
1 = Indicates that a Stop bit has been detected last
0 = Stop bit was not detected last
Hardware is set or clear when a Start, Repeated Start or Stop is detected.

REGISTER 20-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware is set or clear when a Start, Repeated Start or Stop is detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C Client) 1 = Read – Indicates data transfer is output from the Client 0 = Write – Indicates data transfer is input to the Client Hardware is set or clear after reception of an I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit 1 = Receive is complete, I2CxRCV is full 0 = Receive is not complete, I2CxRCV is empty Hardware is set when I2CxRCV is written with a received byte. Hardware is clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit 1 = Transmit in progress, I2CxTRN is full 0 = Transmit is complete, I2CxTRN is empty Hardware is set when software writes to I2CxTRN. Hardware is clear at completion of a data transmission.

dsPIC33EDV64MC205

REGISTER 20-3: I2CxMSK: I2Cx CLIENT MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	AMSK[9:8]	
bit 15						bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AMSK[7:0]						bit 7	bit 0
						bit 7	bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-10 **Unimplemented:** Read as '0'

bit 9-0 **AMSK[9:0]:** Address Mask Select bits

For 10-Bit Address:

1 = Enables masking for bit Ax of incoming message address; bit match is not required in this position

0 = Disables masking for bit Ax; bit match is required in this position

For 7-Bit Address (I2CxMSK[6:0] only):

1 = Enables masking for bit Ax + 1 of incoming message address; bit match is not required in this position

0 = Disables masking for bit Ax + 1; bit match is required in this position

21.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

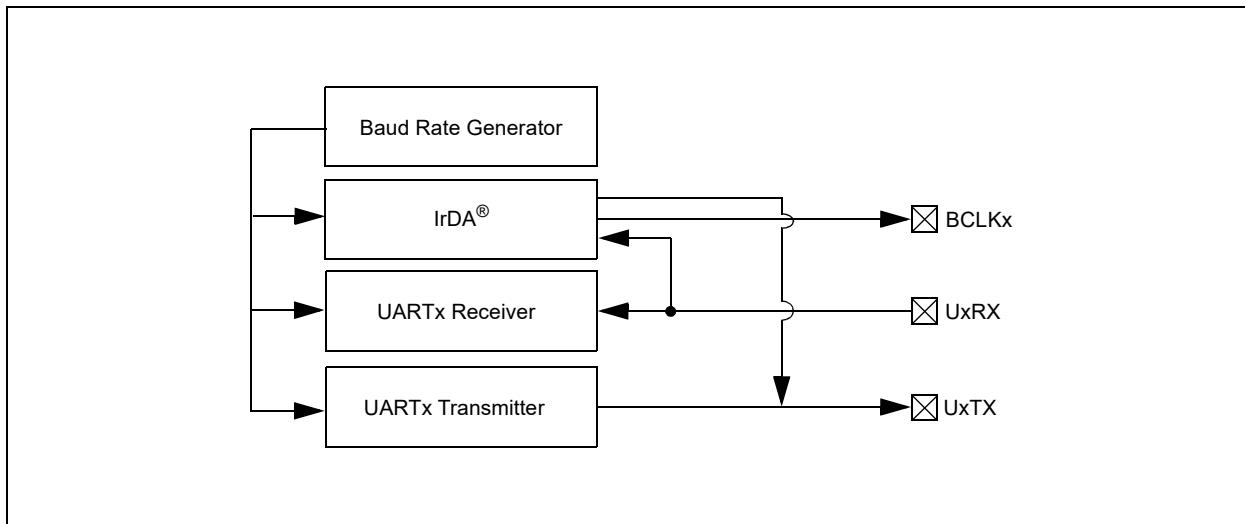
Note 1: This data sheet summarizes the features of the dsPIC33EDV64MC205 device. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to “Universal Asynchronous Receiver Transmitter (UART)” (www.microchip.com/DS70000582) in the “dsPIC33/PIC24 Family Reference Manual”.

2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 “Memory Organization”** in this data sheet for device-specific register and bit information.

The dsPIC33EDV64MC205 device contains two UART modules.

The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module includes an IrDA® encoder and decoder.

The primary features of the UARTx module are:


- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits

- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 4.375 Mbps to 67 bps at 16x mode at 70 MIPS
- Baud Rates Ranging from 17.5 Mbps to 267 bps at 4x mode at 70 MIPS
- 4-Deep First-In First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9th bit = 1)
- Transmit and Receive Interrupts
- A Separate Interrupt for all UARTx Error Conditions
- Loopback mode for Diagnostic Support
- Support for Sync and Break Characters
- Support for Automatic Baud Rate Detection
- IrDA® Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UARTx module is shown in [Figure 21-1](#). The UARTx module consists of these key hardware elements:

- Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 21-1: UARTx SIMPLIFIED BLOCK DIAGRAM

21.1 UART Helpful Tips

1. In multi-node, direct connect UART networks, UART receive inputs react to the complementary logic level defined by the URXINV bit (UxMODE[4]), which defines the Idle state, the default of which is logic high (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a Start bit detection and will cause the first byte received after the device has been initialized to be invalid. To avoid this situation, the user should use a pull-up or pull-down resistor on the RX pin, depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.
2. The first character received on a wake-up from Sleep mode, caused by activity on the UxRX pin of the UARTx module, will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock, relative to the incoming UxRX bit timing, is no longer synchronized, resulting in the first character being invalid; this is to be expected.

21.2 UART Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this [link](#), contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser:
<http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en555464>

21.2.1 KEY RESOURCES

- “Universal Asynchronous Receiver Transmitter (UART)” (DS70000582) in the “dsPIC33/PIC24 Family Reference Manual”
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related “dsPIC33/PIC24 Family Reference Manual” Sections
- Development Tools

21.3 UARTx Control/Status Registers

REGISTER 21-1: UxMODE: UARTx MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹⁾	—	USIDL	IREN ⁽²⁾	—	—	UEN1	UEN0
bit 15							bit 8

HC/R/W-0	R/W-0	HC/R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL
bit 7							bit 0

Legend:	HC = Hardware Clearable bit
R = Readable bit	W = Writable bit
-n = Value at POR	U = Unimplemented bit, read as '0' '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15	UARTEN: UARTx Enable bit ⁽¹⁾ 1 = UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN[1:0] 0 = UARTx is disabled; all UARTx pins are controlled by PORT latches; UARTx power consumption is minimal
bit 14	Unimplemented: Read as '0'
bit 13	USIDL: UARTx Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12	IREN: IrDA® Encoder and Decoder Enable bit ⁽²⁾ 1 = IrDA encoder and decoder are enabled 0 = IrDA encoder and decoder are disabled
bit 11-10	Unimplemented: Read as '0'
bit 9-8	UEN[1:0]: UARTx Pin Enable bits 11 = UxTX, UxRX and BCLKx pins are enabled and used 10 = Reserved 01 = Reserved 00 = UxTX and UxRX pins are enabled and used
bit 7	WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit 1 = UARTx continues to sample the UxRX pin, interrupt is generated on the falling edge; bit is cleared in hardware on the following rising edge 0 = No wake-up is enabled
bit 6	LPBACK: UARTx Loopback Mode Select bit 1 = Enables Loopback mode 0 = Disable Loopback mode
bit 5	ABAUD: Auto-Baud Enable bit 1 = Enables baud rate measurement on the next character – requires reception of a Sync field (55h) before other data; cleared in hardware upon completion 0 = Baud rate measurement is disabled or completed
bit 4	URXINV: UARTx Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'

Note 1: Refer to the “Universal Asynchronous Receiver Transmitter (UART)” (DS70000582) section in the “dsPIC33/PIC24 Family Reference Manual” for information on enabling the UARTx module for receive or transmit operation.

2: This feature is only available for the 16x BRG mode (BRGH = 0).

dsPIC33EDV64MC205

REGISTER 21-1: UxMODE: UARTx MODE REGISTER (CONTINUED)

bit 3	BRGH: High Baud Rate Enable bit 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL[1:0]: Parity and Data Selection bits 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit 1 = Two Stop bits 0 = One Stop bit

Note 1: Refer to the “Universal Asynchronous Receiver Transmitter (UART)” (DS70000582) section in the “dsPIC33/PIC24 Family Reference Manual” for information on enabling the UARTx module for receive or transmit operation.

2: This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 21-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	HC/R/W-0	R/W-0	R-0	R-1
UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit 0

Legend:	HC = Hardware Clearable bit	C = Clearable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 15,13 **UTXISEL[1:0]:** UARTx Transmission Interrupt Mode Selection bits
 11 = Reserved; do not use
 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR) and as a result, the transmit buffer becomes empty
 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)

bit 14 **UTXINV:** UARTx Transmit Polarity Inversion bit
If IREN = 0:
 1 = UxTX Idle state is '0'
 0 = UxTX Idle state is '1'
If IREN = 1:
 1 = IrDA encoded, UxTX Idle state is '1'
 0 = IrDA encoded, UxTX Idle state is '0'

bit 12 **Unimplemented:** Read as '0'

bit 11 **UTXBRK:** UARTx Transmit Break bit
 1 = Sends Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
 0 = Sync Break transmission is disabled or completed

bit 10 **UTXEN:** UARTx Transmit Enable bit⁽¹⁾
 1 = Transmit is enabled, UxTX pin is controlled by UARTx
 0 = Transmit is disabled, any pending transmission is aborted and buffer is reset; UxTX pin is controlled by the PORT

bit 9 **UTXBF:** UARTx Transmit Buffer Full Status bit (read-only)
 1 = Transmit buffer is full
 0 = Transmit buffer is not full, at least one more character can be written

bit 8 **TRMT:** Transmit Shift Register Empty bit (read-only)
 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
 0 = Transmit Shift Register is not empty, a transmission is in progress or queued

bit 7-6 **URXISEL[1:0]:** UARTx Receive Interrupt Mode Selection bits
 11 = Interrupt is set on UxRSR transfer, making the receive buffer full (i.e., has four data characters)
 10 = Interrupt is set on UxRSR transfer, making the receive buffer 3/4 full (i.e., has three data characters)
 0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer; receive buffer has one or more characters

Note 1: Refer to the “Universal Asynchronous Receiver Transmitter (UART)” (DS70000582) section in the “dsPIC33/PIC24 Family Reference Manual” for information on enabling the UARTx module for transmit operation.

dsPIC33EDV64MC205

REGISTER 21-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only) 1 = Receiver is Idle 0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only) 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only) 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed; clearing a previously set OERR bit (1 → 0 transition) resets the receiver buffer and the UxRSR to the Empty state
bit 0	URXDA: UARTx Receive Buffer Data Available bit (read-only) 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

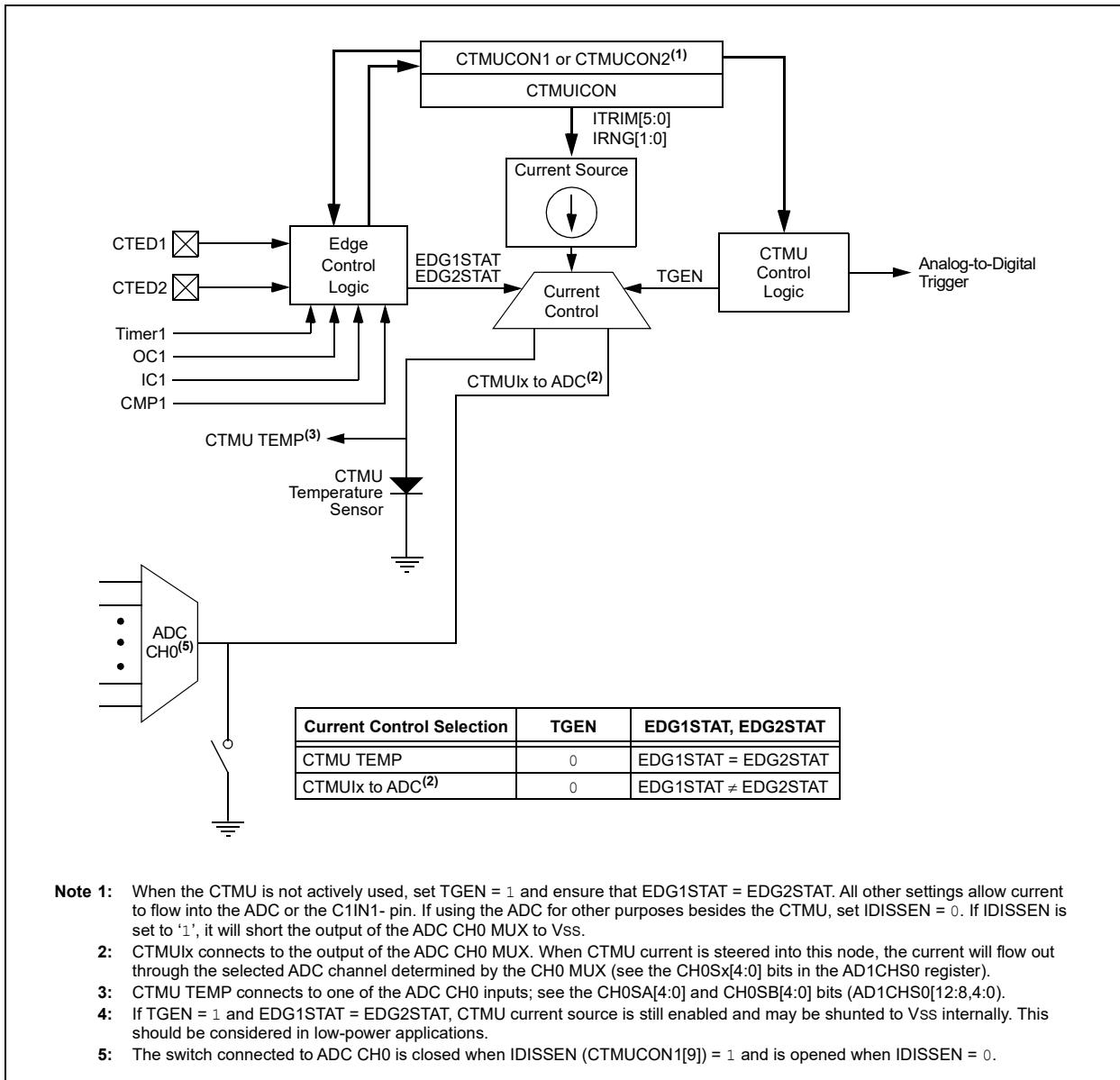
Note 1: Refer to the “Universal Asynchronous Receiver Transmitter (UART)” (DS70000582) section in the “dsPIC33/PIC24 Family Reference Manual” for information on enabling the UxRTx module for transmit operation.

22.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

Note 1: This data sheet summarizes the features of the dsPIC33EDV64MC205 device. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **“Charge Time Measurement Unit (CTMU) and CTMU Operation with Threshold Detect”** (www.microchip.com/DS30009743) in the **“dsPIC33/PIC24 Family Reference Manual”**.

2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 “Memory Organization”** in this data sheet for device-specific register and bit information.

The Charge Time Measurement Unit is a flexible analog module that provides accurate differential time measurement between pulse sources. Its key features include:


- Four Edge Input Trigger Sources
- Polarity Control for Each Edge Source
- Control of Edge Sequence
- Control of Response to Edges
- Precise Time Measurement Resolution of 1 ns
- Accurate Current Source Suitable for Capacitive Measurement
- On-Chip Temperature Measurement using a Built-in Diode

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance or measure relative changes in capacitance.

The CTMU module is ideal for interfacing with capacitive-based sensors. The CTMU is controlled through three registers: CTMUCON1, CTMUCON2 and CTMUICON. CTMUCON1 and CTMUCON2 enable the module and control edge source selection, edge source polarity selection and edge sequencing. The CTMUICON register controls the selection and trim of the current source.

dsPIC33EDV64MC205

FIGURE 22-1: CTMU BLOCK DIAGRAM

22.1 CTMU Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this [link](#), contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser:
<http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en555464>

22.1.1 KEY RESOURCES

- **“Charge Time Measurement Unit (CTMU) and CTMU Operation with Threshold Detect”** (DS30009743) in the **“dsPIC33/PIC24 Family Reference Manual”**
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related **“dsPIC33/PIC24 Family Reference Manual”** Sections
- Development Tools

22.2 CTMU Control Registers

REGISTER 22-1: CTMUCON1: CTMU CONTROL REGISTER 1

R/W-0	U-0	R/W-0	r-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMUEN	—	CTMUSIDL	—	EDGEN	EDGSEQEN	IDISSEN ⁽¹⁾	CTTRIG
bit 15							

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							

Legend:	r = Reserved bit
R = Readable bit	W = Writable bit
-n = Value at POR	'1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15	CTMUEN: CTMU Enable bit 1 = Module is enabled 0 = Module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	CTMUSIDL: CTMU Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12	Reserved: Maintain as '0'
bit 11	EDGEN: Edge Enable bit 1 = Hardware modules are used to trigger edges (TMRx, CTEDx, etc.) 0 = Software is used to trigger edges (manual set of EDGxSTAT)
bit 10	EDGSEQEN: Edge Sequence Enable bit 1 = Edge 1 event must occur before Edge 2 event can occur 0 = No edge sequence is needed
bit 9	IDISSEN: Analog Current Source Control bit ⁽¹⁾ 1 = Analog current source output is grounded 0 = Analog current source output is not grounded
bit 8	CTTRIG: CTMU ADC Trigger Control bit 1 = CTMU triggers the ADC start of conversion 0 = CTMU does not trigger the ADC start of conversion
bit 7-0	Unimplemented: Read as '0'

Note 1: The ADC module Sample-and-Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitance measurement must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.

dsPIC33EDV64MC205

REGISTER 22-2: CTMUCON2: CTMU CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT
bit 15	bit 8						

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0	—	—
bit 7	bit 0						

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15 **EDG1MOD:** Edge 1 Edge Sampling Mode Selection bit

1 = Edge 1 is edge-sensitive

0 = Edge 1 is level-sensitive

bit 14 **EDG1POL:** Edge 1 Polarity Select bit

1 = Edge 1 is programmed for a positive edge response

0 = Edge 1 is programmed for a negative edge response

bit 13-10 **EDG1SEL[3:0]:** Edge 1 Source Select bits

1xxx = Reserved

01xx = Reserved

0011 = CTED1 pin

0010 = CTED2 pin

0001 = OC1 module

0000 = Timer1 module

bit 9 **EDG2STAT:** Edge 2 Status bit

Indicates the status of Edge 2 and can be written to control the edge source.

1 = Edge 2 has occurred

0 = Edge 2 has not occurred

bit 8 **EDG1STAT:** Edge 1 Status bit

Indicates the status of Edge 1 and can be written to control the edge source.

1 = Edge 1 has occurred

0 = Edge 1 has not occurred

bit 7 **EDG2MOD:** Edge 2 Edge Sampling Mode Selection bit

1 = Edge 2 is edge-sensitive

0 = Edge 2 is level-sensitive

bit 6 **EDG2POL:** Edge 2 Polarity Select bit

1 = Edge 2 is programmed for a positive edge response

0 = Edge 2 is programmed for a negative edge response

bit 5-2 **EDG2SEL[3:0]:** Edge 2 Source Select bits

1111 = Reserved

01xx = Reserved

0100 = CMP1 module

0011 = CTED2 pin

0010 = CTED1 pin

0001 = OC1 module

0000 = IC1 module

bit 1-0 **Unimplemented:** Read as '0'

REGISTER 22-3: CTMUICON: CTMU CURRENT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-10 **ITRIM[5:0]:** Current Source Trim bits

011111 = Maximum positive change from nominal current + 62%

011110 = Maximum positive change from nominal current + 60%

•

•

•

000010 = Minimum positive change from nominal current + 4%

000001 = Minimum positive change from nominal current + 2%

000000 = Nominal current output specified by IRNG[1:0]

111111 = Minimum negative change from nominal current - 2%

111110 = Minimum negative change from nominal current - 4%

•

•

•

100010 = Maximum negative change from nominal current - 60%

100001 = Maximum negative change from nominal current - 62%

bit 9-8 **IRNG[1:0]:** Current Source Range Select bits

11 = $100 \times \text{Base Current}^{(2)}$

10 = $10 \times \text{Base Current}^{(2)}$

01 = Base Current Level⁽²⁾

00 = $1000 \times \text{Base Current}^{(1,2)}$

bit 7-0 **Unimplemented:** Read as '0'

Note 1: This current range is not available to be used with the internal temperature measurement diode.

2: Refer to the CTMU Current Source Specifications ([Table 30-55](#)) in [Section 30.0 “Electrical Characteristics”](#) for the current range selection values.

dsPIC33EDV64MC205

NOTES:

23.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

Note 1: This data sheet summarizes the features of the dsPIC33EDV64MC205 device. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to “Analog-to- Digital Converter (ADC)” (www.microchip.com/DS70621) in the “dsPIC33/PIC24 Family Reference Manual”.

- 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 “Memory Organization”** in this data sheet for device-specific register and bit information.

The dsPIC33EDV64MC205 device has one ADC module. The ADC module supports up to nine analog input channels.

On ADC1, the AD12B bit (AD1CON1[10]) allows the ADC module to be configured by the user as either a 10-bit, four Sample-and-Hold (S&H) ADC (default configuration) or a 12-bit, one S&H ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

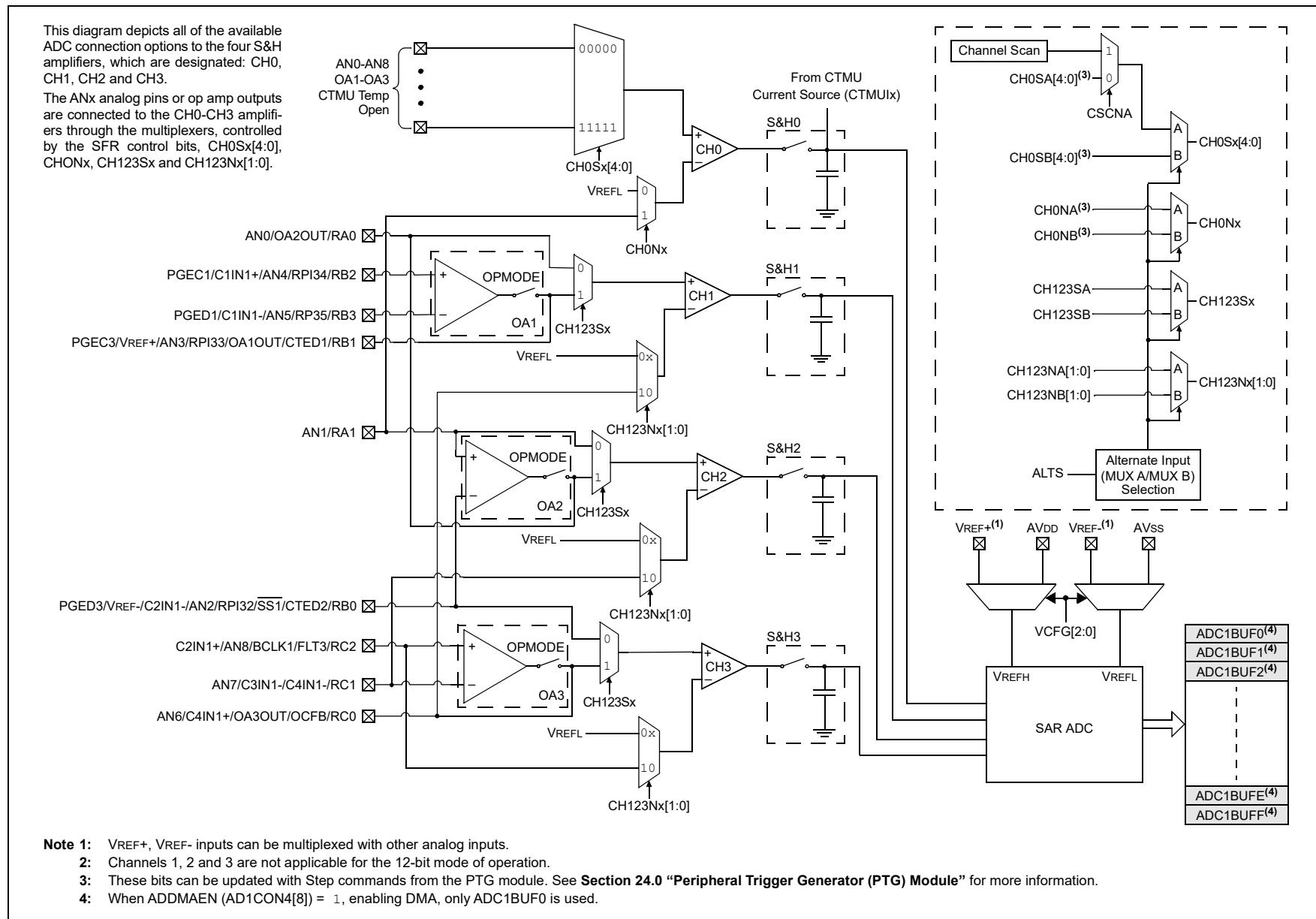
23.1 Key Features

23.1.1 10-BIT ADC CONFIGURATION

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) Conversion
- Conversion Speeds of up to 1.1 Msps
- Up to 16 Analog Input Pins
- Connections to Three Internal Op Amps
- Connections to the Charge Time Measurement Unit (CTMU) and Temperature Measurement Diode
- Channel Selection and Triggering can be Controlled by the Peripheral Trigger Generator (PTG)
- External Voltage Reference Input Pins
- Simultaneous Sampling of:
 - Up to four analog input pins
 - Three op amp outputs
 - Combinations of analog inputs and op amp outputs
- Automatic Channel Scan mode
- Selectable Conversion Trigger Source
- Selectable Buffer Fill modes
- Four Result Alignment Options (signed/unsigned, fractional/integer)
- Operation during CPU Sleep and Idle modes

23.1.2 12-BIT ADC CONFIGURATION

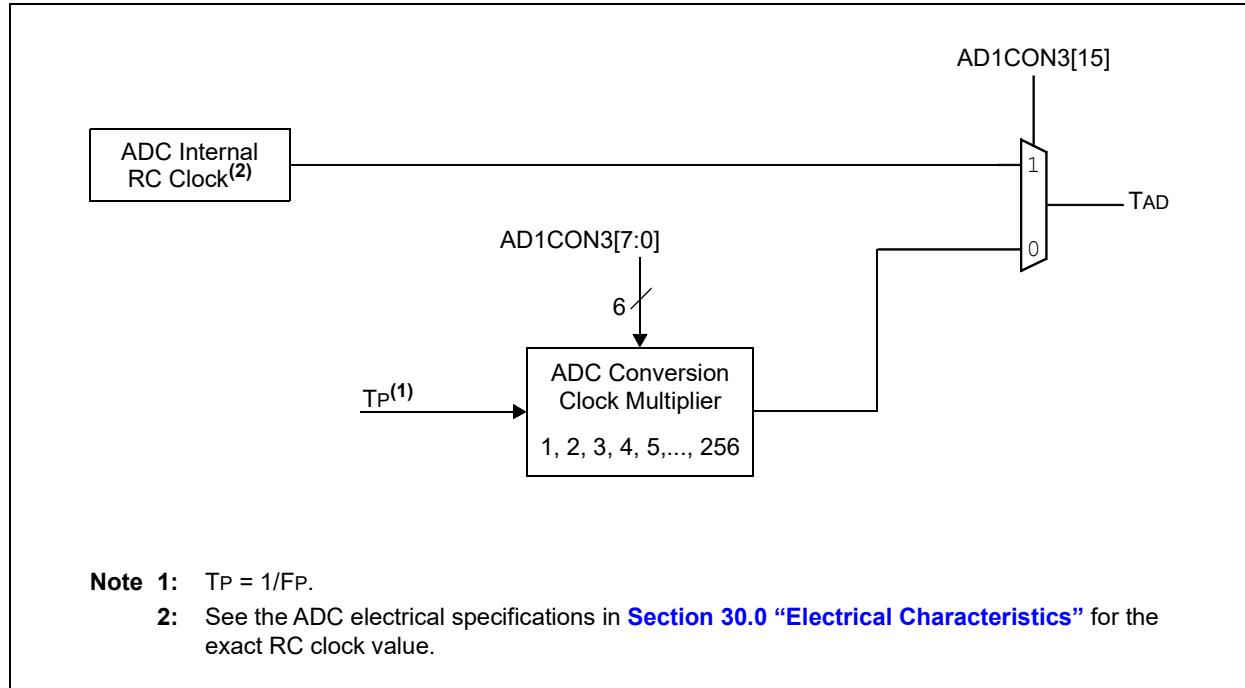

The 12-bit ADC configuration supports all the features listed above, with the exception of the following:

- In the 12-bit configuration, conversion speeds of up to 500 ksp are supported
- There is only one S&H amplifier in the 12-bit configuration; therefore, simultaneous sampling of multiple channels is not supported.

In this device, the ADC can have up to nine analog input pins, designated AN0 through AN8. These analog inputs are shared with op amp inputs and outputs, comparator inputs, and external voltage references. When op amp/comparator functionality is enabled, or an external voltage reference is used, the analog input that shares that pin is no longer available.

A block diagram of the ADC module is shown in [Figure 23-1](#). [Figure 23-2](#) provides a diagram of the ADC conversion clock period.

FIGURE 23-1: ADC MODULE BLOCK DIAGRAM WITH CONNECTION OPTIONS FOR ANx PINS AND OP AMPS


Note 1: VREF+, VREF- inputs can be multiplexed with other analog inputs.

2: Channels 1, 2 and 3 are not applicable for the 12-bit mode of operation.

3: These bits can be updated with Step commands from the PTG module. See **Section 24.0 “Peripheral Trigger Generator (PTG) Module”** for more information.

4: When ADDMAEN (AD1CON4[8]) = 1, enabling DMA, only ADC1BUF0 is used.

FIGURE 23-2: ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM

23.2 ADC Helpful Tips

1. The SMPIx control bits in the AD1CON2 register:
 - a) Determine when the ADC interrupt flag is set and an interrupt is generated, if enabled.
 - b) When the CSCNA bit in the AD1CON2 register is set to '1', this determines when the ADC analog scan channel list, defined in the AD1CSSL/AD1CSSH registers, starts over from the beginning.
 - c) When the DMA peripheral is not used (ADDMAEN = 0), this determines when the ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0.
 - d) When the DMA peripheral is used (ADDMAEN = 1), this determines when the DMA Address Pointer is incremented after a sample/conversion operation. ADC1BUF0 is the only ADC buffer used in this mode. The ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0. The DMA address is incremented after completion of every 32nd sample/conversion operation. Conversion results are stored in the ADC1BUF0 register for transfer to RAM using DMA.
2. When the DMA module is disabled (ADDMAEN = 0), the ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF, regardless of which analog inputs are being used subject to the SMPIx bits and the condition described in 1c) above. There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.
3. When the DMA module is enabled (ADDMAEN = 1), the ADC module has only one ADC result buffer (i.e., ADC1BUF0) per ADC peripheral and the ADC conversion result must be read, either by the CPU or DMA Controller, before the next ADC conversion is complete to avoid overwriting the previous value.
4. The DONE bit (AD1CON1[0]) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely, even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in Manual Sample mode, particularly where the user's code is setting the SAMP bit (AD1CON1[1]), the DONE bit should also be cleared by the user application just before setting the SAMP bit.

5. Enabling op amps, comparator inputs and external voltage references can limit the availability of analog inputs (ANx pins). For example, when Op Amp 2 is enabled, the pins for AN0, AN1 and AN2 are used by the op amp's inputs and output. This negates the usefulness of Alternate Input mode, since the MUX A selections use AN0-AN2. Carefully study the ADC block diagram to determine the configuration that will best suit your application. Configuration examples are available in the "**Analog-to-Digital Converter (ADC)**" (DS70621) section in the "*dsPIC33/PIC24 Family Reference Manual*".

23.3 ADC Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this [link](#), contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser:
<http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en555464>

23.3.1 KEY RESOURCES

- "**Analog-to-Digital Converter (ADC)**" (DS70621) in the "*dsPIC33/PIC24 Family Reference Manual*"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "*dsPIC33/PIC24 Family Reference Manual*" Sections
- Development Tools

23.4 ADC Control Registers

REGISTER 23-1: AD1CON1: ADC1 CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
ADON	—	ADSLIDL	ADDMABM	—	AD12B	FORM1	FORM0
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	HC/HS/R/W-0	HC/HS/R/C-0
SSRC2	SSRC1	SSRC0	SSRCG	SIMSAM	ASAM	SAMP	DONE ⁽²⁾
bit 7							bit 0

Legend:

R = Readable bit

-n = Value at POR

HC = Hardware Clearable bit HS = Hardware Settable bit C = Clearable bit

W = Writable bit

'1' = Bit is set

U = Unimplemented bit, read as '0'

'0' = Bit is cleared

x = Bit is unknown

bit 15	ADON: ADC1 Operating Mode bit 1 = ADC module is operating 0 = ADC is off
bit 14	Unimplemented: Read as '0'
bit 13	ADSLIDL: ADC1 Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12	ADDMABM: DMA Buffer Build Mode bit 1 = DMA buffers are written in the order of conversion; the module provides an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer 0 = DMA buffers are written in Scatter/Gather mode; the module provides a Scatter/Gather address to the DMA channel based on the index of the analog input and the size of the DMA buffer
bit 11	Unimplemented: Read as '0'
bit 10	AD12B: ADC1 10-Bit or 12-Bit Operation Mode bit 1 = 12-bit, 1-channel ADC operation 0 = 10-bit, 4-channel ADC operation
bit 9-8	FORM[1:0]: Data Output Format bits <u>For 10-Bit Operation:</u> 11 = Signed fractional (DOUT = sddd dddd dd00 0000, where s = .NOT.d[9]) 10 = Fractional (DOUT = dddd dddd dd00 0000) 01 = Signed integer (DOUT = ssss ssss dddd dddd, where s = .NOT.d[9]) 00 = Integer (DOUT = 0000 00dd dddd dddd) <u>For 12-Bit Operation:</u> 11 = Signed fractional (DOUT = sddd dddd dddd 0000, where s = .NOT.d[11]) 10 = Fractional (DOUT = dddd dddd dddd 0000) 01 = Signed integer (DOUT = ssss ssss dddd dddd, where s = .NOT.d[11]) 00 = Integer (DOUT = 0000 dddd dddd dddd)

Note 1: See **Section 24.0 “Peripheral Trigger Generator (PTG) Module”** for information on this selection.

2: Do not clear the DONE bit in software if auto-sample is enabled (ASAM = 1).

dsPIC33EDV64MC205

REGISTER 23-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)

bit 7-5	SSRC[2:0]: Sample Trigger Source Select bits <u>If SSRCG = 1:</u> 111 = Reserved 110 = PTGO15 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 101 = PTGO14 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 100 = PTGO13 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 011 = PTGO12 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 010 = PWM Generator 3 primary trigger compare ends sampling and starts conversion 001 = PWM Generator 2 primary trigger compare ends sampling and starts conversion 000 = PWM Generator 1 primary trigger compare ends sampling and starts conversion <u>If SSRCG = 0:</u> 111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = CTMU ends sampling and starts conversion 101 = Reserved 100 = Timer5 compare ends sampling and starts conversion 011 = PWM primary Special Event Trigger ends sampling and starts conversion 010 = Timer3 compare ends sampling and starts conversion 001 = Active transition on the INT0 pin ends sampling and starts conversion 000 = Clearing the Sample bit (SAMP) ends sampling and starts conversion (Manual mode)
bit 4	SSRCG: Sample Trigger Source Group bit See SSRC[2:0] for details.
bit 3	SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS[1:0] = 01 or 1x) <u>In 12-Bit Mode (AD12B = 1), SIMSAM is Unimplemented and is Read as '0':</u> 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS[1:0] = 1x); or samples CH0 and CH1 simultaneously (when CHPS[1:0] = 01) 0 = Samples multiple channels individually in sequence
bit 2	ASAM: ADC1 Sample Auto-Start bit 1 = Sampling begins immediately after the last conversion; SAMP bit is auto-set 0 = Sampling begins when the SAMP bit is set
bit 1	SAMP: ADC1 Sample Enable bit 1 = ADC Sample-and-Hold amplifiers are sampling 0 = ADC Sample-and-Hold amplifiers are holding If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC[2:0] = 000, software can write '0' to end sampling and start conversion. If SSRC[2:0] ≠ 000, automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADC1 Conversion Status bit ⁽²⁾ 1 = ADC conversion cycle has completed 0 = ADC conversion has not started or is in progress Automatically set by hardware when the ADC conversion is complete. Software can write '0' to clear the DONE status bit (software is not allowed to write '1'). Clearing this bit does NOT affect any operation in progress. Automatically cleared by hardware at the start of a new conversion.

Note 1: See Section 24.0 “Peripheral Trigger Generator (PTG) Module” for information on this selection.

2: Do not clear the DONE bit in software if auto-sample is enabled (ASAM = 1).

REGISTER 23-2: AD1CON2: ADC1 CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
VCFG2	VCFG1	VCFG0	—	—	CSCNA	CHPS1	CHPS0
bit 15	bit 8						

R-0	R/W-0						
BUFS	SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS
bit 7	bit 0						

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-13 **VCFG[2:0]:** Converter Voltage Reference Configuration bits

Value	VREFH	VREFL
000	AVDD	AVSS
001	External VREF+	AVSS
010	AVDD	External VREF-
011	External VREF+	External VREF-
1xx	AVDD	AVSS

bit 12-11 **Unimplemented:** Read as '0'

bit 10 **CSCNA:** Input Scan Select bit

1 = Scans inputs for CH0+ during Sample MUX A

0 = Does not scan inputs

bit 9-8 **CHPS[1:0]:** Channel Select bits

In 12-Bit Mode (AD12B = 1), the CHPS[1:0] bits are Unimplemented and are Read as '0':

1x = Converts CH0, CH1, CH2 and CH3

01 = Converts CH0 and CH1

00 = Converts CH0

bit 7 **BUFS:** Buffer Fill Status bit (only valid when BUFM = 1)

1 = ADC is currently filling the second half of the buffer; the user application should access data in the first half of the buffer

0 = ADC is currently filling the first half of the buffer; the user application should access data in the second half of the buffer

bit 6-2 **SMPI[4:0]:** Increment Rate bits

When ADDMAEN = 0:

x1111 = Generates interrupt after completion of every 16th sample/conversion operation

x1110 = Generates interrupt after completion of every 15th sample/conversion operation

•

•

•

x0001 = Generates interrupt after completion of every 2nd sample/conversion operation

x0000 = Generates interrupt after completion of every sample/conversion operation

When ADDMAEN = 1:

11111 = Increments the DMA address after completion of every 32nd sample/conversion operation

11110 = Increments the DMA address after completion of every 31st sample/conversion operation

•

•

•

00001 = Increments the DMA address after completion of every 2nd sample/conversion operation

00000 = Increments the DMA address after completion of every sample/conversion operation

dsPIC33EDV64MC205

REGISTER 23-2: AD1CON2: ADC1 CONTROL REGISTER 2 (CONTINUED)

bit 1

BUFM: Buffer Fill Mode Select bit

- 1 = Starts the buffer filling the first half of the buffer on the first interrupt and the second half of the buffer on the next interrupt
- 0 = Always starts filling the buffer from the start address.

bit 0

ALTS: Alternate Input Sample Mode Select bit

- 1 = Uses channel input selects for Sample MUX A on first sample and Sample MUX B on the next sample
- 0 = Always uses channel input selects for Sample MUX A

REGISTER 23-3: AD1CON3: ADC1 CONTROL REGISTER 3

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	—	—	SAMC4 ⁽¹⁾	SAMC3 ⁽¹⁾	SAMC2 ⁽¹⁾	SAMC1 ⁽¹⁾	SAMC0 ⁽¹⁾
bit 15	bit 8						

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
				ADCS[7:0] ⁽²⁾						
bit 7	bit 0									

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15 **ADRC:** ADC1 Conversion Clock Source bit

1 = ADC internal RC clock

0 = Clock derived from system clock

bit 14-13 **Unimplemented:** Read as '0'

bit 12-8 **SAMC[4:0]:** Auto-Sample Time bits⁽¹⁾

11111 = 31 TAD

•

•

•

00001 = 1 TAD

00000 = 0 TAD

bit 7-0 **ADCS[7:0]:** ADC1 Conversion Clock Select bits⁽²⁾

11111111 = TP • (ADCS[7:0] + 1) = TP • 256 = TAD

•

•

•

00000010 = TP • (ADCS[7:0] + 1) = TP • 3 = TAD

00000001 = TP • (ADCS[7:0] + 1) = TP • 2 = TAD

00000000 = TP • (ADCS[7:0] + 1) = TP • 1 = TAD

Note 1: These bits are only used if SSRC[2:0] (AD1CON1[7:5]) = 111 and SSRCG (AD1CON1[4]) = 0.

2: These bits are not used if ADRC (AD1CON3[15]) = 1.

dsPIC33EDV64MC205

REGISTER 23-4: AD1CON4: ADC1 CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	ADDMAEN
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	—	—	DMABL[2:0]
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-9 **Unimplemented:** Read as '0'

bit 8 **ADDMAEN:** ADC1 DMA Enable bit

1 = Conversion results are stored in the ADC1BUF0 register for transfer to RAM using DMA
0 = Conversion results are stored in ADC1BUF0 through ADC1BUFF registers; DMA will not be used

bit 7-3 **Unimplemented:** Read as '0'

bit 2-0 **DMABL[2:0]:** Selects Number of DMA Buffer Locations per Analog Input bits

111 = Allocates 128 words of buffer to each analog input
110 = Allocates 64 words of buffer to each analog input
101 = Allocates 32 words of buffer to each analog input
100 = Allocates 16 words of buffer to each analog input
011 = Allocates 8 words of buffer to each analog input
010 = Allocates 4 words of buffer to each analog input
001 = Allocates 2 words of buffer to each analog input
000 = Allocates 1 word of buffer to each analog input

REGISTER 23-5: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	CH123NB1	CH123NB0	CH123SB
bit 15						bit 8	

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	CH123NA1	CH123NA0	CH123SA
bit 7						bit 0	

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-11

Unimplemented: Read as '0'

bit 10-9

CH123NB[1:0]: Channel 1, 2, 3 Negative Input Select for Sample MUX B bits

In 12-Bit Mode (AD12B = 1), CH123NB[1:0] are Unimplemented and are Read as '0':

Value	ADC Channel		
	CH1	CH2	CH3
11	Reserved	Reserved	Reserved
10 ^(1,2)	OA3/AN6	AN7	AN8
0x	VREFL	VREFL	VREFL

bit 8

CH123SB: Channel 1, 2, 3 Positive Input Select for Sample MUX B bit

In 12-Bit Mode (AD12B = 1), CH123SB is Unimplemented and is Read as '0':

Value	ADC Channel		
	CH1	CH2	CH3
1 ⁽²⁾	OA1/AN3	OA2/AN0	OA3/AN6
0 ^(1,2)	OA2/AN0	AN1	AN2

bit 7-3

Unimplemented: Read as '0'

bit 2-1

CH123NA[1:0]: Channel 1, 2, 3 Negative Input Select for Sample MUX A bits

In 12-Bit Mode (AD12B = 1), CH123NA[1:0] are Unimplemented and are Read as '0':

Value	ADC Channel		
	CH1	CH2	CH3
11	Reserved	Reserved	Reserved
10 ^(1,2)	OA3/AN6	AN7	AN8
0x	VREFL	VREFL	VREFL

Note 1: AN0 through AN8 are repurposed when comparator and op amp functionality are enabled. See [Figure 23-1](#) to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.

2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON[10]) = 1); otherwise, the ANx input is used.

dsPIC33EDV64MC205

REGISTER 23-5: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER (CONTINUED)

bit 0

CH123SA: Channel 1, 2, 3 Positive Input Select for Sample MUX A bit

In 12-Bit Mode (AD12B = 1), CH123SA is Unimplemented and is Read as '0':

Value	ADC Channel		
	CH1	CH2	CH3
1 ⁽²⁾	OA1/AN3	OA2/AN0	OA3/AN6
0 ^(1,2)	OA2/AN0	AN1	AN2

Note 1: AN0 through AN8 are repurposed when comparator and op amp functionality are enabled. See [Figure 23-1](#) to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.

2: The OA_x input is used if the corresponding op amp is selected (OPMODE (CM_xCON[10]) = 1); otherwise, the AN_x input is used.

REGISTER 23-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB	—	—	CH0SB4 ⁽¹⁾	CH0SB3 ⁽¹⁾	CH0SB2 ⁽¹⁾	CH0SB1 ⁽¹⁾	CH0SB0 ⁽¹⁾
bit 15				bit 8			

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA	—	—	CH0SA4 ⁽¹⁾	CH0SA3 ⁽¹⁾	CH0SA2 ⁽¹⁾	CH0SA1 ⁽¹⁾	CH0SA0 ⁽¹⁾
bit 7				bit 0			

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15 **CH0NB:** Channel 0 Negative Input Select for Sample MUX B bit1 = Channel 0 negative input is AN1⁽¹⁾

0 = Channel 0 negative input is VREFL

bit 14-13 **Unimplemented:** Read as '0'bit 12-8 **CH0SB[4:0]:** Channel 0 Positive Input Select for Sample MUX B bits⁽¹⁾

11111 = Open; use this selection with CTMU capacitive and time measurement

11110 = Channel 0 positive input is connected to the CTMU temperature measurement diode (CTMU TEMP)

11101 = Reserved

11100 = Reserved

11011 = Reserved

11010 = Channel 0 positive input is the output of AN6/OA3OUT^(2,3)11001 = Channel 0 positive input is the output of OA2/AN0⁽²⁾11000 = Channel 0 positive input is the output of OA1/AN3⁽²⁾

10111 = Reserved

•

•

•

01001 = Reserved

01000 = Channel 0 positive input is AN8^(1,3)00111 = Channel 0 positive input is AN7^(1,3)00110 = Channel 0 positive input is AN6^(1,3)00101 = Channel 0 positive input is AN5^(1,3)00100 = Channel 0 positive input is AN4^(1,3)00011 = Channel 0 positive input is AN3^(1,3)00010 = Channel 0 positive input is AN2^(1,3)00001 = Channel 0 positive input is AN1^(1,3)00000 = Channel 0 positive input is AN0^(1,3)bit 7 **CH0NA:** Channel 0 Negative Input Select for Sample MUX A bit1 = Channel 0 negative input is AN1⁽¹⁾

0 = Channel 0 negative input is VREFL

bit 6-5 **Unimplemented:** Read as '0'

Note 1: AN0 through AN8 are repurposed when comparator and op amp functionality are enabled. See [Figure 23-1](#) to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.

2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON[10]) = 1); otherwise, the ANx input is used.

3: See the ["Pin Diagram"](#) section for the available analog channels for each device.

dsPIC33EDV64MC205

REGISTER 23-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER (CONTINUED)

bit 4-0	CH0SA[4:0]: Channel 0 Positive Input Select for Sample MUX A bits ⁽¹⁾
	11111 = Open; use this selection with CTMU capacitive and time measurement
	11110 = Channel 0 positive input is connected to the CTMU temperature measurement diode (CTMU TEMP)
	11101 = Reserved
	11100 = Reserved
	11011 = Reserved
	11010 = Channel 0 positive input is the output of OA3/AN6 ^(2,3)
	11001 = Channel 0 positive input is the output of OA2/AN0 ⁽²⁾
	11000 = Channel 0 positive input is the output of OA1/AN3 ⁽²⁾
	10110 = Reserved
	•
	•
	•
	01001 = Reserved
	01000 = Channel 0 positive input is AN8 ^(1,3)
	00111 = Channel 0 positive input is AN7 ^(1,3)
	00110 = Channel 0 positive input is AN6 ^(1,3)
	00101 = Channel 0 positive input is AN5 ^(1,3)
	00100 = Channel 0 positive input is AN4 ^(1,3)
	00011 = Channel 0 positive input is AN3 ^(1,3)
	00010 = Channel 0 positive input is AN2 ^(1,3)
	00001 = Channel 0 positive input is AN1 ^(1,3)
	00000 = Channel 0 positive input is AN0 ^(1,3)

Note 1: AN0 through AN8 are repurposed when comparator and op amp functionality are enabled. See [Figure 23-1](#) to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.

2: The OA_x input is used if the corresponding op amp is selected (OPMODE (CM_xCON[10]) = 1); otherwise, the AN_x input is used.

3: See the [“Pin Diagram”](#) section for the available analog channels for each device.

REGISTER 23-7: AD1CSSH: ADC1 INPUT SCAN SELECT REGISTER HIGH⁽¹⁾

R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
CSS31	CSS30	—	—	—	CSS26 ⁽²⁾	CSS25 ⁽²⁾	CSS24 ⁽²⁾
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15	CSS31: ADC1 Input Scan Selection bit 1 = Selects CTMU capacitive and time measurement for input scan (open) 0 = Skips CTMU capacitive and time measurement for input scan (open)
bit 14	CSS30: ADC1 Input Scan Selection bit 1 = Selects CTMU on-chip temperature measurement for input scan (CTMU TEMP) 0 = Skips CTMU on-chip temperature measurement for input scan (CTMU TEMP)
bit 13-11	Unimplemented: Read as '0'
bit 10	CSS26: ADC1 Input Scan Selection bit ⁽²⁾ 1 = Selects OA3/AN6 for input scan 0 = Skips OA3/AN6 for input scan
bit 9	CSS25: ADC1 Input Scan Selection bit ⁽²⁾ 1 = Selects OA2/AN0 for input scan 0 = Skips OA2/AN0 for input scan
bit 8	CSS24: ADC1 Input Scan Selection bit ⁽²⁾ 1 = Selects OA1/AN3 for input scan 0 = Skips OA1/AN3 for input scan
bit 7-0	Unimplemented: Read as '0'

Note 1: All AD1CSSH bits can be selected by user software. However, inputs selected for scan without a corresponding input on the device convert to VREFL.

2: The OA_x input is used if the corresponding op amp is selected (OPMODE (CMxCON[10]) = 1); otherwise, the AN_x input is used.

dsPIC33EDV64MC205

REGISTER 23-8: AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER LOW^(1,2,3)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS[15:8]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS[7:0]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0 **CSS[15:0]**: ADC1 Input Scan Selection bits

1 = Selects ANx for input scan

0 = Skips ANx for input scan

Note 1: All AD1CSSL bits can be selected by the user. However, inputs selected for scan without a corresponding input on the device convert to VREFL.

2: The outputs for Op Amps 1, 2 and 3 can be scanned by selecting analog inputs, AN3, AN0 and AN6, respectively.

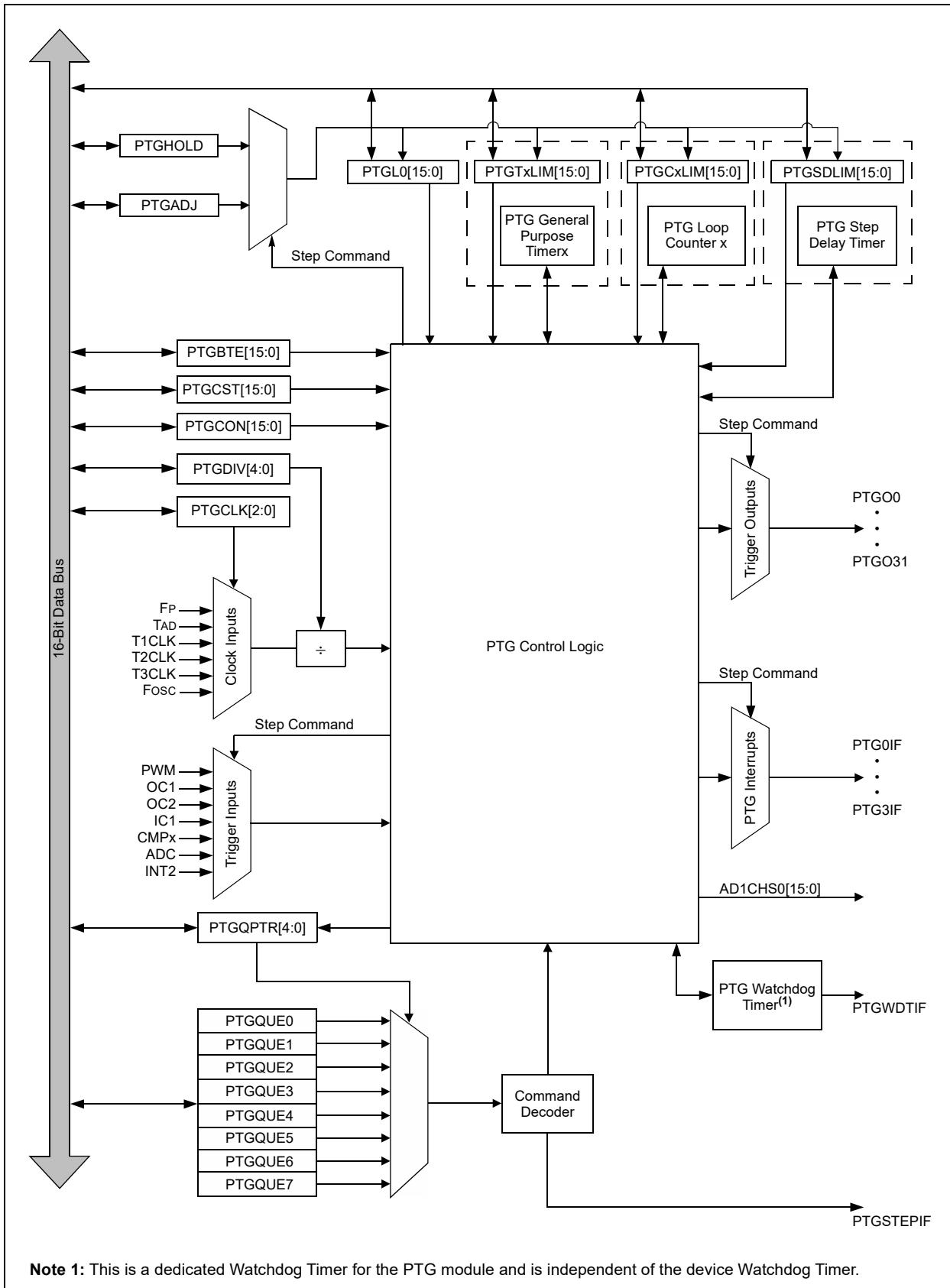
3: For analog inputs that have op amp output function (OAxOUT), the op amp output can be accessed for input scan if the corresponding op amp is selected (OPMODE (CMxCON[10]) = 1); otherwise, the ANx input is used.

24.0 PERIPHERAL TRIGGER GENERATOR (PTG) MODULE

Note 1: This data sheet summarizes the features of the dsPIC33EDV64MC205 device. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to “**Peripheral Trigger Generator (PTG)**” (www.microchip.com/DS70000669) in the “*dsPIC33/PIC24 Family Reference Manual*”.

2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 “Memory Organization”** in this data sheet for device-specific register and bit information.

24.1 Module Introduction


The Peripheral Trigger Generator (PTG) provides a means to schedule complex, high-speed peripheral operations that would be difficult to achieve using software. The PTG module uses 8-bit commands, called “Steps”, that the user writes to the PTG Queue registers (PTGQUE0-PTGQUE7). The Steps perform operations, such as wait for input signal, generate output trigger and wait for timer.

The PTG module has the following major features:

- Multiple Clock Sources
- Two 16-Bit General Purpose Timers
- Two 16-Bit General Limit Counters
- Configurable for Rising or Falling Edge Triggering
- Generates Processor Interrupts to include:
 - Four configurable processor interrupts
 - Interrupt on a Step event in Single-Step mode
 - Interrupt on a PTG Watchdog Timer time-out
- Able to Receive Trigger Signals from these Peripherals:
 - ADC
 - PWM
 - Output Compare
 - Input Capture
 - Op Amp/Comparator
 - INT2
- Able to Trigger or Synchronize to these Peripherals:
 - Watchdog Timer
 - Output Compare
 - Input Capture
 - ADC
 - PWM
 - Op Amp/Comparator

dsPIC33EDV64MC205

FIGURE 24-1: PTG BLOCK DIAGRAM

24.2 PTG Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this [link](#), contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser:
<http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en555464>

24.2.1 KEY RESOURCES

- “**Peripheral Trigger Generator (PTG)**” (DS70000669) in the “*dsPIC33/PIC24 Family Reference Manual*”
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related “*dsPIC33/PIC24 Family Reference Manual*” Sections
- Development Tools

dsPIC33EDV64MC205

24.3 PTG Control/Status Registers

REGISTER 24-1: PTGCST: PTG CONTROL/STATUS REGISTER

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
PTGEN	—	PTGSDL	PTGTOGL	—	PTGSWT ⁽²⁾	PTGSSEN ⁽³⁾	PTGIVIS
bit 15							

R/W-0	HS-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
PTGSTR	PTGWDTO	—	—	—	—	PTGITM1 ⁽¹⁾	PTGITM0 ⁽¹⁾
bit 7							

Legend:

R = Readable bit

-n = Value at POR

HS = Hardware Settable bit

W = Writable bit

'1' = Bit is set

U = Unimplemented bit, read as '0'

'0' = Bit is cleared

x = Bit is unknown

bit 15	PTGEN: PTG Module Enable bit 1 = PTG module is enabled 0 = PTG module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	PTGSDL: PTG Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12	PTGTOGL: PTG TRIG Output Toggle Mode bit 1 = Toggles state of the PTGOx for each execution of the PTGTRIG command 0 = Each execution of the PTGTRIG command will generate a single PTGOx pulse determined by the value in the PTGWDTx bits
bit 11	Unimplemented: Read as '0'
bit 10	PTGSWT: PTG Software Trigger bit ⁽²⁾ 1 = Triggers the PTG module 0 = No action (clearing this bit will have no effect)
bit 9	PTGSSEN: PTG Enable Single-Step bit ⁽³⁾ 1 = Enables Single-Step mode 0 = Disables Single-Step mode
bit 8	PTGIVIS: PTG Counter/Timer Visibility Control bit 1 = Reads of the PTGSDLIM, PTGCxLIM or PTGTxLIM registers return the current values of their corresponding PTG Counter/Timer registers (PTGSD, PTGCx, PTGTx) 0 = Reads of the PTGSDLIM, PTGCxLIM or PTGTxLIM registers return the value previously written to those limit registers
bit 7	PTGSTR: PTG Start Sequencer bit 1 = Starts to sequentially execute commands (Continuous mode) 0 = Stops executing commands
bit 6	PTGWDTO: PTG Watchdog Timer Time-out Status bit 1 = PTG Watchdog Timer has timed out 0 = PTG Watchdog Timer has not timed out.
bit 5-2	Unimplemented: Read as '0'

Note 1: These bits apply to the PTGWHI and PTGWLO commands only.**2:** This bit is only used with the PTGCTRL Step command software trigger option.**3:** Use of the PTG Single-Step mode is reserved for debugging tools only.

REGISTER 24-1: PTGCST: PTG CONTROL/STATUS REGISTER (CONTINUED)

bit 1-0	PTGITM[1:0]: PTG Input Trigger Command Operating Mode bits ⁽¹⁾
	11 = Single level detect with Step delay not executed on exit of command (regardless of the PTGCTRL command)
	10 = Single level detect with Step delay executed on exit of command
	01 = Continuous edge detect with Step delay not executed on exit of command (regardless of the PTGCTRL command)
	00 = Continuous edge detect with Step delay executed on exit of command

Note 1: These bits apply to the PTGWHI and PTGWLO commands only.

2: This bit is only used with the PTGCTRL Step command software trigger option.

3: Use of the PTG Single-Step mode is reserved for debugging tools only.

dsPIC33EDV64MC205

REGISTER 24-2: PTGCON: PTG CONTROL REGISTER

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PTGCLK2 | PTGCLK1 | PTGCLK0 | PTGDIV4 | PTGDIV3 | PTGDIV2 | PTGDIV1 | PTGDIV0 |
| bit 15 | bit 8 | | | | | | |

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
PTGPWD3	PTGPWD2	PTGPWD1	PTGPWD0	—	PTGWD2	PTGWD1	PTGWD0
bit 7	bit 0						

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-13 **PTGCLK[2:0]**: Select PTG Module Clock Source bits

111 = Reserved

110 = Reserved

101 = PTG module clock source will be T3CLK

100 = PTG module clock source will be T2CLK

011 = PTG module clock source will be T1CLK

010 = PTG module clock source will be TAD

001 = PTG module clock source will be FOSC

000 = PTG module clock source will be FP

bit 12-8 **PTGDIV[4:0]**: PTG Module Clock Prescaler (divider) bits

11111 = Divide-by-32

11110 = Divide-by-31

•

•

00001 = Divide-by-2

00000 = Divide-by-1

bit 7-4 **PTGPWD[3:0]**: PTG Trigger Output Pulse-Width bits

1111 = All trigger outputs are 16 PTG clock cycles wide

1110 = All trigger outputs are 15 PTG clock cycles wide

•

•

•

0001 = All trigger outputs are 2 PTG clock cycles wide

0000 = All trigger outputs are 1 PTG clock cycle wide

bit 3 **Unimplemented**: Read as '0'

bit 2-0 **PTGWD[2:0]**: Select PTG Watchdog Timer Time-out Count Value bits

111 = Watchdog Timer will time-out after 512 PTG clocks

110 = Watchdog Timer will time-out after 256 PTG clocks

101 = Watchdog Timer will time-out after 128 PTG clocks

100 = Watchdog Timer will time-out after 64 PTG clocks

011 = Watchdog Timer will time-out after 32 PTG clocks

010 = Watchdog Timer will time-out after 16 PTG clocks

001 = Watchdog Timer will time-out after 8 PTG clocks

000 = Watchdog Timer is disabled

REGISTER 24-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2)

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ADCTS4 | ADCTS3 | ADCTS2 | ADCTS1 | IC4TSS | IC3TSS | IC2TSS | IC1TSS |
| bit 15 | | | | | | | bit 8 |

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OC4CS	OC3CS	OC2CS	OC1CS	OC4TSS	OC3TSS	OC2TSS	OC1TSS
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15	ADCTS4: Sample Trigger PTGO15 for ADC bit 1 = Generates Trigger when the broadcast command is executed 0 = Does not generate Trigger when the broadcast command is executed
bit 14	ADCTS3: Sample Trigger PTGO14 for ADC bit 1 = Generates Trigger when the broadcast command is executed 0 = Does not generate Trigger when the broadcast command is executed
bit 13	ADCTS2: Sample Trigger PTGO13 for ADC bit 1 = Generates Trigger when the broadcast command is executed 0 = Does not generate Trigger when the broadcast command is executed
bit 12	ADCTS1: Sample Trigger PTGO12 for ADC bit 1 = Generates Trigger when the broadcast command is executed 0 = Does not generate Trigger when the broadcast command is executed
bit 11	IC4TSS: Trigger/Synchronization Source for IC4 bit 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed
bit 10	IC3TSS: Trigger/Synchronization Source for IC3 bit 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed
bit 9	IC2TSS: Trigger/Synchronization Source for IC2 bit 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed
bit 8	IC1TSS: Trigger/Synchronization Source for IC1 bit 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed
bit 7	OC4CS: Clock Source for OC4 bit 1 = Generates clock pulse when the broadcast command is executed 0 = Does not generate clock pulse when the broadcast command is executed
bit 6	OC3CS: Clock Source for OC3 bit 1 = Generates clock pulse when the broadcast command is executed 0 = Does not generate clock pulse when the broadcast command is executed
bit 5	OC2CS: Clock Source for OC2 bit 1 = Generates clock pulse when the broadcast command is executed 0 = Does not generate clock pulse when the broadcast command is executed

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

2: This register is only used with the PTGCTRL OPTION = 1111 Step command.

dsPIC33EDV64MC205

REGISTER 24-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2) (CONTINUED)

bit 4

OC1CS: Clock Source for OC1 bit

- 1 = Generates clock pulse when the broadcast command is executed
- 0 = Does not generate clock pulse when the broadcast command is executed

bit 3

OC4TSS: Trigger/Synchronization Source for OC4 bit

- 1 = Generates Trigger/Synchronization when the broadcast command is executed
- 0 = Does not generate Trigger/Synchronization when the broadcast command is executed

bit 2

OC3TSS: Trigger/Synchronization Source for OC3 bit

- 1 = Generates Trigger/Synchronization when the broadcast command is executed
- 0 = Does not generate Trigger/Synchronization when the broadcast command is executed

bit 1

OC2TSS: Trigger/Synchronization Source for OC2 bit

- 1 = Generates Trigger/Synchronization when the broadcast command is executed
- 0 = Does not generate Trigger/Synchronization when the broadcast command is executed

bit 0

OC1TSS: Trigger/Synchronization Source for OC1 bit

- 1 = Generates Trigger/Synchronization when the broadcast command is executed
- 0 = Does not generate Trigger/Synchronization when the broadcast command is executed

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

2: This register is only used with the PTGCTRL OPTION = 1111 Step command.

REGISTER 24-4: PTGT0LIM: PTG TIMER0 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTGT0LIM[15:8]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTGT0LIM[7:0]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0 **PTGT0LIM[15:0]:** PTG Timer0 Limit Register bits

General Purpose Timer0 Limit register (effective only with a PTGT0 Step command).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 24-5: PTGT1LIM: PTG TIMER1 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTGT1LIM[15:8]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTGT1LIM[7:0]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0 **PTGT1LIM[15:0]:** PTG Timer1 Limit Register bits

General Purpose Timer1 Limit register (effective only with a PTGT1 Step command).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

dsPIC33EDV64MC205

REGISTER 24-6: PTGSDLIM: PTG STEP DELAY LIMIT REGISTER^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTGSDLIM[15:8]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTGSDLIM[7:0]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0 **PTGSDLIM[15:0]:** PTG Step Delay Limit Register bits

Holds a PTG Step delay value representing the number of additional PTG clocks between the start of a Step command and the completion of a Step command.

Note 1: A base Step delay of one PTG clock is added to any value written to the PTGSDLIM register (Step Delay = (PTGSDLIM) + 1).

2: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTART = 1).

REGISTER 24-7: PTGC0LIM: PTG COUNTER 0 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTGC0LIM[15:8]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTGC0LIM[7:0]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0 **PTGC0LIM[15:0]:** PTG Counter 0 Limit Register bits

May be used to specify the loop count for the PTGJMP0 Step command or as a limit register for the General Purpose Counter 0.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTART = 1).

REGISTER 24-8: PTGC1LIM: PTG COUNTER 1 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTGC1LIM[15:8]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTGC1LIM[7:0]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0 **PTGC1LIM[15:0]:** PTG Counter 1 Limit Register bits

May be used to specify the loop count for the PTGJMP1 Step command or as a limit register for the General Purpose Counter 1.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTART = 1).

dsPIC33EDV64MC205

REGISTER 24-9: PTGHOST: PTG HOLD REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTGHOST[15:8]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTGHOST[7:0]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0 **PTGHOST[15:0]:** PTG General Purpose Hold Register bits
Holds user-supplied data to be copied to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 registers with the `PTGCOPY` command.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTART = 1).

REGISTER 24-10: PTGADJ: PTG ADJUST REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTGADJ[15:8]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTGADJ[7:0]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0 **PTGADJ[15:0]:** PTG Adjust Register bits
This register holds user-supplied data to be added to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 registers with the `PTGADD` command.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTART = 1).

REGISTER 24-11: PTGL0: PTG LITERAL 0 REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTGL0[15:8]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTGL0[7:0]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0 **PTGL0[15:0]:** PTG Literal 0 Register bits

This register holds the 16-bit value to be written to the AD1CHS0 register with the PTGCTRL Step command.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTART = 1).

REGISTER 24-12: PTGQPTR: PTG STEP QUEUE POINTER REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	PTGQPTR[4:0]				
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-5 **Unimplemented:** Read as '0'

bit 4-0 **PTGQPTR[4:0]:** PTG Step Queue Pointer Register bits

This register points to the currently active Step command in the Step queue.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTART = 1).

dsPIC33EDV64MC205

REGISTER 24-13: PTGQUE_x: PTG STEP QUEUE REGISTER x ($x = 0-7$)^(1,3)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
STEP($2x + 1$)[7:0] ⁽²⁾							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
STEP($2x$)[7:0] ⁽²⁾							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-8 **STEP($2x + 1$)[7:0]**: PTG Step Queue Pointer Register bits⁽²⁾

A queue location for storage of the STEP($2x + 1$) command byte.

bit 7-0 **STEP($2x$)[7:0]**: PTG Step Queue Pointer Register bits⁽²⁾

A queue location for storage of the STEP($2x$) command byte.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

2: Refer to [Table 24-1](#) for the Step command encoding.

3: The Step registers maintain their values on any type of Reset.

24.4 Step Commands and Format

TABLE 24-1: PTG STEP COMMAND FORMAT

Step Command Byte:		
STEPx[7:0]		
CMD[3:0]		OPTION[3:0]
bit 7	bit 4	bit 3

bit 7-4	CMD[3:0]	Step Command	Command Description
0000	PTGCTRL		Execute control command as described by OPTION[3:0].
0001	PTGADD		Add contents of PTGADJ register to target register as described by OPTION[3:0].
	PTGCOPY		Copy contents of PTGHOLD register to target register as described by OPTION[3:0].
001x	PTGSTRB		Copy the value contained in CMD[0]:OPTION[3:0] to the CH0SA[4:0] bits (AD1CHS0[4:0]).
0100	PTGWHI		Wait for a low-to-high edge input from the selected PTG trigger input as described by OPTION[3:0].
0101	PTGWLO		Wait for a high-to-low edge input from the selected PTG trigger input as described by OPTION[3:0].
0110	Reserved		Reserved.
0111	PTGIRQ		Generate individual interrupt request as described by OPTION[3:0].
100x	PTGTRIG		Generate individual trigger output as described by <<CMD[0]:OPTION[3:0]>.
101x	PTGJMP		Copy the value indicated in <<CMD[0]:OPTION[3:0]> to the PTG Queue Pointer (PTGQPTR) and jump to that Step queue.
110x	PTGJMP0	PTGC0 = PTGC0LIM:	Increment the PTG Queue Pointer (PTGQPTR).
		PTGC0 ≠ PTGC0LIM:	Increment Counter 0 (PTGC0) and copy the value indicated in <<CMD[0]:OPTION[3:0]> to the PTG Queue Pointer (PTGQPTR), and jump to that Step queue.
111x	PTGJMP1	PTGC1 = PTGC1LIM:	Increment the PTG Queue Pointer (PTGQPTR).
		PTGC1 ≠ PTGC1LIM:	Increment Counter 1 (PTGC1) and copy the value indicated in <<CMD[0]:OPTION[3:0]> to the PTG Queue Pointer (PTGQPTR), and jump to that Step queue.

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to [Table 24-2](#) for the trigger output descriptions.

dsPIC33EDV64MC205

TABLE 24-1: PTG STEP COMMAND FORMAT (CONTINUED)

bit 3-0	Step Command	OPTION[3:0]	Option Description
PTGCTRL ⁽¹⁾	0000	Reserved.	
	0001	Reserved.	
	0010	Disable PTG Step Delay Timer (PTGSD).	
	0011	Reserved.	
	0100	Reserved.	
	0101	Reserved.	
	0110	Enable PTG Step Delay Timer (PTGSD).	
	0111	Reserved.	
	1000	Start and wait for the PTG Timer0 to match the PTG Timer0 Limit Register.	
	1001	Start and wait for the PTG Timer1 to match the PTG Timer1 Limit Register.	
	1010	Reserved.	
	1011	Wait for the software trigger bit transition from low-to-high before continuing (PTGSWT = 0 to 1).	
	1100	Copy contents of the PTG Counter 0 register to the AD1CHS0 register.	
	1101	Copy contents of the PTG Counter 1 register to the AD1CHS0 register.	
	1110	Copy contents of the PTG Literal 0 register to the AD1CHS0 register.	
	1111	Generate triggers indicated in the PTG Broadcast Trigger Enable register (PTGBTE).	
PTGADD ⁽¹⁾	0000	Add contents of the PTGADJ register to the PTG Counter 0 Limit register (PTGC0LIM).	
	0001	Add contents of the PTGADJ register to the PTG Counter 1 Limit register (PTGC1LIM).	
	0010	Add contents of the PTGADJ register to the PTG Timer0 Limit register (PTGT0LIM).	
	0011	Add contents of the PTGADJ register to the PTG Timer1 Limit register (PTGT1LIM).	
	0100	Add contents of the PTGADJ register to the PTG Step Delay Limit register (PTGSDLIM).	
	0101	Add contents of the PTGADJ register to the PTG Literal 0 register (PTGL0).	
	0110	Reserved.	
	0111	Reserved.	
PTGCOPY ⁽¹⁾	1000	Copy contents of the PTGHOLD register to the PTG Counter 0 Limit register (PTGC0LIM).	
	1001	Copy contents of the PTGHOLD register to the PTG Counter 1 Limit register (PTGC1LIM).	
	1010	Copy contents of the PTGHOLD register to the PTG Timer0 Limit register (PTGT0LIM).	
	1011	Copy contents of the PTGHOLD register to the PTG Timer1 Limit register (PTGT1LIM).	
	1100	Copy contents of the PTGHOLD register to the PTG Step Delay Limit register (PTGSDLIM).	
	1101	Copy contents of the PTGHOLD register to the PTG Literal 0 register (PTGL0).	
	1110	Reserved.	
	1111	Reserved.	

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a `NOP` instruction).

2: Refer to [Table 24-2](#) for the trigger output descriptions.

TABLE 24-1: PTG STEP COMMAND FORMAT (CONTINUED)

bit 3-0	Step Command	OPTION[3:0]	Option Description
PTGWHI ⁽¹⁾ or PTGWLO ⁽¹⁾	0000	PWM Special Event Trigger.	
	0001	PWM Host time base synchronization output.	
	0010	PWM1 interrupt.	
	0011	PWM2 interrupt.	
	0100	PWM3 interrupt.	
	0101	Reserved.	
	0110	Reserved.	
	0111	OC1 trigger event.	
	1000	OC2 trigger event.	
	1001	IC1 trigger event.	
	1010	CMP1 trigger event.	
	1011	CMP2 trigger event.	
	1100	CMP3 trigger event.	
	1101	CMP4 trigger event.	
	1110	ADC conversion done interrupt.	
	1111	INT2 external interrupt.	
PTGIRQ ⁽¹⁾	0000	Generate PTG Interrupt 0.	
	0001	Generate PTG Interrupt 1.	
	0010	Generate PTG Interrupt 2.	
	0011	Generate PTG Interrupt 3.	
	0100	Reserved.	
	•	•	
	•	•	
	1111	Reserved.	
PTGTRIG ⁽²⁾	00000	PTGO0.	
	00001	PTGO1.	
	•	•	
	•	•	
	11110	PTGO30.	
	11111	PTGO31.	

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to [Table 24-2](#) for the trigger output descriptions.

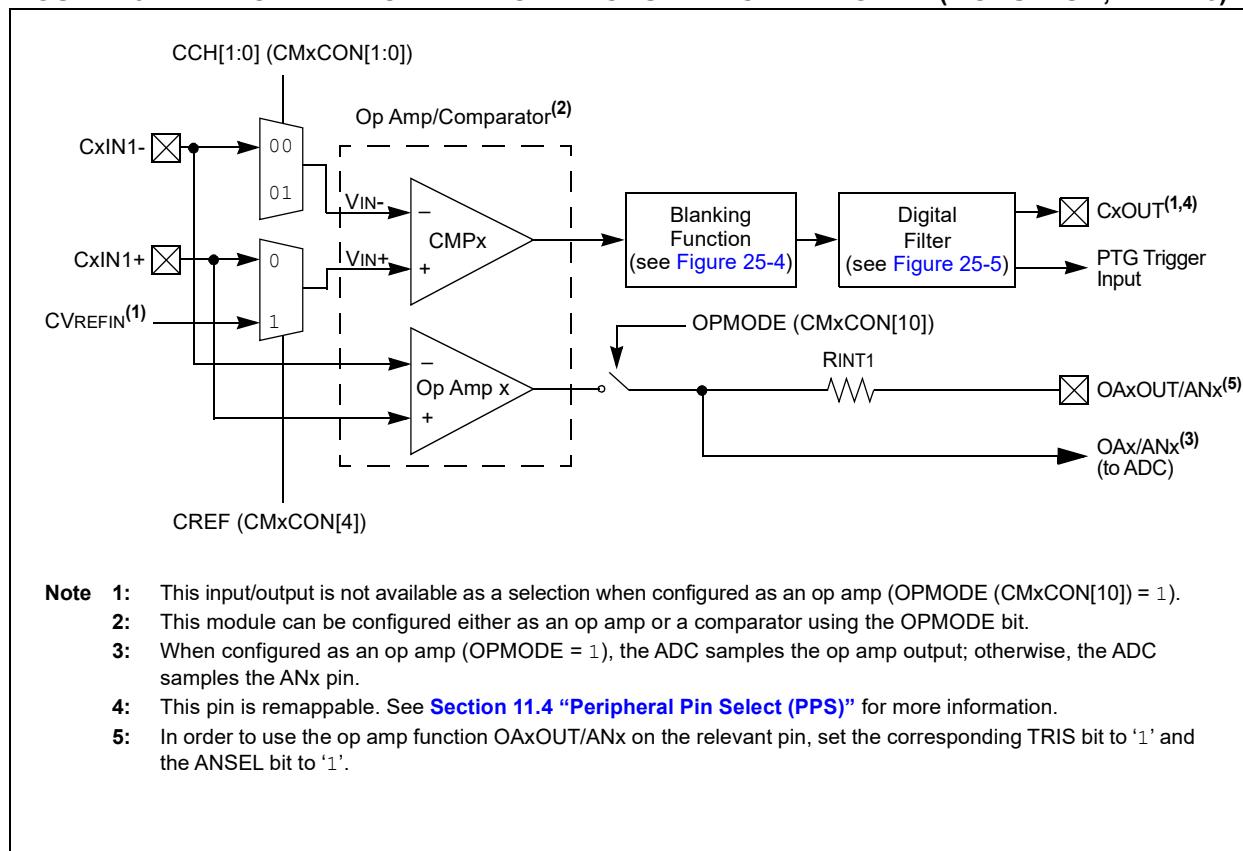
dsPIC33EDV64MC205

TABLE 24-2: PTG OUTPUT DESCRIPTIONS

PTG Output Number	PTG Output Description
PTGO0	Trigger/Synchronization Source for OC1
PTGO1	Trigger/Synchronization Source for OC2
PTGO2	Trigger/Synchronization Source for OC3
PTGO3	Trigger/Synchronization Source for OC4
PTGO4	Clock Source for OC1
PTGO5	Clock Source for OC2
PTGO6	Clock Source for OC3
PTGO7	Clock Source for OC4
PTGO8	Trigger/Synchronization Source for IC1
PTGO9	Trigger/Synchronization Source for IC2
PTGO10	Trigger/Synchronization Source for IC3
PTGO11	Trigger/Synchronization Source for IC4
PTGO12	Sample Trigger for ADC
PTGO13	Sample Trigger for ADC
PTGO14	Sample Trigger for ADC
PTGO15	Sample Trigger for ADC
PTGO16	PWM Time Base Synchronous Source for PWM
PTGO17	PWM Time Base Synchronous Source for PWM
PTGO18	Mask Input Select for Op Amp/Comparator
PTGO19	Mask Input Select for Op Amp/Comparator
PTGO20	Reserved
PTGO21	Reserved
PTGO22	Reserved
PTGO23	Reserved
PTGO24	Reserved
PTGO25	Reserved
PTGO26	Reserved
PTGO27	Reserved
PTGO28	Reserved
PTGO29	Reserved
PTGO30	PTG Output to PPS Input Selection
PTGO31	PTG Output to PPS Input Selection

25.0 OP AMP/COMPARATOR MODULE

Note 1: This data sheet summarizes the features of the dsPIC33EDV64MC205 devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to “[Op Amp/Comparator](#)” (www.microchip.com/DS70000357) in the “[dsPIC33/PIC24 Family Reference Manual](#)”.


2: Some registers and associated bits described in this section may not be available on all devices. Refer to [Section 4.0 “Memory Organization”](#) in this data sheet for device-specific register and bit information.

The dsPIC33EDV64MC205 device contains up to four comparators, which can be configured in various ways. Comparators, CMP1, CMP2 and CMP3, also have the option to be configured as op amps with the output being brought to an external pin for gain/filtering connections. As shown in [Figure 25-1](#), individual comparator options are specified by the comparator module's Special Function Register (SFR) control bits.

These options allow users to:

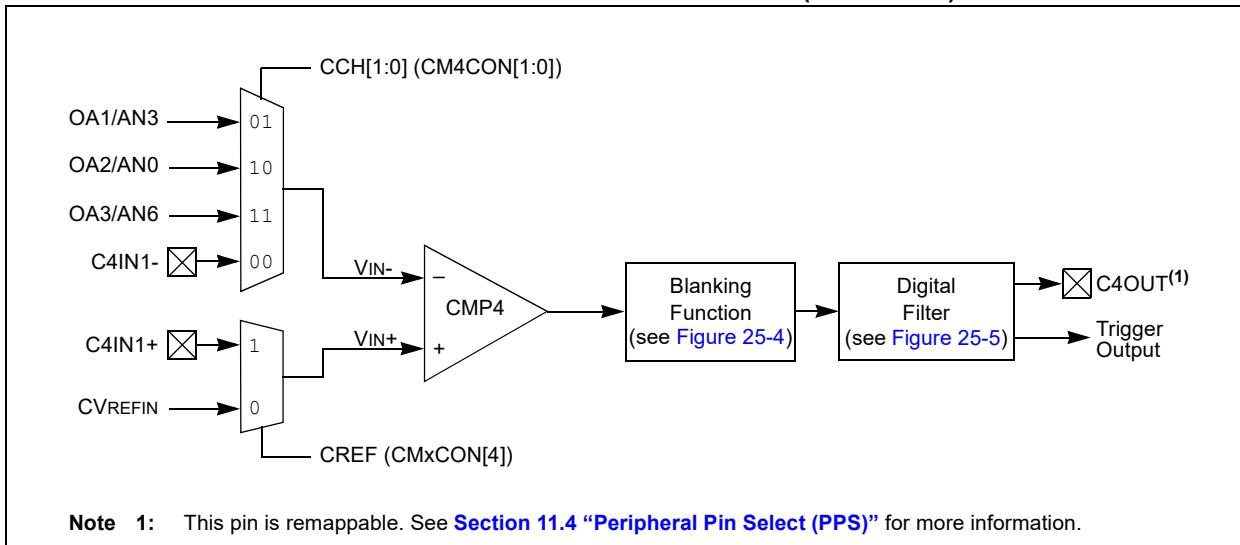

- Select the Edge for Trigger and Interrupt Generation
- Configure the Comparator Voltage Reference
- Configure Output Blanking and Masking
- Configure as a Comparator or Op Amp (CMP1, CMP2 and CMP3 only)

FIGURE 25-1: OP AMP/COMPARATOR x MODULE BLOCK DIAGRAM (MODULES 1, 2 AND 3)

dsPIC33EDV64MC205

FIGURE 25-2: COMPARATOR MODULE BLOCK DIAGRAM (MODULE 4)

FIGURE 25-3: OP AMP/COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

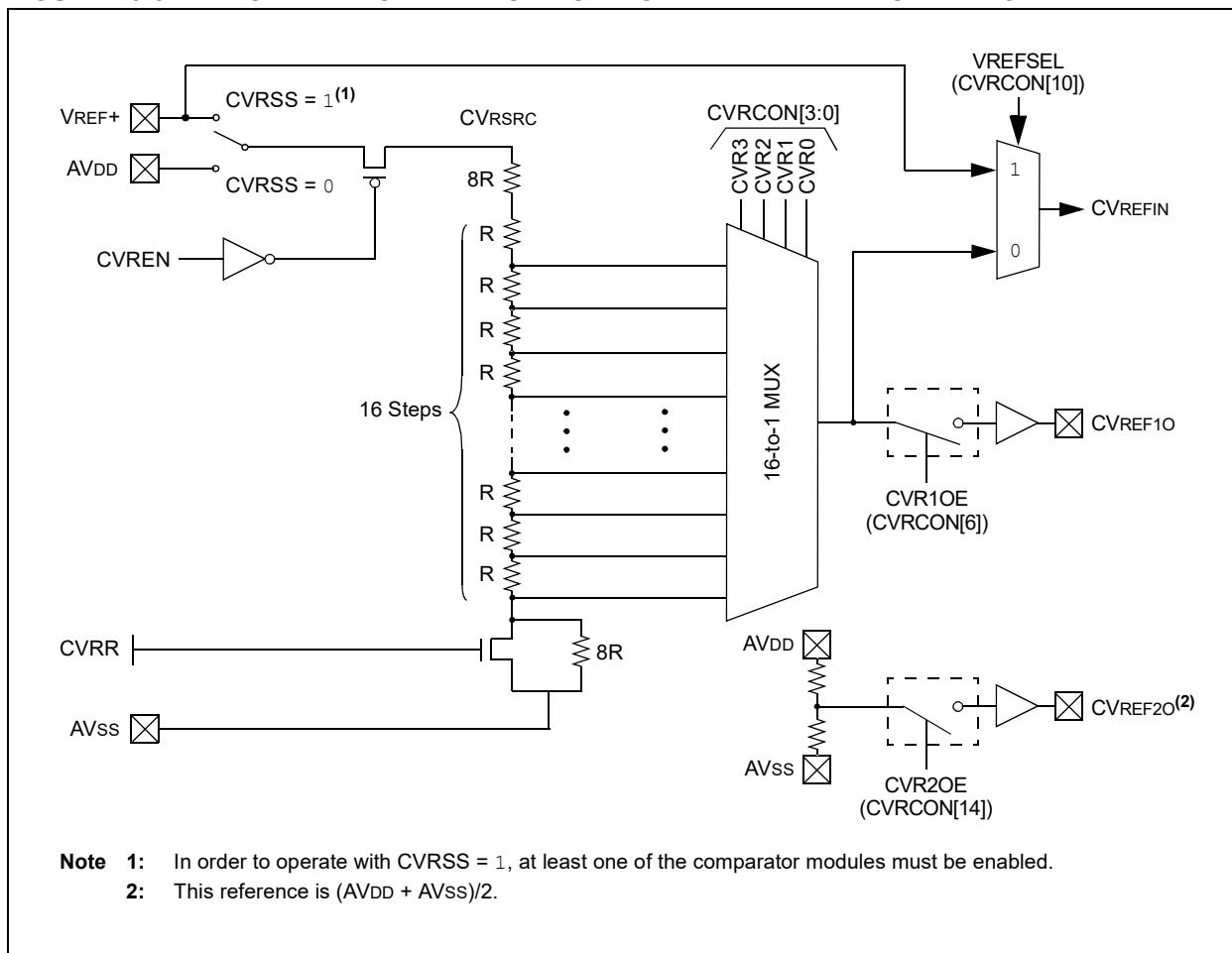


FIGURE 25-4: USER-PROGRAMMABLE BLANKING FUNCTION BLOCK DIAGRAM

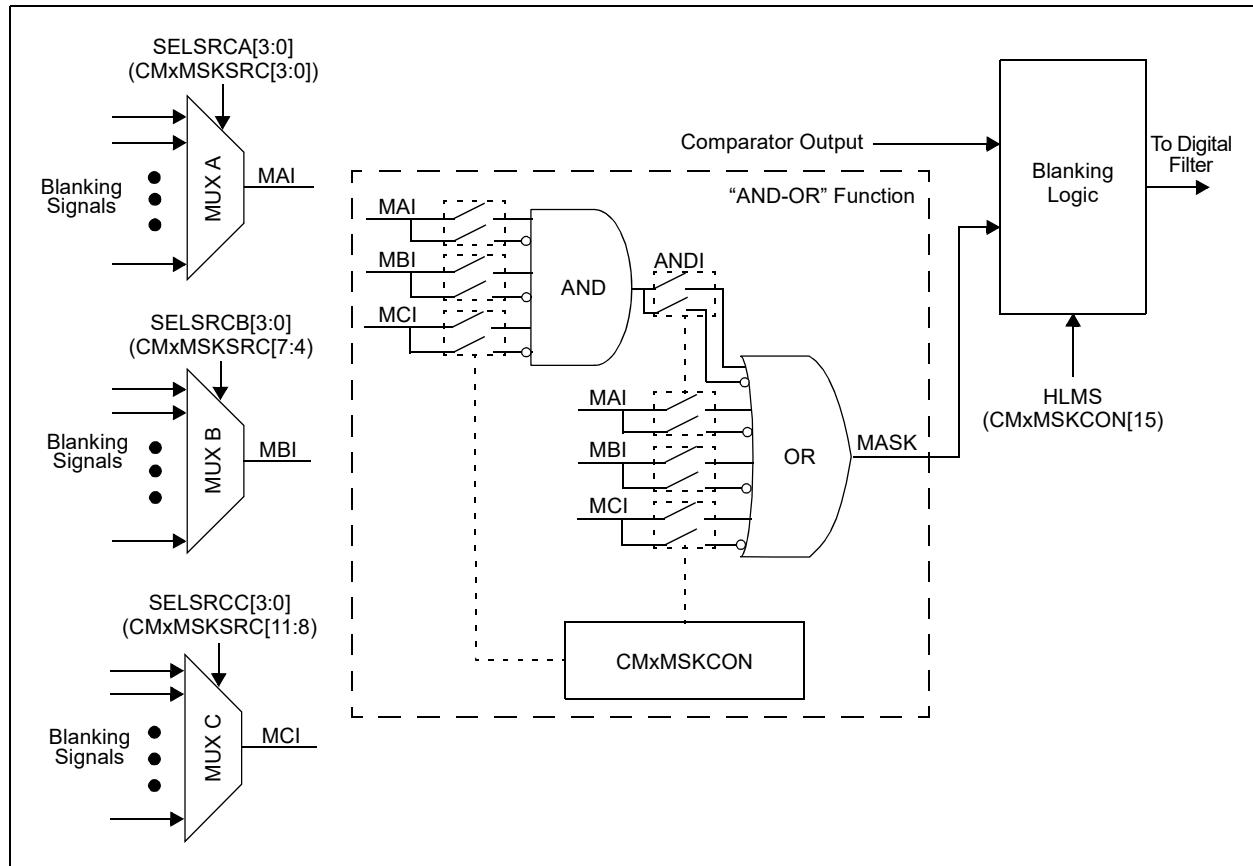
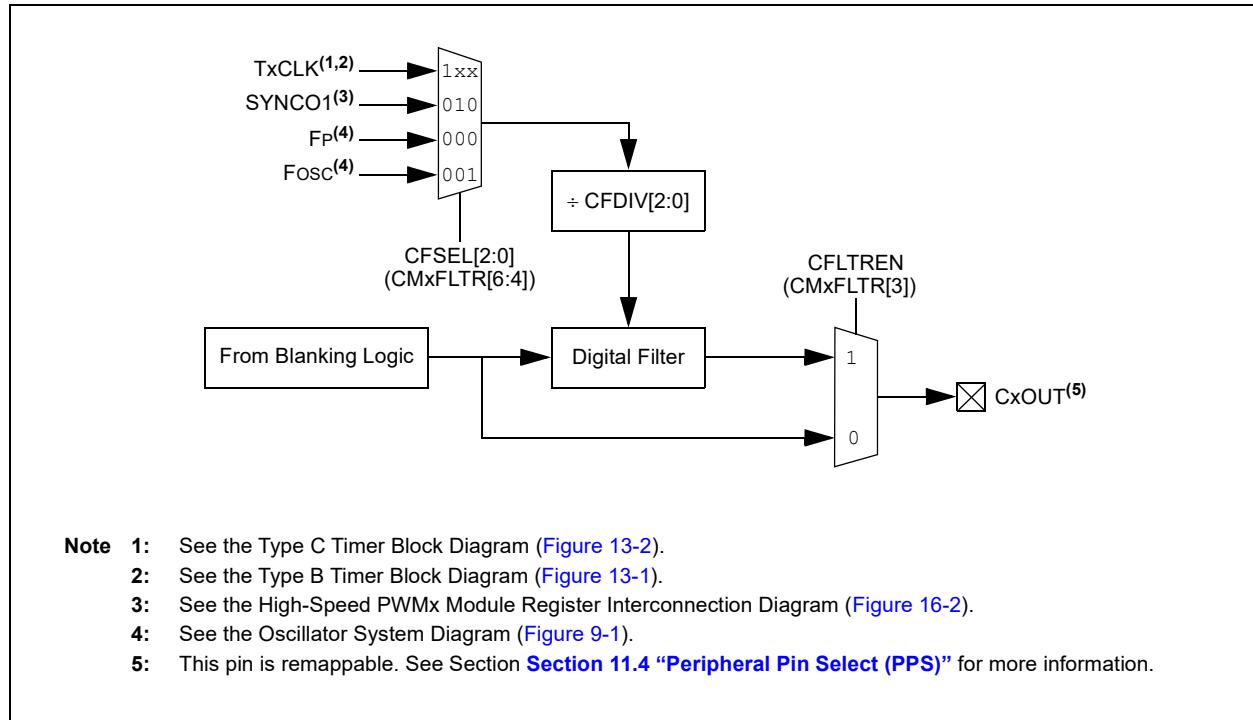



FIGURE 25-5: DIGITAL FILTER INTERCONNECT BLOCK DIAGRAM

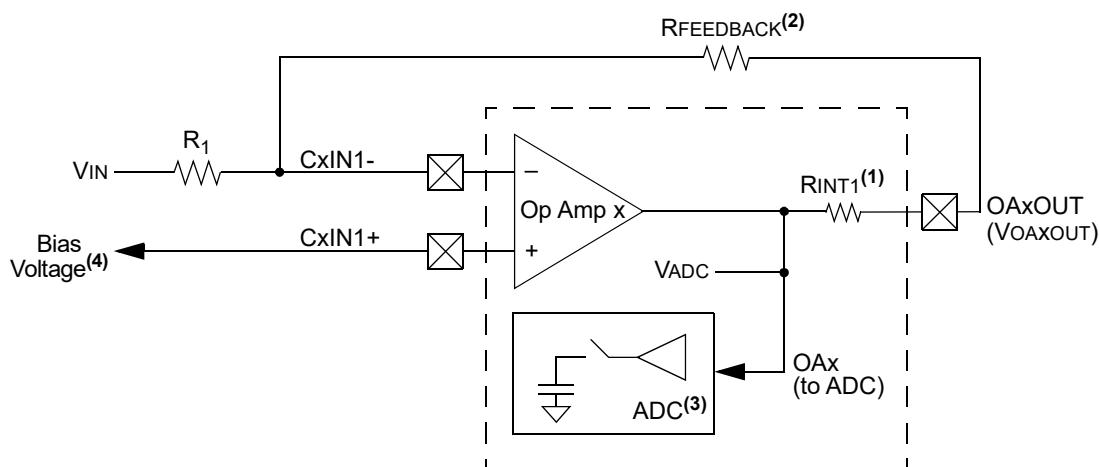
Note 1: See the Type C Timer Block Diagram (Figure 13-2).

2: See the Type B Timer Block Diagram (Figure 13-1).

3: See the High-Speed PWMx Module Register Interconnection Diagram (Figure 16-2).

4: See the Oscillator System Diagram (Figure 9-1).

5: This pin is remappable. See Section [11.4 "Peripheral Pin Select \(PPS\)"](#) for more information.


25.1 Op Amp Application Considerations

There are two configurations to take into consideration when designing with the op amp modules that are available in the dsPIC33EDV64MC205 device. Configuration A (see [Figure 25-6](#)) takes advantage of the internal connection to the ADC module to route the output of the op amp directly to the ADC for measurement. Configuration B (see [Figure 25-7](#)) requires that the designer externally route the output of the op amp (OAxOUT) to a separate analog input pin (ANx) on the device. [Table 30-54](#) in [Section 30.0 "Electrical Characteristics"](#) describes the performance characteristics for the op amps, distinguishing between the two configuration types where applicable. When the op amp output is to be made available on the corresponding OAxOUT pin, set both the pin's TRISx bit and the corresponding ANSELx bit to '1'.

25.1.1 OP AMP CONFIGURATION A

[Figure 25-6](#) shows a typical inverting amplifier circuit taking advantage of the internal connections from the op amp output to the input of the ADC. The advantage of this configuration is that the user does not need to consume another analog input (ANx) on the device and allows the user to simultaneously sample all three op amps with the ADC module, if needed. However, the presence of the internal resistance, RINT1, adds an error in the feedback path. Since RINT1 is an internal resistance, in relation to the op amp output (VOAXOUT) and ADC internal connection (VADC), RINT1 must be included in the numerator term of the transfer function. See [Table 30-52](#) in [Section 30.0 "Electrical Characteristics"](#) for the typical value of RINT1. [Table 30-59](#) and [Table 30-60](#) in [Section 30.0 "Electrical Characteristics"](#) describe the minimum sample time (TSAMP) requirements for the ADC module in this configuration. [Figure 25-6](#) also defines the equations that should be used when calculating the expected voltages at points, VADC and VOAXOUT.

FIGURE 25-6: OP AMP CONFIGURATION A

$$VADC = \left(\frac{RFEEDBACK + RINT1}{R1} \right) (Bias Voltage - VIN)$$

$$VOAXOUT = \left(\frac{RFEEDBACK}{R1} \right) (Bias Voltage - VIN)$$

Note 1: See [Table 30-52](#) for the typical value.

2: See [Table 30-52](#) for the minimum value for the feedback resistor.

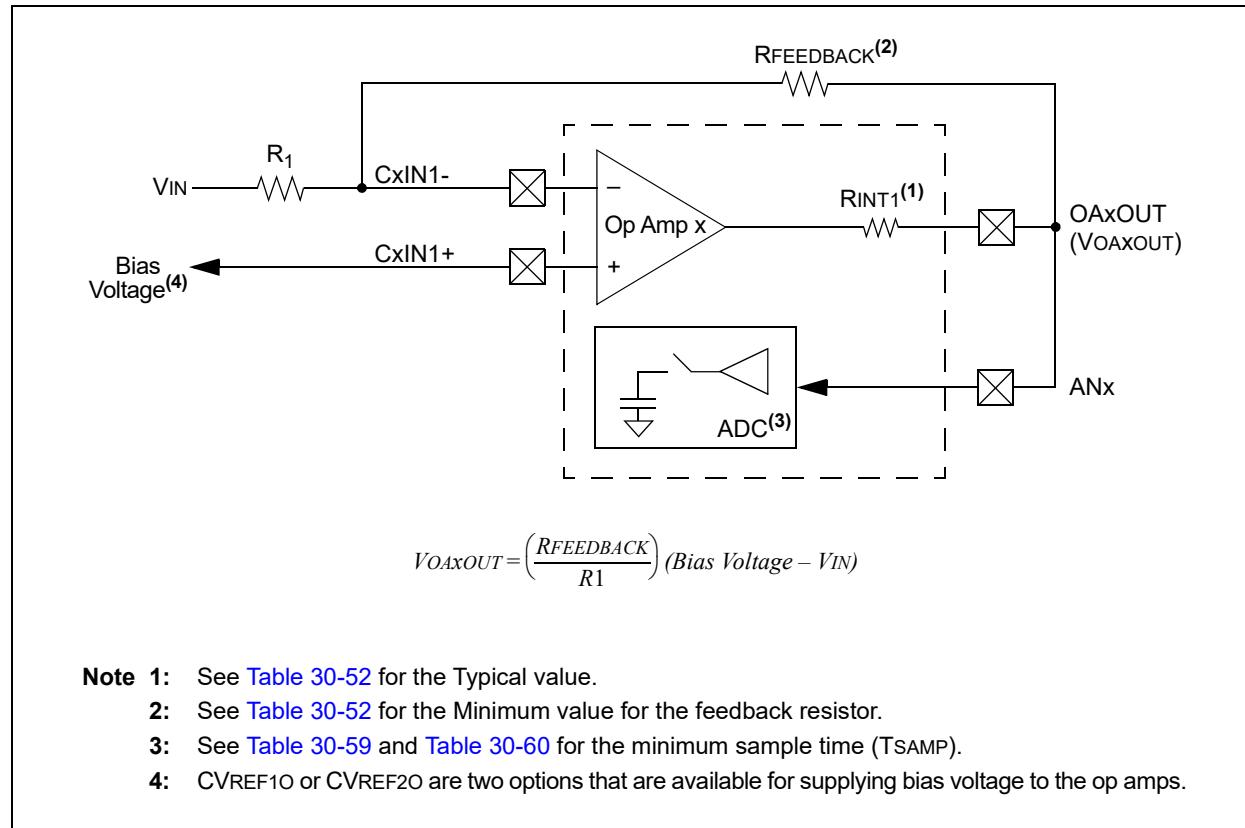
3: See [Table 30-59](#) and [Table 30-60](#) for the minimum sample time (TSAMP).

4: CVREF10 or CVREF20 are two options that are available for supplying bias voltage to the op amps.

25.1.2 OP AMP CONFIGURATION B

Figure 25-7 shows a typical inverting amplifier circuit with the output of the op amp (OAxOUT) externally routed to a separate analog input pin (ANx) on the device. This op amp configuration is slightly different in terms of the op amp output and the ADC input connection; therefore, RINT1 is not included in the transfer function. However, this configuration requires the designer to externally route the op amp output (OAxOUT) to another analog input pin (ANx). See Table 30-52 in Section 30.0 “Electrical Characteristics” for the typical value of RINT1. Table 30-59 and Table 30-60 in Section 30.0 “Electrical Characteristics” describe the minimum sample time (TSAMP) requirements for the ADC module in this configuration. Figure 25-7 also defines the equation to be used to calculate the expected voltage at point VOAXOUT. This is the typical inverting amplifier equation.

25.2 Op Amp/Comparator Resources


Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this [link](#), contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser:
<http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en555464>

25.2.1 KEY RESOURCES

- “Op Amp/Comparator” (DS70000357) in the “dsPIC33/PIC24 Family Reference Manual”
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related “dsPIC33/PIC24 Family Reference Manual” Sections
- Development Tools

FIGURE 25-7: OP AMP CONFIGURATION B

dsPIC33EDV64MC205

25.3 Op Amp/Comparator Control/ Status Registers

REGISTER 25-1: CMSTAT: OP AMP/COMPARATOR STATUS REGISTER

R/W-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
PSIDL	—	—	—	C4EVT ⁽¹⁾	C3EVT ⁽¹⁾	C2EVT ⁽¹⁾	C1EVT ⁽¹⁾
bit 15							

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	—	C4OUT ⁽²⁾	C3OUT ⁽²⁾	C2OUT ⁽²⁾	C1OUT ⁽²⁾
bit 7							

Legend:

R = Readable bit
-n = Value at POR

W = Writable bit
'1' = Bit is set

U = Unimplemented bit, read as '0'
'0' = Bit is cleared

x = Bit is unknown

bit 15 **PSIDL:** Op Amp/Comparator Stop in Idle Mode bit
1 = Discontinues operation of all comparators when device enters Idle mode
0 = Continues operation of all comparators in Idle mode

bit 14-12 **Unimplemented:** Read as '0'

bit 11 **C4EVT:** Op Amp/Comparator 4 Event Status bit⁽¹⁾
1 = Op amp/comparator event occurred
0 = Op amp/comparator event did not occur

bit 10 **C3EVT:** Comparator 3 Event Status bit⁽¹⁾
1 = Comparator event occurred
0 = Comparator event did not occur

bit 9 **C2EVT:** Comparator 2 Event Status bit⁽¹⁾
1 = Comparator event occurred
0 = Comparator event did not occur

bit 8 **C1EVT:** Comparator 1 Event Status bit⁽¹⁾
1 = Comparator event occurred
0 = Comparator event did not occur

bit 7-4 **Unimplemented:** Read as '0'

bit 3 **C4OUT:** Comparator 4 Output Status bit⁽²⁾
When CPOL = 0:
1 = $V_{IN+} > V_{IN-}$
0 = $V_{IN+} < V_{IN-}$
When CPOL = 1:
1 = $V_{IN+} < V_{IN-}$
0 = $V_{IN+} > V_{IN-}$

bit 2 **C3OUT:** Comparator 3 Output Status bit⁽²⁾

When CPOL = 0:
1 = $V_{IN+} > V_{IN-}$
0 = $V_{IN+} < V_{IN-}$
When CPOL = 1:
1 = $V_{IN+} < V_{IN-}$
0 = $V_{IN+} > V_{IN-}$

Note 1: Reflects the value of the CEVT bit in the respective Op Amp/Comparator x Control register, CMxCON[9].

2: Reflects the value of the COUT bit in the respective Op Amp/Comparator x Control register, CMxCON[8].

REGISTER 25-1: CMSTAT: OP AMP/COMPARATOR STATUS REGISTER (CONTINUED)

bit 1 **C2OUT:** Comparator 2 Output Status bit⁽²⁾

When CPOL = 0:

1 = $V_{IN+} > V_{IN-}$

0 = $V_{IN+} < V_{IN-}$

When CPOL = 1:

1 = $V_{IN+} < V_{IN-}$

0 = $V_{IN+} > V_{IN-}$

bit 0 **C1OUT:** Comparator 1 Output Status bit⁽²⁾

When CPOL = 0:

1 = $V_{IN+} > V_{IN-}$

0 = $V_{IN+} < V_{IN-}$

When CPOL = 1:

1 = $V_{IN+} < V_{IN-}$

0 = $V_{IN+} > V_{IN-}$

Note 1: Reflects the value of the of the CEVT bit in the respective Op Amp/Comparator x Control register, CMxCON[9].

2: Reflects the value of the COUT bit in the respective Op Amp/Comparator x Control register, CMxCON[8].

dsPIC33EDV64MC205

REGISTER 25-2: CMxCON: COMPARATOR x CONTROL REGISTER (x = 1, 2 OR 3)

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
CON	COE ⁽²⁾	CPOL	—	—	OPMODE	CEVT	COUT
bit 15							

R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	r-0	r-0
EVPOL1	EVPOLO	—	CREF ⁽¹⁾	—	—	—	—
bit 7							

Legend:
R = Readable bit
-n = Value at POR

r = Reserved bit
W = Writable bit
'1' = Bit is set
U = Unimplemented bit, read as '0'
'0' = Bit is cleared
x = Bit is unknown

bit 15	CON: Op Amp/Comparator Enable bit 1 = Op amp/comparator is enabled 0 = Op amp/comparator is disabled
bit 14	COE: Comparator Output Enable bit ⁽²⁾ 1 = Comparator output is present on the CxOUT pin ⁽³⁾ 0 = Comparator output is internal only
bit 13	CPOL: Comparator Output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is not inverted
bit 12-11	Unimplemented: Read as '0'
bit 10	OPMODE: Op Amp/Comparator Operation Mode Select bit 1 = Circuit operates as an op amp 0 = Circuit operates as a comparator
bit 9	CEVT: Comparator Event bit 1 = Comparator event according to the EVPOL[1:0] settings occurred; disables future triggers and interrupts until the bit is cleared 0 = Comparator event did not occur
bit 8	COUT: Comparator Output bit <u>When CPOL = 0 (noninverted polarity):</u> 1 = VIN+ > VIN- 0 = VIN+ < VIN- <u>When CPOL = 1 (inverted polarity):</u> 1 = VIN+ < VIN- 0 = VIN+ > VIN-

Note 1: Inputs that are selected and not available will be tied to Vss. See the “[Pin Diagram](#)” section for available inputs for each package.

2: This output is not available when OPMODE (CMxCON[10]) = 1.

3: This pin is remappable. See [Section 11.4 “Peripheral Pin Select \(PPS\)”](#) for more information.

REGISTER 25-2: CMxCON: COMPARATOR x CONTROL REGISTER (x = 1, 2 OR 3) (CONTINUED)

bit 7-6	EVPOL[1:0]: Trigger/Event/Interrupt Polarity Select bits 11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0) 10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0) <u>If CPOL = 1 (inverted polarity):</u> Low-to-high transition of the comparator output. <u>If CPOL = 0 (noninverted polarity):</u> High-to-low transition of the comparator output. 01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity-selected comparator output (while CEVT = 0) <u>If CPOL = 1 (inverted polarity):</u> High-to-low transition of the comparator output. <u>If CPOL = 0 (noninverted polarity):</u> Low-to-high transition of the comparator output 00 = Trigger/event/interrupt generation is disabled
bit 5	Unimplemented: Read as '0'
bit 4	CREF: Comparator Reference Select bit (VIN+ input) ⁽¹⁾ 1 = VIN+ input connects to internal CVREFIN voltage ⁽²⁾ 0 = VIN+ input connects to the CxIN1+ pin
bit 3-2	Unimplemented: Read as '0'
bit 1-0	Reserved: Maintain as '0'

Note 1: Inputs that are selected and not available will be tied to Vss. See the “[Pin Diagram](#)” section for available inputs for each package.

2: This output is not available when OPMODE (CMxCON[10]) = 1.

3: This pin is remappable. See [Section 11.4 “Peripheral Pin Select \(PPS\)”](#) for more information.

dsPIC33EDV64MC205

REGISTER 25-3: CM4CON: COMPARATOR 4 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
CON	COE	CPOL	—	—	—	CEVT	COUT
bit 15	bit 8						

R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
EVPOL1	EVPOLO	—	CREF ⁽¹⁾	—	—	CCH1 ⁽¹⁾	CCH0 ⁽¹⁾
bit 7	bit 0						

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15	CON: Comparator Enable bit 1 = Comparator is enabled 0 = Comparator is disabled
bit 14	COE: Comparator Output Enable bit 1 = Comparator output is present on the CxOUT pin ⁽²⁾ 0 = Comparator output is internal only
bit 13	CPOL: Comparator Output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is not inverted
bit 12-10	Unimplemented: Read as '0'
bit 9	CEVT: Comparator Event bit 1 = Comparator event according to EVPOL[1:0] settings occurred; disables future triggers and interrupts until the bit is cleared 0 = Comparator event did not occur
bit 8	COUT: Comparator Output bit <u>When CPOL = 0 (noninverted polarity):</u> 1 = VIN+ > VIN- 0 = VIN+ < VIN- <u>When CPOL = 1 (inverted polarity):</u> 1 = VIN+ < VIN- 0 = VIN+ > VIN-

Note 1: Inputs that are selected and not available will be tied to Vss. See the “[Pin Diagram](#)” section for available inputs for each package.

2: This pin is remappable. See [Section 11.4 “Peripheral Pin Select \(PPS\)”](#) for more information.

REGISTER 25-3: CM4CON: COMPARATOR 4 CONTROL REGISTER (CONTINUED)

bit 7-6	EVOL[1:0]: Trigger/Event/Interrupt Polarity Select bits
	11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0)
	10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0) If CPOL = 1 (inverted polarity): Low-to-high transition of the comparator output. If CPOL = 0 (noninverted polarity): High-to-low transition of the comparator output.
	01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity selected comparator output (while CEVT = 0) If CPOL = 1 (inverted polarity): High-to-low transition of the comparator output. If CPOL = 0 (noninverted polarity): Low-to-high transition of the comparator output.
	00 = Trigger/event/interrupt generation is disabled
bit 5	Unimplemented: Read as '0'
bit 4	CREF: Comparator Reference Select bit (VIN+ input) ⁽¹⁾ 1 = VIN+ input connects to internal CVREFIN voltage 0 = VIN+ input connects to C4IN1+ pin
bit 3-2	Unimplemented: Read as '0'
bit 1-0	CCH[1:0]: Comparator Channel Select bits ⁽¹⁾ 11 = VIN- input of comparator connects to OA3/AN6 10 = VIN- input of comparator connects to OA2/AN0 01 = VIN- input of comparator connects to OA1/AN3 00 = VIN- input of comparator connects to C4IN1-

Note 1: Inputs that are selected and not available will be tied to Vss. See the ["Pin Diagram"](#) section for available inputs for each package.

2: This pin is remappable. See [Section 11.4 "Peripheral Pin Select \(PPS\)"](#) for more information.

dsPIC33EDV64MC205

REGISTER 25-4: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	SELSSRC3	SELSSRCC2	SELSSRCC1	SELSSRCC0
bit 15							

| R/W-0 |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| SELSSRCB3 | SELSSRCB2 | SELSSRCB1 | SELSSRCB0 | SELSSRCA3 | SELSSRCA2 | SELSSRCA1 | SELSSRCA0 |
| bit 7 | | | | | | | |

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-12 **Unimplemented:** Read as '0'

bit 11-8 **SELSSRCC[3:0]:** Mask C Input Select bits

1111 = Reserved

1110 = FLT2

1101 = PTGO19

1100 = PTGO18

1011 = Reserved

1010 = Reserved

1001 = Reserved

1000 = Reserved

0111 = Reserved

0110 = Reserved

0101 = PWM3H

0100 = PWM3L

0011 = PWM2H

0010 = PWM2L

0001 = PWM1H

0000 = PWM1L

bit 7-4 **SELSSRCB[3:0]:** Mask B Input Select bits

1111 = Reserved

1110 = FLT2

1101 = PTGO19

1100 = PTGO18

1011 = Reserved

1010 = Reserved

1001 = Reserved

1000 = Reserved

0111 = Reserved

0110 = Reserved

0101 = PWM3H

0100 = PWM3L

0011 = PWM2H

0010 = PWM2L

0001 = PWM1H

0000 = PWM1L

REGISTER 25-4: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT CONTROL REGISTER (CONTINUED)

bit 3-0 **SELSRCA[3:0]:** Mask A Input Select bits

1111 = Reserved

1110 = FLT2

1101 = PTGO19

1100 = PTGO18

1011 = Reserved

1010 = Reserved

1001 = Reserved

1000 = Reserved

0111 = Reserved

0110 = Reserved

0101 = PWM3H

0100 = PWM3L

0011 = PWM2H

0010 = PWM2L

0001 = PWM1H

0000 = PWM1L

dsPIC33EDV64MC205

REGISTER 25-5: CMxMSKCON: COMPARATOR x MASK GATING CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
HLMS	—	OCEN	OCNEN	OBEN	OBEN	OAEN	OANEN
bit 15	bit 8						

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| NAGS | PAGS | ACEN | ACNEN | ABEN | ABEN | AAEN | AANEN |
| bit 7 | bit 0 | | | | | | |

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15 **HLMS:** High or Low-Level Masking Select bits
1 = The masking (blanking) function will prevent any asserted ('0') comparator signal from propagating
0 = The masking (blanking) function will prevent any asserted ('1') comparator signal from propagating

bit 14 **Unimplemented:** Read as '0'

bit 13 **OCEN:** OR Gate C Input Enable bit
1 = MCI is connected to OR gate
0 = MCI is not connected to OR gate

bit 12 **OCNEN:** OR Gate C Input Inverted Enable bit
1 = Inverted MCI is connected to OR gate
0 = Inverted MCI is not connected to OR gate

bit 11 **OBEN:** OR Gate B Input Enable bit
1 = MBI is connected to OR gate
0 = MBI is not connected to OR gate

bit 10 **OBEN:** OR Gate B Input Inverted Enable bit
1 = Inverted MBI is connected to OR gate
0 = Inverted MBI is not connected to OR gate

bit 9 **OAEN:** OR Gate A Input Enable bit
1 = MAI is connected to OR gate
0 = MAI is not connected to OR gate

bit 8 **OANEN:** OR Gate A Input Inverted Enable bit
1 = Inverted MAI is connected to OR gate
0 = Inverted MAI is not connected to OR gate

bit 7 **NAGS:** AND Gate Output Inverted Enable bit
1 = Inverted ANDI is connected to OR gate
0 = Inverted ANDI is not connected to OR gate

bit 6 **PAGS:** AND Gate Output Enable bit
1 = ANDI is connected to OR gate
0 = ANDI is not connected to OR gate

bit 5 **ACEN:** AND Gate C Input Enable bit
1 = MCI is connected to AND gate
0 = MCI is not connected to AND gate

bit 4 **ACNEN:** AND Gate C Input Inverted Enable bit
1 = Inverted MCI is connected to AND gate
0 = Inverted MCI is not connected to AND gate

REGISTER 25-5: CMxMSKCON: COMPARATOR x MASK GATING CONTROL REGISTER (CONTINUED)

bit 3	ABEN: AND Gate B Input Enable bit 1 = MBI is connected to AND gate 0 = MBI is not connected to AND gate
bit 2	ABNEN: AND Gate B Input Inverted Enable bit 1 = Inverted MBI is connected to AND gate 0 = Inverted MBI is not connected to AND gate
bit 1	AAEN: AND Gate A Input Enable bit 1 = MAI is connected to AND gate 0 = MAI is not connected to AND gate
bit 0	AANEN: AND Gate A Input Inverted Enable bit 1 = Inverted MAI is connected to AND gate 0 = Inverted MAI is not connected to AND gate

dsPIC33EDV64MC205

REGISTER 25-6: CMxFLTR: COMPARATOR x FILTER CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-7 **Unimplemented:** Read as '0'

bit 6-4 **CFSEL[2:0]:** Comparator Filter Input Clock Select bits

111 = Reserved

110 = T4CLK⁽²⁾

101 = Reserved

100 = T2CLK⁽²⁾

011 = Reserved

010 = SYNC01⁽³⁾

001 = Fosc⁽⁴⁾

000 = Fp⁽¹⁾

bit 3 **CFLTREN:** Comparator Filter Enable bit

1 = Digital filter is enabled

0 = Digital filter is disabled

bit 2-0 **CFDIV[2:0]:** Comparator Filter Clock Divide Select bits

111 = Clock divide 1:128

110 = Clock divide 1:64

101 = Clock divide 1:32

100 = Clock divide 1:16

011 = Clock Divide 1:8

010 = Clock divide 1:4

001 = Clock divide 1:2

000 = Clock divide 1:1

Note 1: See the Type C Timer Block Diagram ([Figure 13-2](#)).

2: See the Type B Timer Block Diagram ([Figure 13-1](#)).

3: See the High-Speed PWMx Module Register Interconnection Diagram ([Figure 16-2](#)).

4: See the Oscillator System Diagram ([Figure 9-1](#)).

REGISTER 25-7: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

U-0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0
—	CVR2OE ⁽¹⁾	—	—	—	VREFSEL	—	—
bit 15	bit 8						

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CVREN	CVR1OE ⁽¹⁾	CVRR	CVRSS ⁽²⁾	CVR3	CVR2	CVR1	CVR0
bit 7	bit 0						

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14	CVR2OE: Comparator Voltage Reference 2 Output Enable bit ⁽¹⁾ 1 = (AVDD – AVss)/2 is connected to the CVREF20 pin 0 = (AVDD – AVss)/2 is disconnected from the CVREF20 pin
bit 13-11	Unimplemented: Read as '0'
bit 10	VREFSEL: Comparator Voltage Reference Select bit 1 = CVREFIN = VREF+ 0 = CVREFIN is generated by the resistor network
bit 9-8	Unimplemented: Read as '0'
bit 7	CVREN: Comparator Voltage Reference Enable bit 1 = Comparator voltage reference circuit is powered on 0 = Comparator voltage reference circuit is powered down
bit 6	CVR1OE: Comparator Voltage Reference 1 Output Enable bit ⁽¹⁾ 1 = Voltage level is output on the CVREF10 pin 0 = Voltage level is disconnected from then CVREF10 pin
bit 5	CVRR: Comparator Voltage Reference Range Selection bit 1 = CVRSRC/24 step-size 0 = CVRSRC/32 step-size
bit 4	CVRSS: Comparator Voltage Reference Source Selection bit ⁽²⁾ 1 = Comparator voltage reference source, CVRSRC = (VREF+) – (AVss) 0 = Comparator voltage reference source, CVRSRC = AVDD – AVss
bit 3-0	CVR[3:0] Comparator Voltage Reference Value Selection 0 ≤ CVR[3:0] ≤ 15 bits <u>When CVRR = 1:</u> CVREFIN = (CVR[3:0]/24) • (CVRSRC) <u>When CVRR = 0:</u> CVREFIN = (CVRSRC/4) + (CVR[3:0]/32) • (CVRSRC)

Note 1: The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs or outputs must have their corresponding ANSELx and TRISx bits set.

2: In order to operate with CVRSS = 1, at least one of the comparator modules must be enabled.

dsPIC33EDV64MC205

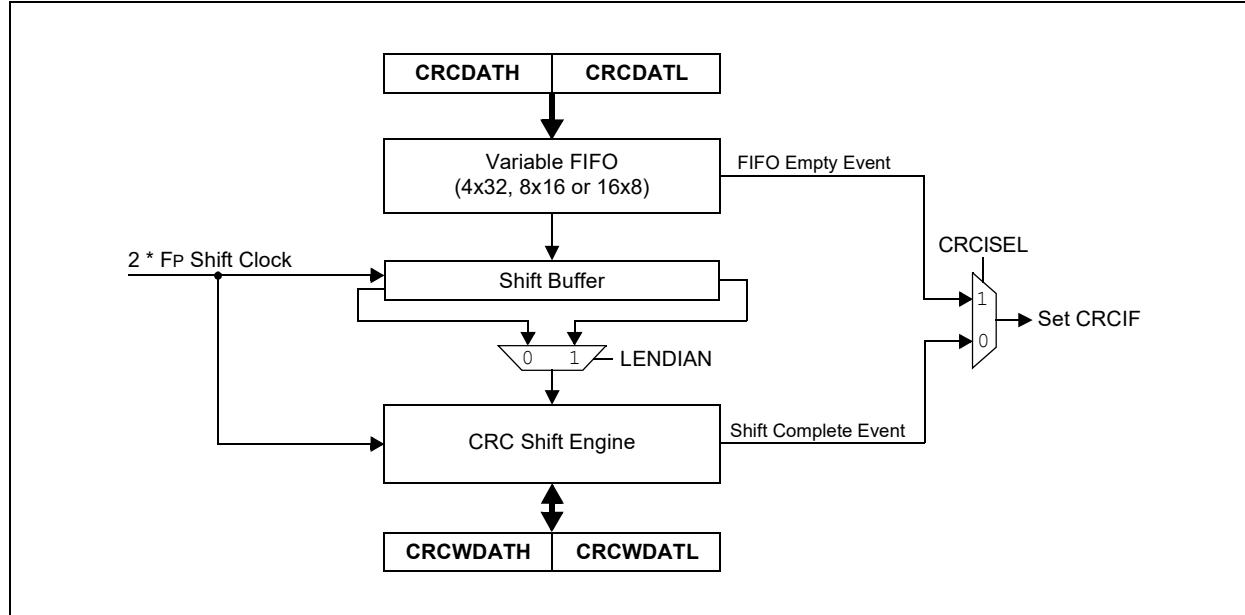
NOTES:

26.0 PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

Note 1: This data sheet summarizes the features of the dsPIC33EDV64MC205 device. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to “32-Bit Programmable Cyclic Redundancy Check (CRC)” (www.microchip.com/DS70346) of the “dsPIC33/PIC24 Family Reference Manual”.

2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 “Memory Organization”** in this data sheet for device-specific register and bit information.

The programmable CRC generator offers the following features:


- User-Programmable (up to 32nd order) Polynomial CRC Equation
- Interrupt Output
- Data FIFO

The programmable CRC generator provides a hardware implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-Programmable CRC Polynomial Equation, up to 32 bits
- Programmable Shift Direction (little or big-endian)
- Independent Data and Polynomial Lengths
- Configurable Interrupt Output
- Data FIFO

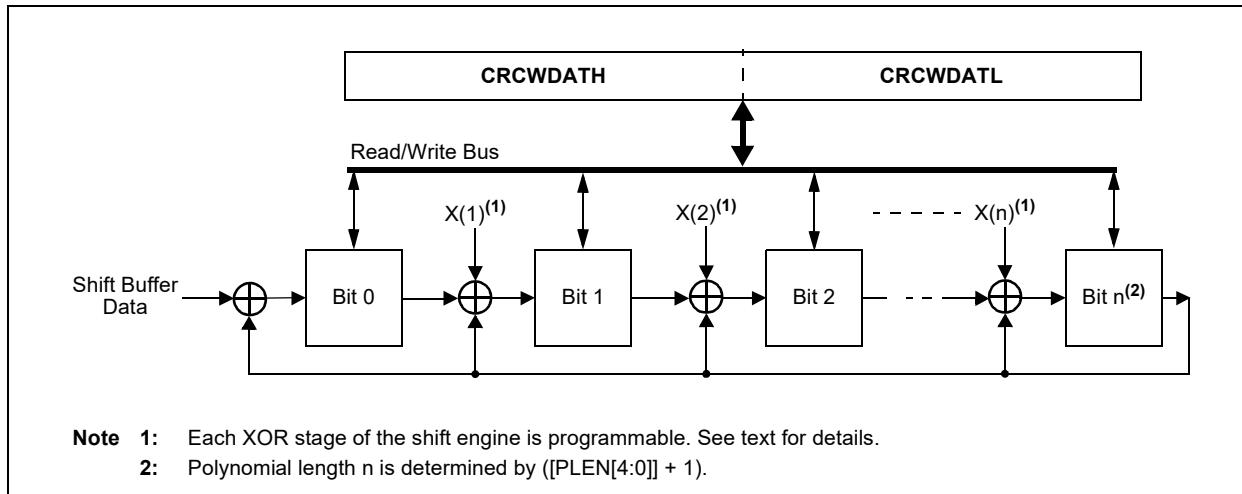

A simplified block diagram of the CRC generator is shown in [Figure 26-1](#). A simple version of the CRC shift engine is shown in [Figure 26-2](#).

FIGURE 26-1: CRC BLOCK DIAGRAM

dsPIC33EDV64MC205

FIGURE 26-2: CRC SHIFT ENGINE DETAIL

26.1 Overview

The CRC module can be programmed for CRC polynomials of up to the 32nd order, using up to 32 bits. Polynomial length, which reflects the highest exponent in the equation, is selected by the PLEN[4:0] bits (CRCCON2[4:0]).

The CRCXORL and CRCXORH registers control which exponent terms are included in the equation. Setting a particular bit includes that exponent term in the equation. Functionally, this includes an XOR operation on the corresponding bit in the CRC engine; clearing the bit disables the XOR.

For example, consider two CRC polynomials: one a 16-bit equation and the other a 32-bit equation:

$$x^{16} + x^{12} + x^5 + 1$$

and

$$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$$

To program these polynomials into the CRC generator, set the register bits as shown in [Table 26-1](#).

Note that the appropriate positions are set to '1' to indicate that they are used in the equation (for example, X26 and X23). The 0 bit required by the equation is always XORed; thus, X0 is a don't care. For a polynomial of length N, it is assumed that the Nth bit will always be used, regardless of the bit setting. Therefore, for a polynomial length of 32, there is no 32nd bit in the CRCxOR register.

TABLE 26-1: CRC SETUP EXAMPLES FOR 16 AND 32-BIT POLYNOMIAL

CRC Control Bits	Bit Values	
	16-Bit Polynomial	32-Bit Polynomial
PLEN[4:0]	01111	11111
X[31:16]	0000 0000 0000 000x	0000 0100 1100 0001
X[15:0]	0001 0000 0010 000x	0001 1101 1011 011x

26.2 Programmable CRC Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this [link](#), contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser:
<http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en555464>

26.2.1 KEY RESOURCES

- “32-Bit Programmable Cyclic Redundancy Check (CRC)” (DS70346) in the “dsPIC33/PIC24 Family Reference Manual”
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related “dsPIC33/PIC24 Family Reference Manual” Sections
- Development Tools

26.3 Programmable CRC Control Registers

REGISTER 26-1: CRCCON1: CRC CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0
CRCEN	—	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0
bit 15							

R-0	R-1	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	—	—	—
bit 7							

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 15	CRCEN: CRC Enable bit 1 = CRC module is enabled 0 = CRC module is disabled; all state machines, pointers and CRCWDAT/CRCDAT registers are reset, other SFRs are not reset
bit 14	Unimplemented: Read as '0'
bit 13	CSIDL: CRC Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12-8	VWORD[4:0]: Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN[4:0] > 7 or 16 when PLEN[4:0] ≤ 7.
bit 7	CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full
bit 6	CRCMPT: CRC FIFO Empty Bit 1 = FIFO is empty 0 = FIFO is not empty
bit 5	CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready
bit 4	CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off
bit 3	LENDIAN: Data Word Little-Endian Configuration bit 1 = Data word is shifted into the CRC starting with the LSb (little-endian) 0 = Data word is shifted into the CRC starting with the MSb (big-endian)
bit 2-0	Unimplemented: Read as '0'

dsPIC33EDV64MC205

REGISTER 26-2: CRCCON2: CRC CONTROL REGISTER 2

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	—	—		DWIDTH[4:0]							
bit 15											bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	—	—		PLEN[4:0]							
bit 7											bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-13 **Unimplemented:** Read as '0'

bit 12-8 **DWIDTH[4:0]:** Data Width Select bits

These bits set the width of the data word (DWIDTH[4:0] + 1).

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 **PLEN[4:0]:** Polynomial Length Select bits

These bits set the length of the polynomial (Polynomial Length = PLEN[4:0] + 1).

REGISTER 26-3: CRCXORH: CRC XOR POLYNOMIAL HIGH REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
X[31:24]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
X[23:16]							
bit 7							bit 0

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-0 **X[31:16]**: XOR of Polynomial Term X^n Enable bits

REGISTER 26-4: CRCXORL: CRC XOR POLYNOMIAL LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
X[15:8]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
X[7:1]							
bit 7							—

Legend:

R = Readable bit

W = Writable bit

U = Unimplemented bit, read as '0'

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

bit 15-1 **X[15:1]**: XOR of Polynomial Term X^n Enable bits

bit 0 **Unimplemented**: Read as '0'

dsPIC33EDV64MC205

NOTES:

27.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the dsPIC33EDV64MC205 device. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the *“dsPIC33/PIC24 Family Reference Manual”*, which is available from the Microchip website (www.microchip.com).

The dsPIC33EDV64MC205 device includes several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard™ Security
- In-Circuit Serial Programming™ (ICSP™)
- In-Circuit Emulation

27.1 Configuration Bits

In the dsPIC33EDV64MC205 device, the Configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data are stored at the top of the on-chip program memory space, known as the Flash Configuration bytes. Their specific locations are shown in [Table 27-1](#). The configuration data are automatically loaded from the Flash Configuration bytes to the proper Configuration Shadow registers during device Resets.

Note: Configuration data are reloaded on all types of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration bytes for configuration data in their code for the compiler. This is to make certain that program code is not stored in this address when the code is compiled.

The upper 2 bytes of all Flash Configuration Words in program memory should always be '1111 1111 1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration bytes, enabling code protection as a result. Therefore, users should avoid performing page erase operations on the last page of program memory.

The Configuration Byte register map is shown in [Table 27-1](#).

dsPIC33EDV64MC205

TABLE 27-1: CONFIGURATION BYTE REGISTER MAP

File Name	Address	Device Memory Size (Kbytes)	Bits 23-8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved	00AFEC	64	—	—	—	—	—	—	—	—	—
Reserved	00AFEE	64	—	—	—	—	—	—	—	—	—
FICD	00AFF0	64	—	Reserved ⁽²⁾	—	Reserved	Reserved ⁽¹⁾	Reserved ⁽²⁾	—	ICS[1:0]	
FPOR	00AFF2	64	—	WDTWIN[1:0]	ALTI2C2	ALTI2C1	Reserved ⁽²⁾	—	—	—	—
FWDT	00AFF4	64	—	FWDTEN	WINDIS	PLLKEN	WDTPRE	WDTPOST[3:0]			
FOSC	00AFF6	64	—	FCKSM[1:0]	IOL1WAY	—	—	OSCIOFNC	POSCMD[1:0]		
FOSCSEL	00AFF8	64	—	IESO	PWMLOCK	—	—	—	FNOSC[2:0]		
FGS	00AFFA	64	—	—	—	—	—	—	—	GCP	GWRP
Reserved	00AFFC	64	—	—	—	—	—	—	—	—	—
Reserved	00AFFE	64	—	—	—	—	—	—	—	—	—

Legend: — = unimplemented, read as '1'.

Note 1: This bit is reserved and must be programmed as '0'.

2: These bits are reserved and must be programmed as '1'.

TABLE 27-2: CONFIGURATION BITS DESCRIPTION

Bit Field	Description
GCP	General Segment Code-Protect bit 1 = User program memory is not code-protected 0 = Code protection is enabled for the entire program memory space
GWRP	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	Two-Speed Oscillator Start-up Enable bit 1 = Start up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start up device with user-selected oscillator source
PWMLOCK	PWM Lock Enable bit 1 = Certain PWM registers may only be written after a key sequence 0 = PWM registers may be written without a key sequence
FNOSC[2:0]	Oscillator Selection bits 111 = Fast RC Oscillator with Divide-by-N (FRCDIVN) 110 = Reserved; do not use 101 = Low-Power RC Oscillator (LPRC) 100 = Reserved; do not use 011 = Primary Oscillator with PLL module (XT + PLL, HS + PLL, EC + PLL) 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator with Divide-by-N with PLL module (FRCPLL) 000 = Fast RC Oscillator (FRC)
FCKSM[1:0]	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	Peripheral Pin Select Configuration bit 1 = Allows only one reconfiguration 0 = Allows multiple reconfigurations
OSCIOFNC	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is the clock output 0 = OSC2 is a general purpose digital I/O pin
POSCMD[1:0]	Primary Oscillator Mode Select bits 11 = Primary Oscillator is disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode
FWDTEN	Watchdog Timer Enable bit 1 = Watchdog Timer is always enabled (LPRC Oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect.) 0 = Watchdog Timer is enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register.)
WINDIS	Watchdog Timer Window Enable bit 1 = Watchdog Timer is in Non-Window mode 0 = Watchdog Timer is in Window mode
PLLKEN	PLL Lock Enable bit 1 = PLL lock is enabled 0 = PLL lock is disabled
WDTPRE	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32

dsPIC33EDV64MC205

TABLE 27-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

Bit Field	Description
WDTPOST[3:0]	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 • • • 0001 = 1:2 0000 = 1:1
WDTWIN[1:0]	Watchdog Timer Window Select bits 11 = WDT window is 25% of WDT period 10 = WDT window is 37.5% of WDT period 01 = WDT window is 50% of WDT period 00 = WDT window is 75% of WDT period
ALTI2C1	Alternate I2C1 Pin bit 1 = I2C1 is mapped to the SDA1/SCL1 pins 0 = I2C1 is mapped to the ASDA1/ASCL1 pins
ALTI2C2	Alternate I2C2 Pin bit 1 = I2C2 is mapped to the SDA2/SCL2 pins 0 = I2C2 is mapped to the ASDA2/ASCL2 pins
ICS[1:0]	ICD Communication Channel Select bits 11 = Communicates on PGEC1 and PGED1 10 = Communicates on PGEC2 and PGED2 01 = Communicates on PGEC3 and PGED3 00 = Reserved, do not use

REGISTER 27-1: DEVID: DEVICE ID REGISTER

R	R	R	R	R	R	R	R
DEVID[23:16] ⁽¹⁾							
bit 23							bit 16

R	R	R	R	R	R	R	R
DEVID[15:8] ⁽¹⁾							
bit 15							bit 8

R	R	R	R	R	R	R	R
DEVID[7:0] ⁽¹⁾							
bit 7							bit 0

Legend: R = Read-Only bit

U = Unimplemented bit

bit 23-0 **DEVID[23:0]:** Device Identifier bits⁽¹⁾

Note 1: Refer to the “dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration Bits” (DS70663) for the list of device ID values.

REGISTER 27-2: DEVREV: DEVICE REVISION REGISTER

R	R	R	R	R	R	R	R
DEVREV[23:16] ⁽¹⁾							
bit 23							bit 16

R	R	R	R	R	R	R	R
DEVREV[15:8] ⁽¹⁾							
bit 15							bit 8

R	R	R	R	R	R	R	R
DEVREV[7:0] ⁽¹⁾							
bit 7							bit 0

Legend: R = Read-only bit

U = Unimplemented bit

bit 23-0 **DEVREV[23:0]:** Device Revision bits⁽¹⁾

Note 1: Refer to the “dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration Bits” (DS70663) for the list of device revision values.

dsPIC33EDV64MC205

27.2 User ID Words

The dsPIC33EDV64MC205 device contains four User ID Words, located at addresses, 0x800FF8 through 0x800FFE. The User ID Words can be used for storing product information such as serial numbers, system manufacturing dates, manufacturing lot numbers and other application-specific information.

The User ID Words register map is shown in [Table 27-3](#).

TABLE 27-3: USER ID WORDS REGISTER MAP

File Name	Address	Bits 23-16	Bits 15-0
FUID0	0x800FF8	—	UID0
FUID1	0x800FFA	—	UID1
FUID2	0x800FFC	—	UID2
FUID3	0x800FFE	—	UID3

Legend: — = unimplemented, read as '1'.

27.3 Unique Device Identifier (UDID)

All dsPIC33EDV64MC205 devices are individually encoded during final manufacturing with a Unique Device Identifier or UDID. The UDID cannot be erased by a Bulk Erase command or any other user-accessible means. This feature allows for manufacturing traceability of Microchip Technology devices in applications where this is a requirement. It may also be used by the application manufacturer for any number of things that may require unique identification, such as:

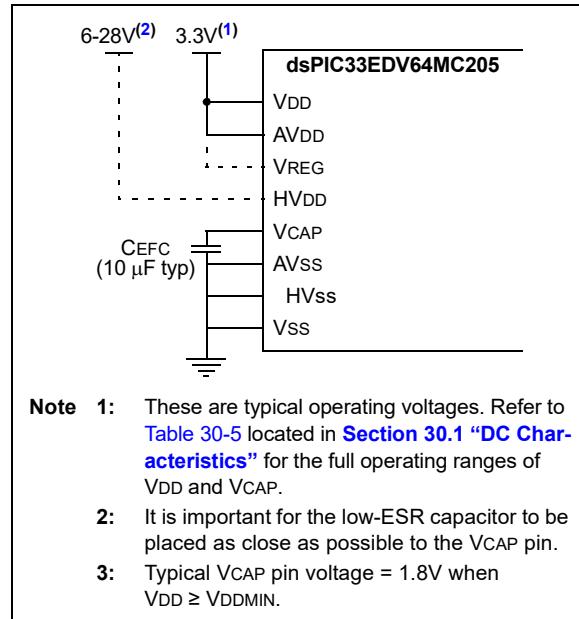
- Tracking the device
- Unique serial number
- Unique security key

The UDID comprises five 24-bit program words. When taken together, these fields form a unique 120-bit identifier.

The UDID is stored in five read-only locations, located between 0x801000 and 0x801008 in the device configuration space. [Table 27-4](#) lists the addresses of the Device Identifier Words and shows their contents.

TABLE 27-4: UDID ADDRESSES

UDID	Address	Description
UDID1	0x801000	UDID Word 1
UDID2	0x801002	UDID Word 2
UDID3	0x801004	UDID Word 3
UDID4	0x801006	UDID Word 4
UDID5	0x801008	UDID Word 5


27.4 Internal 1.8V Core Voltage Regulator

The dsPIC33EDV64MC205 device powers its core digital logic at a nominal 1.8V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, the dsPIC33EDV64MC205 device incorporates an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. A low-ESR (less than 1 Ohm) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (Figure 27-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 30-5 located in [Section 30.1 “DC Characteristics”](#).

Note: It is important for the low-ESR capacitor to be placed as close as possible to the VCAP pin.

FIGURE 27-1: CONNECTIONS FOR INTERNAL 1.8V CORE LOGIC REGULATOR AND ON-CHIP 3.3V VREG OUTPUT^(1,2,3)

27.5 On-Chip 3.3V Regulator Output

The dsPIC33EDV64MC205 device also incorporates an on-chip 3.3V regulator. This regulator outputs 3.3V on the VREG pin when 6-28V are supplied to the HVDD pin.

The 3.3V VREG output may be used to power all VDD/AVDD supply pins when 6-28V are supplied to the HVDD pin (Figure 27-1).

This configuration requires that the MOSFET Driver module is powered via the HVDD pin for dsPIC® device operation.

An external 3.0-3.6V power source is required for VDD/AVDD if the user wishes to operate the dsPIC® device without powering the MOSFET Driver module.

27.6 Brown-out Reset (BOR)

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage, VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source based on the device Configuration bit values (FNOSC[2:0] and POSCMD[1:0]).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON[5]) is ‘1’.

Concurrently, the PWRT Time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM is applied. The total delay in this case is TFSCM. Refer to Parameter SY35 in Table 30-22 of [Section 30.0 “Electrical Characteristics”](#) for specific TFSCM values.

The BOR status bit (RCON[1]) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle mode and resets the device should VDD fall below the BOR threshold voltage.

27.7 Watchdog Timer (WDT)

The WDT implemented in the dsPIC33EDV64MC205 device is driven by the LPRC Oscillator. When the WDT is enabled, the clock source is also enabled.

27.7.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a WDT Time-out period (TWDT), as shown in Parameter SY12 in Table 30-22.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST[3:0] Configuration bits (FWDT[3:0]), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

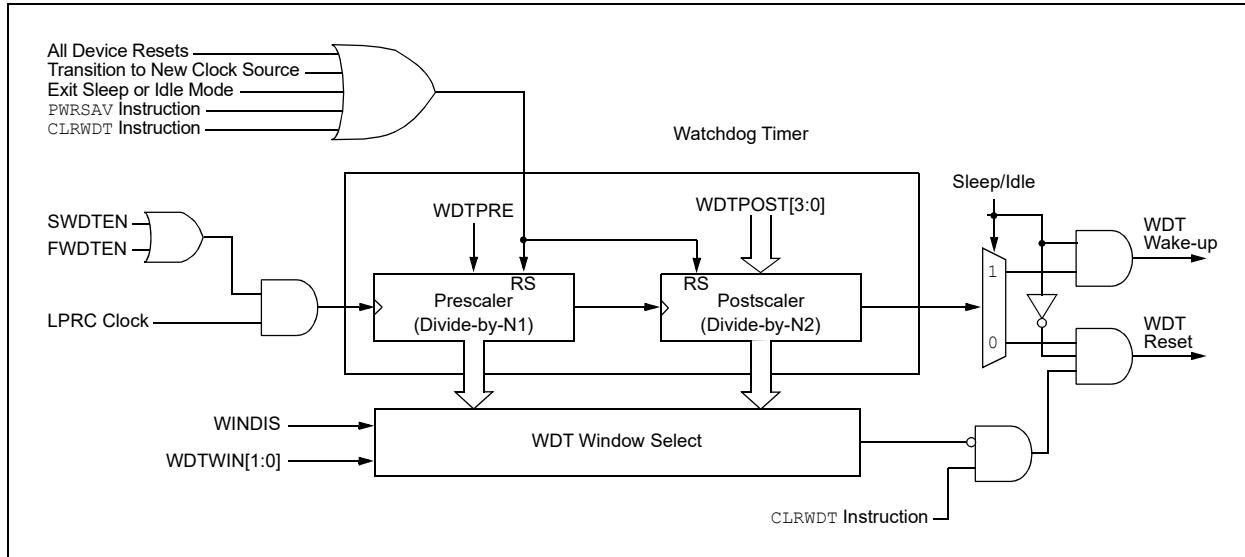
Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

27.7.2 SLEEP AND IDLE MODES

If the WDT is enabled, it continues to run during Sleep or Idle modes. When the WDT time-out occurs, the device wakes the device and code execution continues from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bit (RCON[3,2]) needs to be cleared in software after the device wakes up.

27.7.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.


The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON[5]). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

The WDT flag bit, WDTO (RCON[4]), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

27.7.4 WDT WINDOW

The Watchdog Timer has an optional Windowed mode, enabled by programming the WINDIS bit in the WDT Configuration register (FWDT[6]). In the Windowed mode (WINDIS = 0), the WDT should be cleared based on the settings in the programmable Watchdog Timer Window Select bits (WDTWIN[1:0]).

FIGURE 27-2: WDT BLOCK DIAGRAM

27.8 In-Circuit Serial Programming™ (ICSP™)

The dsPIC33EDV64MC205 device can be serially programmed while in the end application circuit. This is done with two lines for clock and data, and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the “*dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration Bits*” (DS70663) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

27.9 In-Circuit Debugger

When MPLAB® ICD 3 or REAL ICE™ is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to MCLR, VDD, Vss and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins (PGECx and PGEDx).

27.10 Code Protection and CodeGuard™ Security

The dsPIC33EDV64MC205 device offers basic implementation of CodeGuard Security that supports only General Segment (GS) security. This feature helps protect individual Intellectual Property.

Note: Refer to “**CodeGuard™ Intermediate Security**” (DS70005182) in the “*dsPIC33/PIC24 Family Reference Manual*” for further information on usage, configuration and operation of CodeGuard Security.

dsPIC33EDV64MC205

NOTES:

28.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33EDV64MC205 device. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the “*dsPIC33/PIC24 Family Reference Manual*”, which is available from the Microchip website (www.microchip.com).

The dsPIC33EDV64MC205 instruction set is identical to the instruction set found in dsPIC33E devices.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- Literal operations
- DSP operations
- Control operations

Table 28-1 lists the general symbols used in describing the instructions.

The dsPIC33EDV64MC205 instruction set summary in **Table 28-2** lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register ‘Wb’ without any address modifier
- The second source operand, which is typically a register ‘Ws’ with or without an address modifier
- The destination of the result, which is typically a register ‘Wd’ with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value ‘f’
- The destination, which could be either the file register ‘f’ or the W0 register, which is denoted as ‘WREG’

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of ‘Ws’ or ‘f’)
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register ‘Wb’)

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by ‘k’)
- The W register or file register where the literal value is to be loaded (specified by ‘Wb’ or ‘f’)

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register ‘Wb’ without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register ‘Wd’ with or without an address modifier

The **MAC** class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- The accumulator write back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register ‘Wn’ or a literal value

The control instructions can use some of the following operands:

- A program memory address
- The mode of the Table Read and Table Write instructions

dsPIC33EDV64MC205

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the eight MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the Program Counter is changed as a result of the instruction, or a PSV or Table Read is performed, or an SFR register is read. In these cases, the execution takes multiple instruction cycles with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either

two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note: For more details on the instruction set, refer to the "16-Bit MCU and DSC Programmer's Reference Manual" (DS70000157).

For more information on instructions that take more than one instruction cycle to execute, refer to "CPU" (DS70359) in the "dsPIC33/PIC24 Family Reference Manual", particularly **Section 2.8 "Instruction Flow Types"**.

TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
a ∈ {b, c, d}	a is selected from the set of values b, c, d
[n:m]	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.w	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator Write-Back Destination Address register ∈ {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word addressed instructions) ∈ {0...15}
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x0000...0xFFFF}
lit1	1-bit unsigned literal ∈ {0,1}
lit4	4-bit unsigned literal ∈ {0...15}
lit5	5-bit unsigned literal ∈ {0...31}
lit8	8-bit unsigned literal ∈ {0...255}
lit10	10-bit unsigned literal ∈ {0...255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {0...16384}
lit16	16-bit unsigned literal ∈ {0...65535}
lit23	23-bit unsigned literal ∈ {0...8388608}; Lsb must be '0'
None	Field does not require an entry, can be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512...511}
Slit16	16-bit signed literal ∈ {-32768...32767}
Slit6	6-bit signed literal ∈ {-16...16}
Wb	Base W register ∈ {W0...W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }

TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

Field	Description
Wm,Wn	Dividend, Divisor Working register pair (Direct Addressing)
Wm*Wm	Multiplicand and Multiplier Working register pair for Square instructions $\in \{W4 * W4, W5 * W5, W6 * W6, W7 * W7\}$
Wm*Wn	Multiplicand and Multiplier Working register pair for DSP instructions $\in \{W4 * W5, W4 * W6, W4 * W7, W5 * W6, W5 * W7, W6 * W7\}$
Wn	One of 16 Working registers $\in \{W0...W15\}$
Wnd	One of 16 destination Working registers $\in \{W0...W15\}$
Wns	One of 16 source Working registers $\in \{W0...W15\}$
WREG	W0 (Working register used in file register instructions)
Ws	Source W register $\in \{ Ws, [Ws], [Ws++], [Ws--], [++Ws], [-Ws] \}$
Wso	Source W register $\in \{ Wns, [Wns], [Wns++], [Wns--], [++Wns], [-Wns], [Wns+Wb] \}$
Wx	X Data Space Prefetch Address register for DSP instructions $\in \{ [W8] += 6, [W8] += 4, [W8] += 2, [W8], [W8] -= 6, [W8] -= 4, [W8] -= 2, [W9] += 6, [W9] += 4, [W9] += 2, [W9], [W9] -= 6, [W9] -= 4, [W9] -= 2, [W9 + W12], \text{none} \}$
Wxd	X Data Space Prefetch Destination register for DSP instructions $\in \{W4...W7\}$
Wy	Y Data Space Prefetch Address register for DSP instructions $\in \{ [W10] += 6, [W10] += 4, [W10] += 2, [W10], [W10] -= 6, [W10] -= 4, [W10] -= 2, [W11] += 6, [W11] += 4, [W11] += 2, [W11], [W11] -= 6, [W11] -= 4, [W11] -= 2, [W11 + W12], \text{none} \}$
Wyd	Y Data Space Prefetch Destination register for DSP instructions $\in \{W4...W7\}$

dsPIC33EDV64MC205

TABLE 28-2: INSTRUCTION SET OVERVIEW

Base Instr #	Assembly Mnemonic	Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
1	ADD	ADD ACC ⁽¹⁾	Add Accumulators	1	1	OA,OB,SA,SB
		ADD f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD #lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD Wso,#Slit4,Acc	16-Bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC #lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND f	f = f .AND. WREG	1	1	N,Z
		AND f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND #lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR f,#bit4	Bit Clear f	1	1	None
		BCLR Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA C,Expr	Branch if Carry	1	1 (4)	None
		BRA GE,Expr	Branch if Greater Than or Equal	1	1 (4)	None
		BRA GEU,Expr	Branch if Unsigned Greater Than or Equal	1	1 (4)	None
		BRA GT,Expr	Branch if Greater Than	1	1 (4)	None
		BRA GTU,Expr	Branch if Unsigned Greater Than	1	1 (4)	None
		BRA LE,Expr	Branch if Less Than or Equal	1	1 (4)	None
		BRA LEU,Expr	Branch if Unsigned Less Than or Equal	1	1 (4)	None
		BRA LT,Expr	Branch if Less Than	1	1 (4)	None
		BRA LTU,Expr	Branch if Unsigned Less Than	1	1 (4)	None
		BRA N,Expr	Branch if Negative	1	1 (4)	None
		BRA NC,Expr	Branch if Not Carry	1	1 (4)	None
		BRA NN,Expr	Branch if Not Negative	1	1 (4)	None
		BRA NOV,Expr	Branch if Not Overflow	1	1 (4)	None
		BRA NZ,Expr	Branch if Not Zero	1	1 (4)	None
		BRA OA,Expr ⁽¹⁾	Branch if Accumulator A Overflow	1	1 (4)	None
		BRA OB,Expr ⁽¹⁾	Branch if Accumulator B Overflow	1	1 (4)	None
		BRA OV,Expr ⁽¹⁾	Branch if Overflow	1	1 (4)	None
		BRA SA,Expr ⁽¹⁾	Branch if Accumulator A Saturated	1	1 (4)	None
		BRA SB,Expr ⁽¹⁾	Branch if Accumulator B Saturated	1	1 (4)	None
7	BSET	BSET f,#bit4	Branch Unconditionally	1	4	None
		BSET Ws,#bit4	Branch if Zero	1	1 (4)	None
		BRA Wn	Computed Branch	1	4	None
		BSET f,#bit4	Bit Set f	1	1	None
		BSET Ws,#bit4	Bit Set Ws	1	1	None

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic	Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
8	BSW	BSW.C Ws,Wb	Write C Bit to Ws[Wb]	1	1	None
		BSW.Z Ws,Wb	Write Z Bit to Ws[Wb]	1	1	None
9	BTG	BTG f,#bit4	Bit Toggle f	1	1	None
		BTG Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST f,#bit4	Bit Test f	1	1	Z
		BTST.C Ws,#bit4	Bit Test Ws to C	1	1	C
		BTST.Z Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C Ws,Wb	Bit Test Ws[Wb] to C	1	1	C
		BTST.Z Ws,Wb	Bit Test Ws[Wb] to Z	1	1	Z
13	BTSTS	BTSTS f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C Ws,#bit4	Bit Test Ws to C, then Set	1	1	C
		BTSTS.Z Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL lit23	Call Subroutine	2	4	SFA
		CALL Wn	Call Indirect Subroutine	1	4	SFA
		CALL.L Wn	Call Indirect Subroutine (long address)	1	4	SFA
15	CLR	CLR f	f = 0x0000	1	1	None
		CLR WREG	WREG = 0x0000	1	1	None
		CLR Ws	Ws = 0x0000	1	1	None
		CLR Acc,Wx,Wxd,Wy,Wyd,AWB ⁽¹⁾	Clear Accumulator	1	1	OA,OB,SA,SB
16	CLRWDT	CLRWDT	Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	COM f	f = \bar{f}	1	1	N,Z
		COM f,WREG	WREG = \bar{f}	1	1	N,Z
		COM Ws,Wd	Wd = \bar{Ws}	1	1	N,Z
18	CP	CP f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP Wb,#lit8	Compare Wb with lit8	1	1	C,DC,N,OV,Z
		CP Wb,Ws	Compare Wb with Ws (Wb - Ws)	1	1	C,DC,N,OV,Z
19	CP0	CP0 f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CP0 Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB Wb,#lit8	Compare Wb with lit8, with Borrow	1	1	C,DC,N,OV,Z
		CPB Wb,Ws	Compare Wb with Ws, with Borrow (Wb - Ws - C)	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ Wb,Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
		CPBSEQ Wb,Wn,Expr	Compare Wb with Wn, Branch if =	1	1 (5)	None
22	CPSGT	CPSGT Wb,Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
		CPBGT CPBGT Wb,Wn,Expr	Compare Wb with Wn, Branch if >	1	1 (5)	None
23	CPSLT	CPSLT Wb,Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
		CPBLT CPBLT Wb,Wn,Expr	Compare Wb with Wn, Branch if <	1	1 (5)	None
24	CPSNE	CPSNE Wb,Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
		CPBNE CPBNE Wb,Wn,Expr	Compare Wb with Wn, Branch if ≠	1	1 (5)	None

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

dsPIC33EDV64MC205

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic	Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
25	DAW	DAW Wn	Wn = Decimal Adjust Wn	1	1	C
26	DEC	DEC f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC f,WREG	WREG = f - 1	1	1	C,DC,N,OV,Z
		DEC Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2 f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2 f,WREG	WREG = f - 2	1	1	C,DC,N,OV,Z
		DEC2 Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI #lit14	Disable Interrupts for k Instruction Cycles	1	1	None
29	DIV	DIV.S Wm,Wn	Signed 16/16-Bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD Wm,Wn	Signed 32/16-Bit Integer Divide	1	18	N,Z,C,OV
		DIV.U Wm,Wn	Unsigned 16/16-Bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD Wm,Wn	Unsigned 32/16-Bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF Wm,Wn ⁽¹⁾	Signed 16/16-Bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO #lit15,Expr ⁽¹⁾	Do Code to PC + Expr, lit15 + 1 Times	2	2	None
		DO Wn,Expr ⁽¹⁾	Do Code to PC + Expr, (Wn) + 1 Times	2	2	None
32	ED	ED Wm*Wm,Acc,Wx,Wy,Wxd ⁽¹⁾	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB,SA,SB,SAB
33	EDAC	EDAC Wm*Wm,Acc,Wx,Wy,Wxd ⁽¹⁾	Euclidean Distance	1	1	OA,OB,OAB,SA,SB,SAB
34	EXCH	EXCH Wns,Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	C
36	FF1L	FF1L Ws,Wnd	Find First One from Left (MSb) Side	1	1	C
37	FF1R	FF1R Ws,Wnd	Find First One from Right (LSb) Side	1	1	C
38	GOTO	GOTO Expr	Go to Address	2	4	None
		GOTO Wn	Go to Indirect	1	4	None
		GOTO.L Wn	Go to Indirect (long address)	1	4	None
39	INC	INC f	f = f + 1	1	1	C,DC,N,OV,Z
		INC f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2 f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2 f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2 Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR f	f = f .IOR. WREG	1	1	N,Z
		IOR f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR #lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB,SA,SB,SAB
43	LNK	LNK #lit14	Link Frame Pointer	1	1	SFA
44	LSR	LSR f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC Wm*Wn,Acc,Wx,Wxd,Wy,Wyd,AWB ⁽¹⁾	Multiply and Accumulate	1	1	OA,OB,OAB,SA,SB,SAB
		MAC Wm*Wm,Acc,Wx,Wxd,Wy,Wyd ⁽¹⁾	Square and Accumulate	1	1	OA,OB,OAB,SA,SB,SAB

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic	Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
46	MOV	MOV f, Wn	Move f to Wn	1	1	None
		MOV f	Move f to f	1	1	None
		MOV f, WREG	Move f to WREG	1	1	None
		MOV #lit16, Wn	Move 16-Bit Literal to Wn	1	1	None
		MOV.b #lit8, Wn	Move 8-Bit Literal to Wn	1	1	None
		MOV Wn, f	Move Wn to f	1	1	None
		MOV Ws0, Wd0	Move Ws to Wd	1	1	None
		MOV WREG, f	Move WREG to f	1	1	None
		MOV.D Wns, Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D Ws, Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
47	MOVPG	MOVPG #lit10, DSRPAG	Move 10-Bit Literal to DSRPAG	1	1	None
		MOVPG #lit9, DSWPAG	Move 9-Bit Literal to DSWPAG	1	1	None
		MOVPG #lit8, TBLPAG	Move 8-Bit Literal to TBLPAG	1	1	None
		MOVPG Ws, DSRPAG	Move Ws[9:0] to DSRPAG	1	1	None
		MOVPG Ws, DSWPAG	Move Ws[8:0] to DSWPAG	1	1	None
		MOVPG Ws, TBLPAG	Move Ws[7:0] to TBLPAG	1	1	None
48	MOVSAC	MOVSAC Acc, Wx, Wxd, Wy, Wyd ⁽¹⁾	Prefetch and Store Accumulator	1	1	None
49	MPY	MPY Wm*Wn, Acc, Wx, Wxd, Wy, Wyd ⁽¹⁾	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY Wm*Wm, Acc, Wx, Wxd, Wy, Wyd ⁽¹⁾	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
50	MPY.N	MPY.N Wm*Wn, Acc, Wx, Wxd, Wy, Wyd ⁽¹⁾	-(Multiply Wm by Wn) to Accumulator	1	1	None
51	MSC	MSC Wm*Wm, Acc, Wx, Wxd, Wy, Wyd, AWB ⁽¹⁾	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
52	MUL	MUL.SS Wb, Ws, Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SS Wb, Ws, Acc ⁽¹⁾	Accumulator = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU Wb, Ws, Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU Wb, Ws, Acc ⁽¹⁾	Accumulator = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU Wb, #lit5, Acc ⁽¹⁾	Accumulator = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.US Wb, Ws, Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.US Wb, Ws, Acc ⁽¹⁾	Accumulator = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU Wb, Ws, Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.UU Wb, #lit5, Acc ⁽¹⁾	Accumulator = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU Wb, Ws, Acc ⁽¹⁾	Accumulator = unsigned(Wb) * unsigned(Ws)	1	1	None
		MULW.SS Wb, Ws, Wnd	Wnd = signed(Wb) * signed(Ws)	1	1	None
		MULW.SU Wb, Ws, Wnd	Wnd = signed(Wb) * unsigned(Ws)	1	1	None
		MULW.US Wb, Ws, Wnd	Wnd = unsigned(Wb) * signed(Ws)	1	1	None
		MULW.UU Wb, Ws, Wnd	Wnd = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU Wb, #lit5, Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.SU Wb, #lit5, Wnd	Wnd = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU Wb, #lit5, Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU Wb, #lit5, Wnd	Wnd = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU Wb, #lit5, Wnd	Wnd = unsigned(Wb) * unsigned(Ws)	1	1	None

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

dsPIC33EDV64MC205

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic	Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
53	NEG	NEG ACC ⁽¹⁾	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG f	f = $\bar{f} + 1$	1	1	C,DC,N,OV,Z
		NEG f,WREG	WREG = $\bar{f} + 1$	1	1	C,DC,N,OV,Z
		NEG Ws,Wd	Wd = $\bar{W}_s + 1$	1	1	C,DC,N,OV,Z
54	NOP	NOP	No Operation	1	1	None
		NOPR	No Operation	1	1	None
55	POP	POP f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S	Pop Shadow Registers	1	1	All
56	PUSH	PUSH f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S	Push Shadow Registers	1	1	None
57	PWRSAV	PWRSAV #lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
58	RCALL	RCALL Expr	Relative Call	1	4	SFA
		RCALL Wn	Computed Call	1	4	SFA
59	REPEAT	REPEAT #lit15	Repeat Next Instruction lit15 + 1 Times	1	1	None
		REPEAT Wn	Repeat Next Instruction (Wn) + 1 Times	1	1	None
60	RESET	RESET	Software Device Reset	1	1	None
61	RETFIE	RETFIE	Return from Interrupt	1	6 (5)	SFA
62	RETLW	RETLW #lit10,Wn	Return with Literal in Wn	1	6 (5)	SFA
63	RETURN	RETURN	Return from Subroutine	1	6 (5)	SFA
64	RLC	RLC f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
65	RLNC	RLNC f	f = Rotate Left (no Carry) f	1	1	N,Z
		RLNC f,WREG	WREG = Rotate Left (no Carry) f	1	1	N,Z
		RLNC Ws,Wd	Wd = Rotate Left (no Carry) Ws	1	1	N,Z
66	RRC	RRC f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
67	RRNC	RRNC f	f = Rotate Right (no Carry) f	1	1	N,Z
		RRNC f,WREG	WREG = Rotate Right (no Carry) f	1	1	N,Z
		RRNC Ws,Wd	Wd = Rotate Right (no Carry) Ws	1	1	N,Z
68	SAC	SAC ACC,#Slit4,Wdo ⁽¹⁾	Store Accumulator	1	1	None
		SAC.R ACC,#Slit4,Wdo ⁽¹⁾	Store Rounded Accumulator	1	1	None
69	SE	SE Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C,N,Z
70	SETM	SETM f	f = 0xFFFF	1	1	None
		SETM WREG	WREG = 0xFFFF	1	1	None
		SETM Ws	Ws = 0xFFFF	1	1	None
71	SFTAC	SFTAC ACC,Wn ⁽¹⁾	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC ACC,#Slit6 ⁽¹⁾	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic	Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
72	SL	SL f	f = Left Shift f	1	1	C,N,OV,Z
		SL f, WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL Ws, Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL Wb, Wns, Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL Wb, #lit5, Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
73	SUB	SUB Acc ⁽¹⁾	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB f	f = f - WREG	1	1	C,DC,N,OV,Z
		SUB f, WREG	WREG = f - WREG	1	1	C,DC,N,OV,Z
		SUB #lit10, Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,Z
		SUB Wb, Ws, Wd	Wd = Wb - Ws	1	1	C,DC,N,OV,Z
		SUB Wb, #lit5, Wd	Wd = Wb - lit5	1	1	C,DC,N,OV,Z
74	SUBB	SUBB f	f = f - WREG - (C̄)	1	1	C,DC,N,OV,Z
		SUBB f, WREG	WREG = f - WREG - (C̄)	1	1	C,DC,N,OV,Z
		SUBB #lit10, Wn	Wn = Wn - lit10 - (C̄)	1	1	C,DC,N,OV,Z
		SUBB Wb, Ws, Wd	Wd = Wb - Ws - (C̄)	1	1	C,DC,N,OV,Z
		SUBB Wb, #lit5, Wd	Wd = Wb - lit5 - (C̄)	1	1	C,DC,N,OV,Z
75	SUBR	SUBR f	f = WREG - f	1	1	C,DC,N,OV,Z
		SUBR f, WREG	WREG = WREG - f	1	1	C,DC,N,OV,Z
		SUBR Wb, Ws, Wd	Wd = Ws - Wb	1	1	C,DC,N,OV,Z
		SUBR Wb, #lit5, Wd	Wd = lit5 - Wb	1	1	C,DC,N,OV,Z
76	SUBBR	SUBBR f	f = WREG - f - (C̄)	1	1	C,DC,N,OV,Z
		SUBBR f, WREG	WREG = WREG - f - (C̄)	1	1	C,DC,N,OV,Z
		SUBBR Wb, Ws, Wd	Wd = Ws - Wb - (C̄)	1	1	C,DC,N,OV,Z
		SUBBR Wb, #lit5, Wd	Wd = lit5 - Wb - (C̄)	1	1	C,DC,N,OV,Z
77	SWAP	SWAP.b Wn	Wn = Nibble Swap Wn	1	1	None
		SWAP Wn	Wn = Byte Swap Wn	1	1	None
78	TBLRDH	TBLRDH Ws, Wd	Read Prog[23:16] to Wd[7:0]	1	5	None
79	TBLRDL	TBLRDL Ws, Wd	Read Prog[15:0] to Wd	1	5	None
80	TBLWTH	TBLWTH Ws, Wd	Write Ws[7:0] to Prog[23:16]	1	2	None
81	TBLWTL	TBLWTL Ws, Wd	Write Ws to Prog[15:0]	1	2	None
82	ULNK	ULNK	Unlink Frame Pointer	1	1	SFA
83	XOR	XOR f	f = f .XOR. WREG	1	1	N,Z
		XOR f, WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR #lit10, Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR Wb, Ws, Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR Wb, #lit5, Wd	Wd = Wb .XOR. lit5	1	1	N,Z
84	ZE	ZE Ws, Wnd	Wnd = Zero-Extend Ws	1	1	C,Z,N

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

dsPIC33EDV64MC205

NOTES:

29.0 DEVELOPMENT SUPPORT

Move a design from concept to production in record time with Microchip's award-winning development tools. Microchip tools work together to provide state of the art debugging for any project with easy-to-use Graphical User Interfaces (GUIs) in our free MPLAB® X and Atmel Studio Integrated Development Environments (IDEs), and our code generation tools. Providing the ultimate ease-of-use experience, Microchip's line of programmers, debuggers and emulators work seamlessly with our software tools. Microchip development boards help evaluate the best silicon device for an application, while our line of third party tools round out our comprehensive development tool solutions.

Microchip's MPLAB X and Atmel Studio ecosystems provide a variety of embedded design tools to consider, which support multiple devices, such as PIC® MCUs, AVR® MCUs, SAM MCUs and dsPIC® DSCs. MPLAB X tools are compatible with Windows®, Linux® and Mac® operating systems while Atmel Studio tools are compatible with Windows.

Go to the following website for more information and details:

<https://www.microchip.com/development-tools/>

dsPIC33EDV64MC205

NOTES:

30.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the dsPIC33EDV64MC205 device electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33EDV64MC205 device are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias.....	-40°C to +125°C
Storage temperature	-65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss ⁽³⁾	-0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD \geq 3.0V ⁽³⁾	-0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽³⁾	-0.3V to +3.6V
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin ⁽²⁾	300 mA
Maximum current sunk/sourced by any 4x I/O pin.....	15 mA
Maximum current sunk/sourced by any 8x I/O pin.....	25 mA
Maximum current sunk by all ports ⁽²⁾	200 mA

Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

2: Maximum allowable current is a function of device maximum power dissipation (see [Table 30-2](#)).

3: See the "[Pin Diagram](#)" section for the 5V tolerant pins.

dsPIC33EDV64MC205

30.1 DC Characteristics

TABLE 30-1: OPERATING MIPS VS. VOLTAGE

Characteristic	VDD Range (in Volts)	Temp Range (in °C)	Maximum MIPS
I-Temp	3.0V to 3.6V ⁽¹⁾	-40°C to +85°C	70
E-Temp	3.0V to 3.6V ⁽¹⁾	-40°C to +125°C	60

Note 1: Device is functional at $V_{BORMIN} < VDD < VDDMIN$. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

TABLE 30-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Typ.	Max.	Unit
Industrial Temperature Devices:					
Operating Junction Temperature Range	T _J	-40	—	+125	°C
Operating Ambient Temperature Range	T _A	-40	—	+85	°C
Extended Temperature Devices:					
Operating Junction Temperature Range	T _J	-40	—	+140	°C
Operating Ambient Temperature Range	T _A	-40	—	+125	°C
Power Dissipation:					
Internal Chip Power Dissipation: $P_{INT} = VDD \times (IDD - \Sigma IOH)$	P _D	$P_{INT} + P_{I/O}$			W
I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} \times IOH) + \Sigma (VOL \times IOL)$					
Maximum Allowed Power Dissipation	P _{DMAX}	$(T_J - T_A)/\theta_{JA}$			W

TABLE 30-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Typ.	Max.	Unit	Notes
Package Thermal Resistance, 52-Pin VQFN 8x8 mm	θ _{JA}	24.7	—	°C/W	Note 1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ_{JA}) numbers are achieved by package simulations.

TABLE 30-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) ⁽¹⁾ Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended				
Param No.	Symbol	Characteristic	Min.	Typ.	Max.	Units	Conditions
Operating Voltage							
DC10	VDD	Supply Voltage	3.0	—	3.6	V	
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	Vss	—	—	V	
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.03	—	—	V/ms	0V-1V in 100 ms

Note 1: Device is functional at $V_{BORMIN} < VDD < V_{DDMIN}$. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Device functionality is tested but not characterized. Refer to Parameter **BO10** in Table 30-13 for the minimum and maximum BOR values.

TABLE 30-5: FILTER CAPACITOR (CEFC) SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated): Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended							
Param No.	Symbol	Characteristics	Min.	Typ.	Max.	Units	Comments
	CEFC	External Filter Capacitor Value ⁽¹⁾	4.7	10	—	μF	Capacitor must have a low series resistance (< 1 Ohm)

Note 1: Typical VCAP voltage = 1.8 volts when $VDD \geq V_{DDMIN}$.

dsPIC33EDV64MC205

TABLE 30-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)			
Parameter No.	Typ.	Max.	Units	Conditions		
Operating Current (IDD)⁽¹⁾						
DC20d	9	15	mA	-40°C	3.3V	10 MIPS
DC20a	9	15	mA	+25°C		
DC20b	9	15	mA	+85°C		
DC20c	9	15	mA	+125°C		
DC22d	16	25	mA	-40°C	3.3V	20 MIPS
DC22a	16	25	mA	+25°C		
DC22b	16	25	mA	+85°C		
DC22c	16	25	mA	+125°C		
DC24d	27	40	mA	-40°C	3.3V	40 MIPS
DC24a	27	40	mA	+25°C		
DC24b	27	40	mA	+85°C		
DC24c	27	40	mA	+125°C		
DC25d	36	55	mA	-40°C	3.3V	60 MIPS
DC25a	36	55	mA	+25°C		
DC25b	36	55	mA	+85°C		
DC25c	36	55	mA	+125°C		
DC26d	41	60	mA	-40°C	3.3V	70 MIPS
DC26a	41	60	mA	+25°C		
DC26b	41	60	mA	+85°C		

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

- Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins (except OSC1) are configured as outputs and are driven low
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating or being clocked (defined PMDx bits are all '1's)
- NOP instructions are executed in while(1) loop

TABLE 30-7: DC CHARACTERISTICS: IDLE CURRENT (I_{IDLE})

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)			
Parameter No.	Typ.	Max.	Units	Conditions		
Idle Current (I_{IDLE})⁽¹⁾						
DC40d	3	8	mA	-40°C	3.3V	10 MIPS
DC40a	3	8	mA	+25°C		
DC40b	3	8	mA	+85°C		
DC40c	3	8	mA	+125°C		
DC42d	6	12	mA	-40°C	3.3V	20 MIPS
DC42a	6	12	mA	+25°C		
DC42b	6	12	mA	+85°C		
DC42c	6	12	mA	+125°C		
DC44d	11	18	mA	-40°C	3.3V	40 MIPS
DC44a	11	18	mA	+25°C		
DC44b	11	18	mA	+85°C		
DC44c	11	18	mA	+125°C		
DC45d	17	27	mA	-40°C	3.3V	60 MIPS
DC45a	17	27	mA	+25°C		
DC45b	17	27	mA	+85°C		
DC45c	17	27	mA	+125°C		
DC46d	20	35	mA	-40°C	3.3V	70 MIPS
DC46a	20	35	mA	+25°C		
DC46b	20	35	mA	+85°C		

Note 1: Base Idle current (I_{IDLE}) is measured as follows:

- CPU core is off oscillator is configured in EC mode and external clock is active; OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins (except OSC1) are configured as outputs and are driven low
- MCLR = VDD, WDT and FSCM are disabled
- No peripheral modules are operating or being clocked (defined PMDx bits are all '1's)
- The NVMSIDL bit (NVMCON[12]) = 1 (i.e., Flash regulator is set to standby while the device is in Idle mode)
- The VREGSF bit (RCON[11]) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)

dsPIC33EDV64MC205

TABLE 30-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)		
Parameter No.	Typ.	Max.	Units	Conditions	
Power-Down Current (IPD)⁽¹⁾					
DC60d	25	100	µA	-40°C	3.3V
DC60a	30	100	µA	+25°C	
DC60b	150	350	µA	+85°C	
DC60c	350	800	µA	+125°C	

Note 1: IPD (Sleep) current is measured as follows:

- CPU core is off, oscillator is configured in EC mode and external clock is active; OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins (except OSC1) are configured as outputs and are driven low
- MCLR = VDD, WDT and FSCM are disabled
- No peripheral modules are operating or being clocked (defined PMDx bits are all '1's)
- The VREGS bit (RCON[8]) = 0 (i.e., core regulator is set to standby while the device is in Sleep mode)
- The VREGSF bit (RCON[11]) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)

TABLE 30-9: DC CHARACTERISTICS: WATCHDOG TIMER DELTA CURRENT (Δ lWDT)⁽¹⁾

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)		
Parameter No.	Typ.	Max.	Units	Conditions	
DC61d	8	—	µA	-40°C	3.3V
DC61a	10	—	µA	+25°C	
DC61b	12	—	µA	+85°C	
DC61c	13	—	µA	+125°C	

Note 1: The Δ lWDT current is the additional current consumed when the module is enabled. This current should be added to the base IPD current. All parameters are characterized but not tested during manufacturing.

TABLE 30-10: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
Parameter No.	Typ.	Max.	Doze Ratio	Units	Conditions		
Doze Current (IDOZE)⁽¹⁾							
DC73a ⁽²⁾	35	—	1:2	mA	-40°C	3.3V	Fosc = 140 MHz
DC73g	20	30	1:128	mA			
DC70a ⁽²⁾	35	—	1:2	mA	+25°C	3.3V	Fosc = 140 MHz
DC70g	20	30	1:128	mA			
DC71a ⁽²⁾	35	—	1:2	mA	+85°C	3.3V	Fosc = 140 MHz
DC71g	20	30	1:128	mA			
DC72a ⁽²⁾	28	—	1:2	mA	+125°C	3.3V	Fosc = 120 MHz
DC72g	15	30	1:128	mA			

Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

- Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins (except OSC1) are configured as outputs and are driven low
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating or being clocked (defined PMDx bits are all '1's)
- NOP instructions are executed in while(1) loop

2: Parameter is characterized but not tested in manufacturing.

dsPIC33EDV64MC205

TABLE 30-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
Param No.	Symbol	Characteristic	Min.	Typ.	Max.	Units	Conditions
DI10 DI18 DI19	VIL	Input Low Voltage Any I/O Pin and <u>MCLR</u>	Vss	—	0.2 VDD	V	
		I/O Pins with SDA _x , SCL _x	Vss	—	0.3 VDD	V	SMBus disabled
		I/O Pins with SDA _x , SCL _x	Vss	—	0.8	V	SMBus enabled
DI20	VIH	Input High Voltage I/O Pins Not 5V Tolerant	0.8 VDD	—	VDD	V	
		I/O Pins 5V Tolerant and <u>MCLR</u>	0.8 VDD	—	5.5	V	
		I/O Pins with SDA _x , SCL _x	0.8 VDD	—	5.5	V	SMBus disabled
		I/O Pins with SDA _x , SCL _x	2.1	—	5.5	V	SMBus enabled
DI30	ICNPU	Change Notification Pull-up Current	150	250	550	μA	VDD = 3.3V, VPIN = VSS
DI31	ICNPD	Change Notification Pull-Down Current⁽³⁾	20	50	100	μA	VDD = 3.3V, VPIN = VDD

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

2: Negative current is defined as current sourced by the pin.

3: VIL source < (Vss – 0.3). Characterized but not tested.

4: VIH source > (VDD + 0.3) for non-5V tolerant pins only.

5: Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any “positive” input injection current.

6: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.

7: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical “absolute instantaneous” sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

TABLE 30-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
Param No.	Symbol	Characteristic	Min.	Typ.	Max.	Units	Conditions
DI50	IIL	Input Leakage Current^(1,2)					
		I/O Pins – 5V Tolerant	-1	—	+1	µA	$V_{SS} \leq V_{PIN} \leq V_{DD}$, pin at high-impedance
		I/O Pins – Not 5V Tolerant	-1	—	+1	µA	$V_{SS} \leq V_{PIN} \leq V_{DD}$, pin at high-impedance, $-40^{\circ}C \leq TA \leq +85^{\circ}C$
		I/O Pins – Not 5V Tolerant	-1	—	+1	µA	Analog pins shared with external reference pins, $-40^{\circ}C \leq TA \leq +85^{\circ}C$
		I/O Pins – Not 5V Tolerant	-1	—	+1	µA	$V_{SS} \leq V_{PIN} \leq V_{DD}$, pin at high-impedance, $-40^{\circ}C \leq TA \leq +125^{\circ}C$
		I/O Pins – Not 5V Tolerant	-1	—	+1	µA	Analog pins shared with external reference pins, $-40^{\circ}C \leq TA \leq +125^{\circ}C$
		<u>MCLR</u>	-5	—	+5	µA	$V_{SS} \leq V_{PIN} \leq V_{DD}$
DI55		OSC1	-5	—	+5	µA	$V_{SS} \leq V_{PIN} \leq V_{DD}$, XT and HS modes

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- 2:** Negative current is defined as current sourced by the pin.
- 3:** V_{IL} source $< (V_{SS} - 0.3)$. Characterized but not tested.
- 4:** V_{IH} source $> (V_{DD} + 0.3)$ for non-5V tolerant pins only.
- 5:** Digital 5V tolerant pins do not have an internal high side diode to V_{DD} , and therefore, cannot tolerate any “positive” input injection current.
- 6:** Non-zero injection currents can affect the ADC results by approximately 4-6 counts.
- 7:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical “absolute instantaneous” sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

dsPIC33EDV64MC205

TABLE 30-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
Param No.	Symbol	Characteristic	Min.	Typ.	Max.	Units	Conditions
DI60a	IICL	Input Low Injection Current	0	—	-5 ^(3,6)	mA	All pins except VDD, Vss, AVDD, AVss, MCLR, VCAP and RB7
DI60b	IICH	Input High Injection Current	0	—	+5 ^(4,5,6)	mA	All pins except VDD, Vss, AVDD, AVss, MCLR, VCAP, RB7 and all 5V tolerant pins ⁽⁵⁾
DI60c	Σ IICT	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁷⁾	—	+20 ⁽⁷⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) \leq Σ IICT

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

2: Negative current is defined as current sourced by the pin.

3: VIL source < (Vss - 0.3). Characterized but not tested.

4: VIH source > (VDD + 0.3) for non-5V tolerant pins only.

5: Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.

6: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.

7: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

TABLE 30-12: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
Param.	Symbol	Characteristic	Min.	Typ.	Max.	Units	Conditions
DO10	VOL	Output Low Voltage 4x Sink Driver Pins ⁽²⁾	—	—	0.4	V	VDD = 3.3V, IOL ≤ 6 mA, -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended
		Output Low Voltage 8x Sink Driver Pins ⁽³⁾	—	—	0.4	V	VDD = 3.3V, IOL ≤ 12 mA, -40°C ≤ TA ≤ +85°C, IOL ≤ 8 mA, +85°C < TA ≤ +125°C
DO20	VOH	Output High Voltage 4x Source Driver Pins ⁽²⁾	2.4	—	—	V	IOH ≥ -10 mA, VDD = 3.3V
		Output High Voltage 8x Source Driver Pins ⁽³⁾	2.4	—	—	V	IOH ≥ -15 mA, VDD = 3.3V
DO20A	VOH1	Output High Voltage 4x Source Driver Pins ⁽²⁾	1.5 ⁽¹⁾	—	—	V	IOH ≥ -14 mA, VDD = 3.3V
			2.0 ⁽¹⁾	—	—		IOH ≥ -12 mA, VDD = 3.3V
			3.0 ⁽¹⁾	—	—		IOH ≥ -7 mA, VDD = 3.3V
		Output High Voltage 8x Source Driver Pins ⁽³⁾	1.5 ⁽¹⁾	—	—	V	IOH ≥ -22 mA, VDD = 3.3V
			2.0 ⁽¹⁾	—	—		IOH ≥ -18 mA, VDD = 3.3V
			3.0 ⁽¹⁾	—	—		IOH ≥ -10 mA, VDD = 3.3V

Note 1: Parameters are characterized but not tested.

2: Includes all I/O pins that are not 8x sink driver pins (see below).

3: Includes the following pins: RA4, RA9, RB7-RB15, RC3 and RC15.

TABLE 30-13: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) ⁽¹⁾				
Param No.	Symbol	Characteristic	Min. ⁽²⁾	Typ.	Max.	Units	Conditions
BO10	VBOR	BOR Event on VDD Transition High-to-Low	2.65	—	2.95	V	VDD (Notes 2 and 3)

Note 1: Device is functional at $VBORMIN < VDD < VDDMIN$, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance.

2: Parameters are for design guidance only and are not tested in manufacturing.

3: The VBOR specification is relative to VDD.

dsPIC33EDV64MC205

TABLE 30-14: DC CHARACTERISTICS: PROGRAM MEMORY

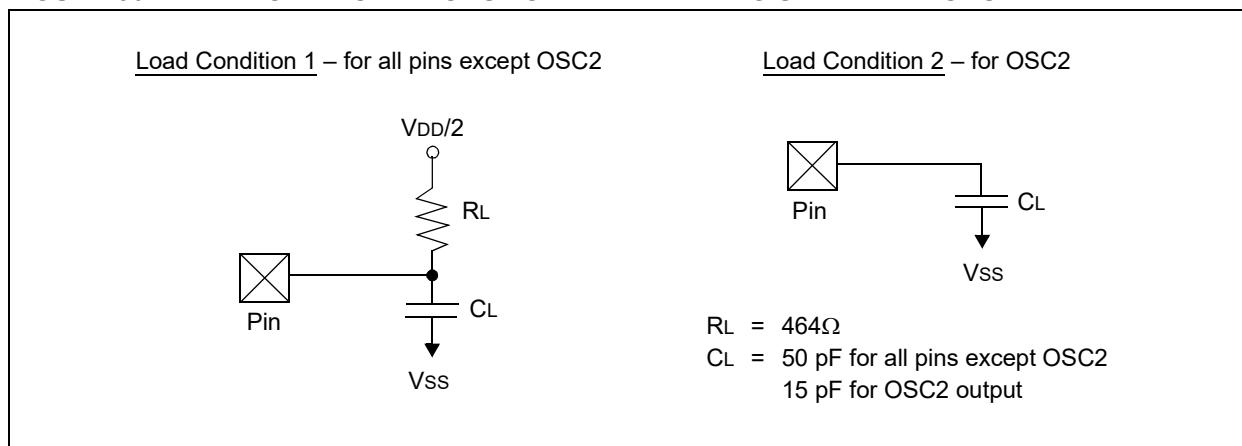
DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
Param No.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions
D130	EP	Program Flash Memory Cell Endurance	10,000	—	—	E/W	-40°C to +125°C
D131	VPR	VDD for Read	3.0	—	3.6	V	
D132b	VPEW	VDD for Self-Timed Write	3.0	—	3.6	V	
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated, -40°C to +125°C
D135	IDDP	Supply Current during Programming ⁽²⁾	—	10	—	mA	
D136	IPEAK	Instantaneous Peak Current During Start-up	—	—	150	mA	
D137a	TPE	Page Erase Time ⁽³⁾	—	146893	—	FRC Cycles	TA = +85°C
D137b	TPE	Page Erase Time ⁽³⁾	—	146893	—	FRC Cycles	TA = +125°C
D138a	Tww	Word Write Cycle Time ⁽³⁾	—	346	—	FRC Cycles	TA = +85°C
D138b	Tww	Word Write Cycle Time ⁽³⁾	—	346	—	FRC Cycles	TA = +125°C

Note 1: Data in "Typ." column are at 3.3V, +25°C unless otherwise stated.

2: Parameter characterized but not tested in manufacturing.

3: Other conditions: FRC = 7.37 MHz, TUN[5:0] = 011111 (for Minimum), TUN[5:0] = 100000 (for Maximum).

This parameter depends on the FRC accuracy (see [Table 30-19](#)) and the value of the FRC Oscillator Tuning register (see [Register 9-4](#)). For complete details on calculating the Minimum and Maximum time, see [Section 5.3 “Programming Operations”](#).


30.2 AC Characteristics and Timing Parameters

This section defines the dsPIC33EDV64MC205 device AC characteristics and timing parameters.

TABLE 30-15: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

AC CHARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
	Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C}$ for Extended
	Operating voltage VDD range as described in Section 30.1 “DC Characteristics” .

FIGURE 30-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 30-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min.	Typ.	Max.	Units	Conditions
DO50	Cosco	OSC2 Pin	—	—	15	pF	In XT and HS modes, when external clock is used to drive OSC1
DO56	C _{IO}	All I/O Pins and OSC2	—	—	50	pF	EC mode
DO58	C _B	SCL _x , SD _{Ax}	—	—	400	pF	In I ² C mode

dsPIC33EDV64MC205

FIGURE 30-2: EXTERNAL CLOCK TIMING

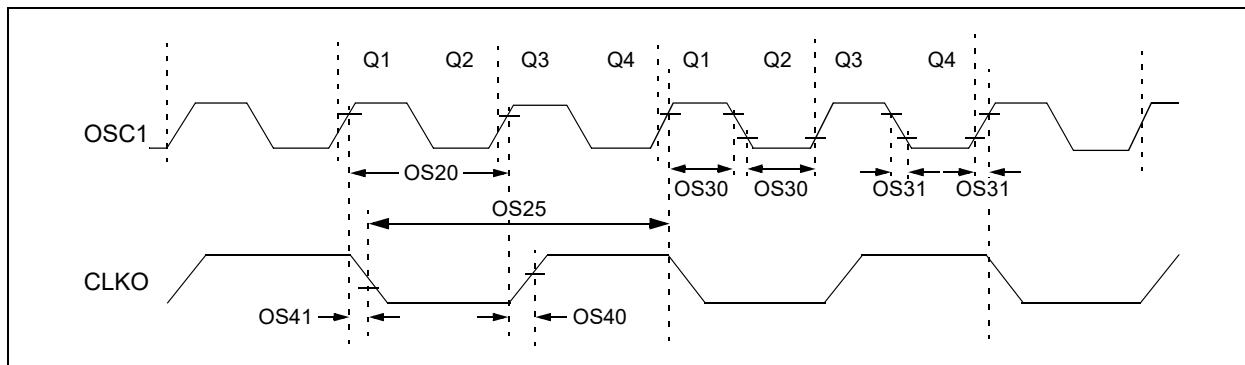


TABLE 30-17: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
Param No.	Sym	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions
OS10	FIN	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	—	60	MHz	EC
		Oscillator Crystal Frequency	3.5	—	10	MHz	XT
			10	—	25	MHz	HS
OS20	Tosc	Tosc = 1/Fosc	8.33	—	DC	ns	+125°C
		Tosc = 1/Fosc	7.14	—	DC	ns	+85°C
OS25	TCY	Instruction Cycle Time ⁽²⁾	16.67	—	DC	ns	+125°C
		Instruction Cycle Time ⁽²⁾	14.28	—	DC	ns	+85°C
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.45 x Tosc	—	0.55 x Tosc	ns	EC
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	—	—	20	ns	EC
OS40	TckR	CLKO Rise Time ^(3,4)	—	5.2	—	ns	
OS41	TckF	CLKO Fall Time ^(3,4)	—	5.2	—	ns	
OS42	GM	External Oscillator Transconductance ⁽⁴⁾	—	12	—	mA/V	HS, VDD = 3.3V, TA = +25°C
			—	6	—	mA/V	XT, VDD = 3.3V, TA = +25°C

Note 1: Data in "Typ." column are at 3.3V, +25°C unless otherwise stated.

2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Minimum" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Maximum" cycle time limit is "DC" (no clock) for all devices.

3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.

4: These parameters are characterized but not tested in manufacturing.

TABLE 30-18: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
Param No.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions
OS50	FPLL1	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	0.8	—	8.0	MHz	ECPLL, XTPLL modes
OS51	Fvco	On-Chip VCO System Frequency	120	—	340	MHz	
OS52	TLOCK	PLL Start-up Time (Lock Time)	0.9	1.5	3.1	ms	
OS53	DCLK	CLKO Stability (Jitter) ⁽²⁾	-3	0.5	3	%	

Note 1: Data in "Typ." column are at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases, or communication clocks used by the application, use the following formula:

$$\text{Effective Jitter} = \frac{DCLK}{\sqrt{\frac{FOSC}{\text{Time Base or Communication Clock}}}}$$

For example, if Fosc = 120 MHz and the SPIx bit rate = 10 MHz, the effective jitter is as follows:

$$\text{Effective Jitter} = \frac{DCLK}{\sqrt{\frac{120}{10}}} = \frac{DCLK}{\sqrt{12}} = \frac{DCLK}{3.464}$$

TABLE 30-19: INTERNAL FRC ACCURACY

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)					
Param No.	Characteristic	Min.	Typ.	Max.	Units	Conditions	
Internal FRC Accuracy @ FRC Frequency = 7.37 MHz⁽¹⁾							
F20a	FRC	-1.5	0.5	+1.5	%	-40°C ≤ TA ≤ -10°C	VDD = 3.0-3.6V
		-1	0.5	+1	%	-10°C ≤ TA ≤ +85°C	VDD = 3.0-3.6V
F20b	FRC	-2	1	+2	%	+85°C ≤ TA ≤ +125°C	VDD = 3.0-3.6V

Note 1: Frequency is calibrated at +25°C and 3.3V. TUNx bits can be used to compensate for temperature drift.

TABLE 30-20: INTERNAL LPRC ACCURACY

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)					
Param No.	Characteristic	Min.	Typ.	Max.	Units	Conditions	
LPRC @ 32.768 kHz⁽¹⁾							
F21a	LPRC	-30	—	+30	%	-40°C ≤ TA ≤ -10°C	VDD = 3.0-3.6V
		-20	—	+20	%	-10°C ≤ TA ≤ +85°C	VDD = 3.0-3.6V
F21b	LPRC	-30	—	+30	%	+85°C ≤ TA ≤ +125°C	VDD = 3.0-3.6V

Note 1: The change of LPRC frequency as VDD changes.

dsPIC33EDV64MC205

FIGURE 30-3: I/O TIMING CHARACTERISTICS

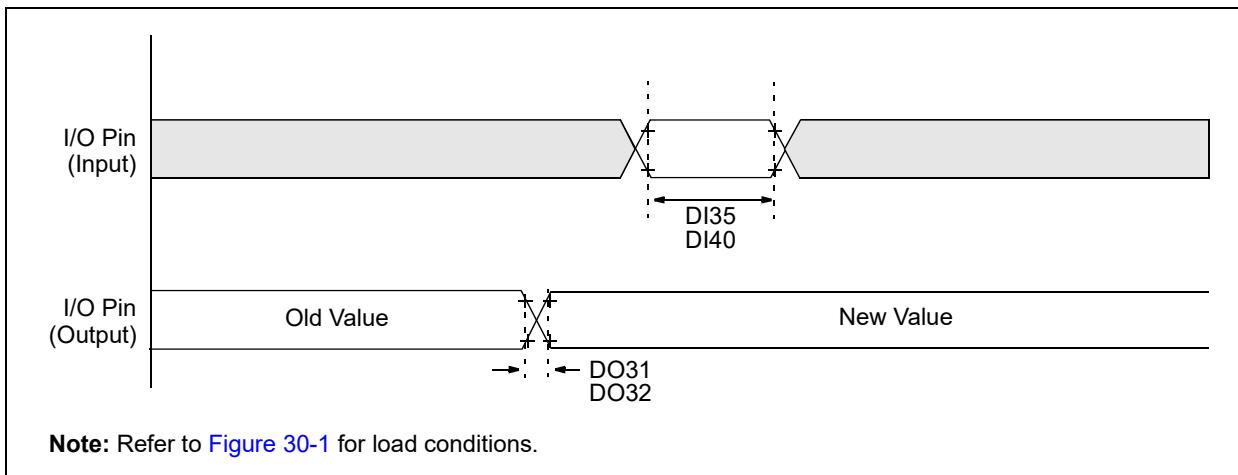
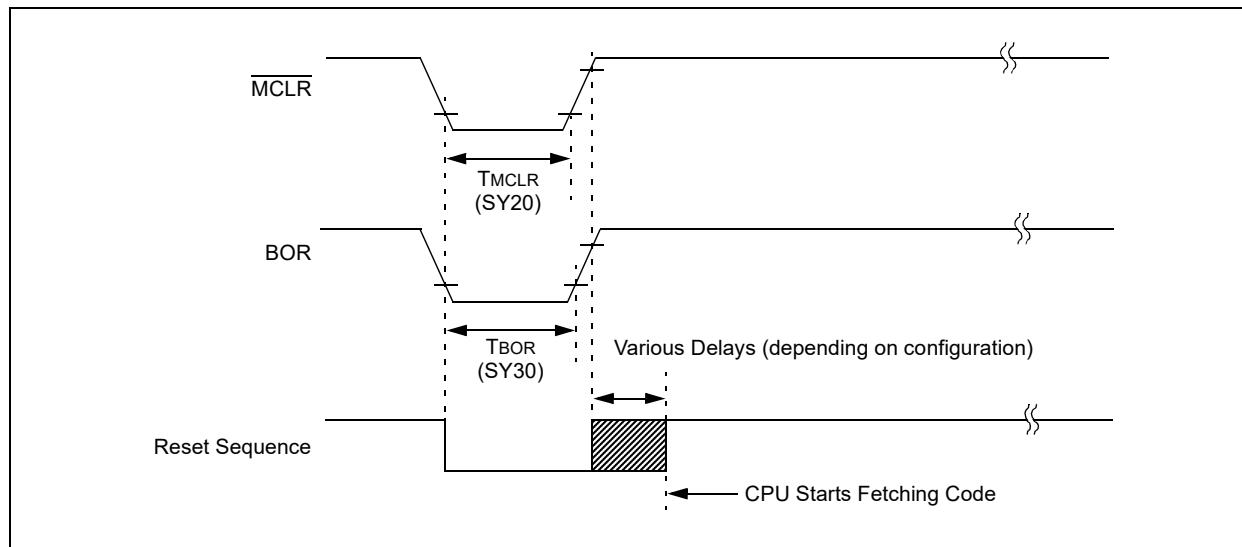



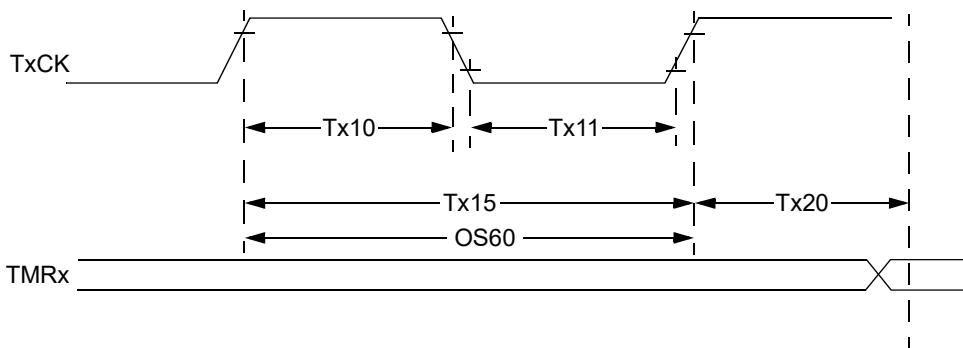
TABLE 30-21: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C}$ for Extended				
Param No.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions
DO31	T _{IO} R	Port Output Rise Time	—	5	10	ns	
DO32	T _{IO} F	Port Output Fall Time	—	5	10	ns	
DI35	T _{INP}	INTx Pin High or Low Time (input)	20	—	—	ns	
DI40	T _{RPB}	CNx High or Low Time (input)	2	—	—	T _{CY}	

Note 1: Data in "Typ." column are at 3.3V, $+25^{\circ}\text{C}$ unless otherwise stated.

FIGURE 30-4: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS

TABLE 30-22: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS


AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SY00	TPU	Power-up Period	—	400	600	μs		
SY10	TOST	Oscillator Start-up Time	—	1024 Tosc	—	—	Tosc = OSC1 period	
SY12	TWDT	Watchdog Timer Time-out Period	0.81	0.98	1.22	ms	WDTPRE = 0, WDTPOST[3:0] = 0000, using LPRC tolerances indicated in F21 (see Table 30-20) at +85°C	
			3.26	3.91	4.88	ms	WDTPRE = 1, WDTPOST[3:0] = 0000, using LPRC tolerances indicated in F21 (see Table 30-20) at +85°C	
SY13	TIOZ	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μs		
SY20	TMCLR	MCLR Pulse Width (low)	2	—	—	μs		
SY30	TBOR	BOR Pulse Width (low)	1	—	—	μs		
SY35	TFSCM	Fail-Safe Clock Monitor Delay	—	500	900	μs	-40°C to +85°C	
SY36	TVREG	Voltage Regulator Standby-to-Active mode Transition Time	—	—	30	μs		
SY37	TOSCDFRC	FRC Oscillator Start-up Delay	46	48	54	μs		
SY38	TOSCDLPRC	LPRC Oscillator Start-up Delay	—	—	70	μs		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column are at 3.3V, +25°C unless otherwise stated.

dsPIC33EDV64MC205

FIGURE 30-5: TIMER1-TIMER5 EXTERNAL CLOCK TIMING CHARACTERISTICS

Note: Refer to [Figure 30-1](#) for load conditions.

TABLE 30-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)					
Param No.	Symbol	Characteristic ⁽²⁾	Min.	Typ.	Max.	Units	Conditions	
TA10	TTXH	T1CK High Time	Synchronous mode	Greater of: 20 or (TCY + 20)/N	—	—	ns	Must also meet Parameter TA15, N = prescale value (1, 8, 64, 256)
			Asynchronous mode	35	—	—	ns	
TA11	TTXL	T1CK Low Time	Synchronous mode	Greater of: 20 or (TCY + 20)/N	—	—	ns	Must also meet Parameter TA15, N = prescale value (1, 8, 64, 256)
			Asynchronous mode	10	—	—	ns	
TA15	TTXP	T1CK Input Period	Synchronous mode	Greater of: 40 or (2 TCY + 40)/N	—	—	ns	N = prescale value (1, 8, 64, 256)
OS60	Ft1	T1CK Oscillator Input Frequency Range (oscillator enabled by setting bit, TCS (T1CON[1]))		DC	—	50	kHz	
TA20	TCKEXTMRL	Delay from External T1CK Clock Edge to Timer Increment	0.75 TCY + 40	—	1.75 TCY + 40	ns		

Note 1: Timer1 is a Type A timer.

2: These parameters are characterized but not tested in manufacturing.

TABLE 30-24: TIMER2 AND TIMER4 (TYPE B TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
Param No.	Symbol	Characteristic ⁽¹⁾		Min.	Typ.	Max.	Units	Conditions
TB10	TtxH	TxCK High Time	Synchronous mode	Greater of: 20 or (TCY + 20)/N	—	—	ns	Must also meet Parameter TB15, N = prescale value (1, 8, 64, 256)
TB11	TtxL	TxCK Low Time	Synchronous mode	Greater of: 20 or (TCY + 20)/N	—	—	ns	Must also meet Parameter TB15, N = prescale value (1, 8, 64, 256)
TB15	TtxP	TxCK Input Period	Synchronous mode	Greater of: 40 or (2 TCY + 40)/N	—	—	ns	N = prescale value (1, 8, 64, 256)
TB20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment		0.75 TCY + 40	—	1.75 TCY + 40	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 30-25: TIMER3 AND TIMER5 (TYPE C TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
Param No.	Symbol	Characteristic ⁽¹⁾		Min.	Typ.	Max.	Units	Conditions
TC10	TtxH	TxCK High Time	Synchronous mode	TCY + 20	—	—	ns	Must also meet Parameter TC15
TC11	TtxL	TxCK Low Time	Synchronous mode	TCY + 20	—	—	ns	Must also meet Parameter TC15
TC15	TtxP	TxCK Input Period	Synchronous mode, with prescaler	2 TCY + 40	—	—	ns	N = prescale value (1, 8, 64, 256)
TC20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment		0.75 TCY + 40	—	1.75 TCY + 40	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

dsPIC33EDV64MC205

FIGURE 30-6: INPUT CAPTURE x (ICx) TIMING CHARACTERISTICS

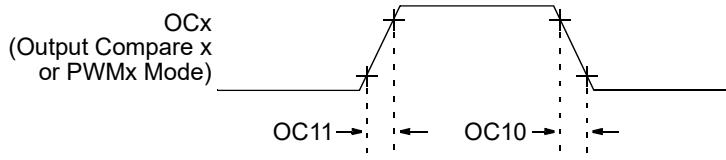

Note: Refer to Figure 30-1 for load conditions.

TABLE 30-26: INPUT CAPTURE x MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Max.	Units	Conditions	
IC10	TcCL	ICx Input Low Time	Greater of: 12.5 + 25 or (0.5 Tcy/N) + 25	—	ns	Must also meet Parameter IC15	N = prescale value (1, 4, 16)
IC11	TcCH	ICx Input High Time	Greater of: 12.5 + 25 or (0.5 Tcy/N) + 25	—	ns	Must also meet Parameter IC15	
IC15	TccP	ICx Input Period	Greater of: 25 + 50 or (1 Tcy/N) + 50	—	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-7: OUTPUT COMPARE x MODULE (OCx) TIMING CHARACTERISTICS

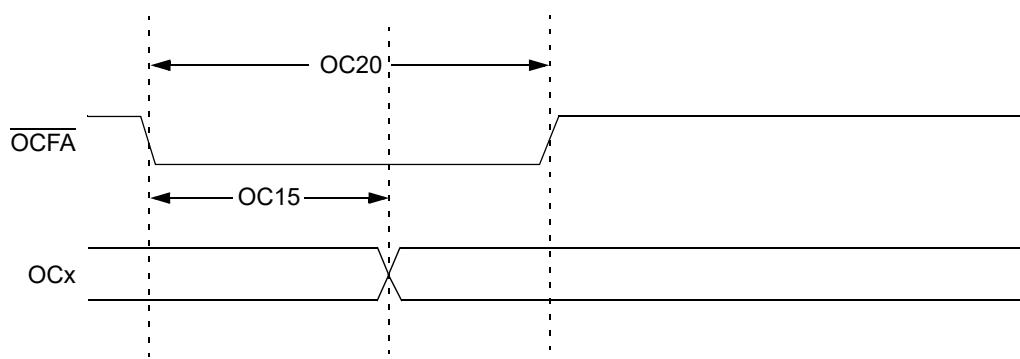

Note: Refer to Figure 30-1 for load conditions.

TABLE 30-27: OUTPUT COMPARE x MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ.	Max.	Units	Conditions
OC10	TccF	OCx Output Fall Time	—	—	—	ns	See Parameter DO32
OC11	TccR	OCx Output Rise Time	—	—	—	ns	See Parameter DO31

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-8: OCx/PWMx MODULE TIMING CHARACTERISTICS

TABLE 30-28: OCx/PWMx MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ.	Max.	Units	Conditions
OC15	TFD	Fault Input to PWMx I/O Change	—	—	T _{CY} + 20	ns	
OC20	TFLT	Fault Input Pulse Width	T _{CY} + 20	—	—	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

dsPIC33EDV64MC205

FIGURE 30-9: HIGH-SPEED PWM_x MODULE FAULT TIMING CHARACTERISTICS

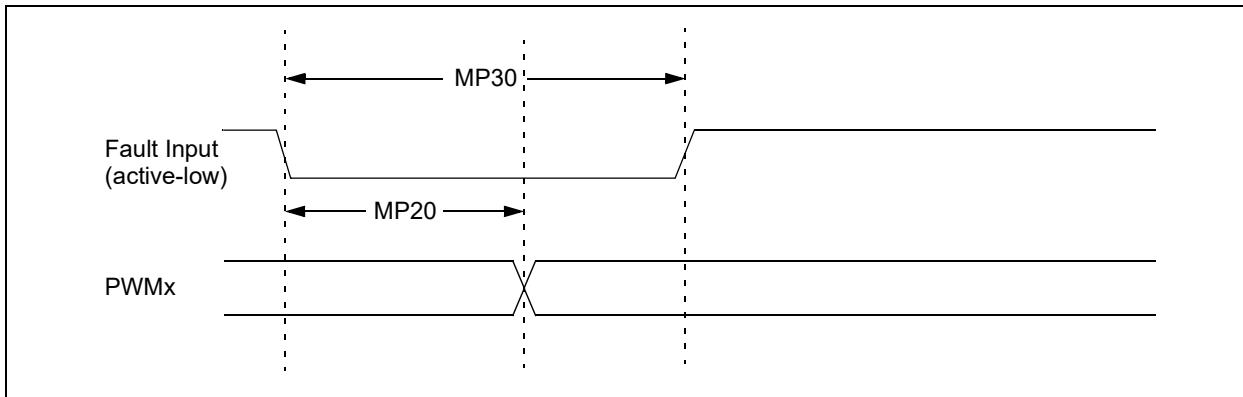
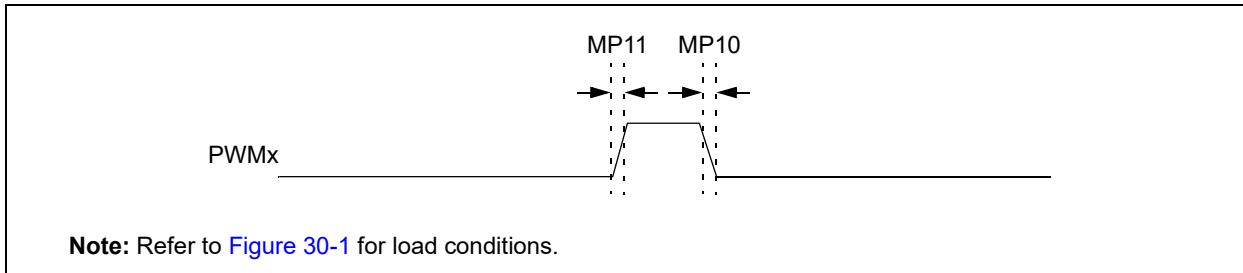



FIGURE 30-10: HIGH-SPEED PWM_x MODULE TIMING CHARACTERISTICS

Note: Refer to [Figure 30-1](#) for load conditions.

TABLE 30-29: HIGH-SPEED PWM_x MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ.	Max.	Units	Conditions
MP10	TFPWM	PWM _x Output Fall Time	—	—	—	ns	See Parameter DO32
MP11	TRPWM	PWM _x Output Rise Time	—	—	—	ns	See Parameter DO31
MP20	TFD	Fault Input ↓ to PWM _x I/O Change	—	—	15	ns	
MP30	TFH	Fault Input Pulse Width	15	—	—	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-11: TIMERQ (QEI MODULE) EXTERNAL CLOCK TIMING CHARACTERISTICS

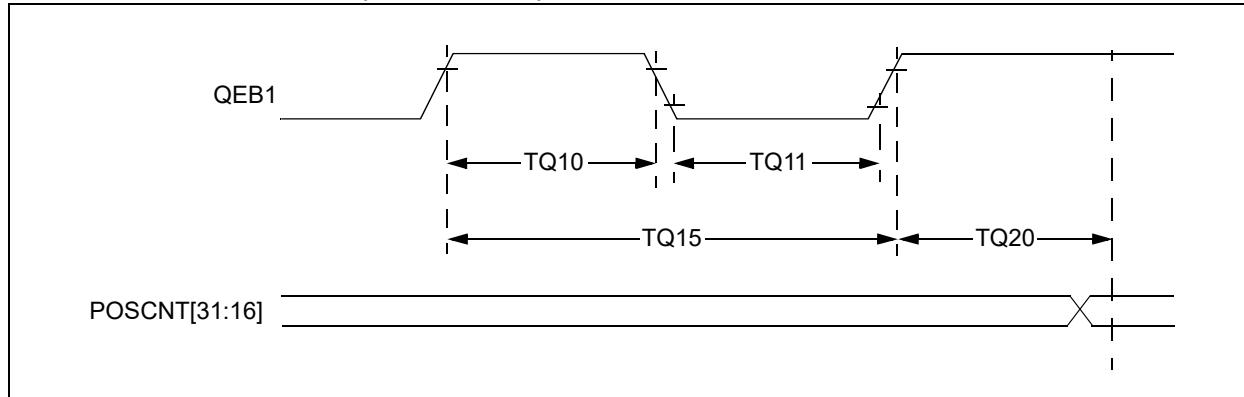


TABLE 30-30: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾		Min.	Typ.	Max.	Units	Conditions
TQ10	TtQH	TQCK High Time	Synchronous mode with Prescaler	Greater of: 12.5 + 25 or (0.5 TCY/N) + 25	—	—	ns	Must also meet Parameter TQ15
TQ11	TtQL	TQCK Low Time	Synchronous mode with Prescaler	Greater of: 12.5 + 25 or (0.5 TCY/N) + 25	—	—	ns	Must also meet Parameter TQ15
TQ15	TtQP	TQCP Input Period	Synchronous mode with Prescaler	Greater of: 25 + 50 or (1 TCY/N) + 50	—	—	ns	
TQ20	TCKEXTMRL	Delay from External TQCK Clock Edge to Timer Increment		—	1	TCY	—	

Note 1: These parameters are characterized but not tested in manufacturing.

dsPIC33EDV64MC205

FIGURE 30-12: QEA1/QEB1 INPUT CHARACTERISTICS

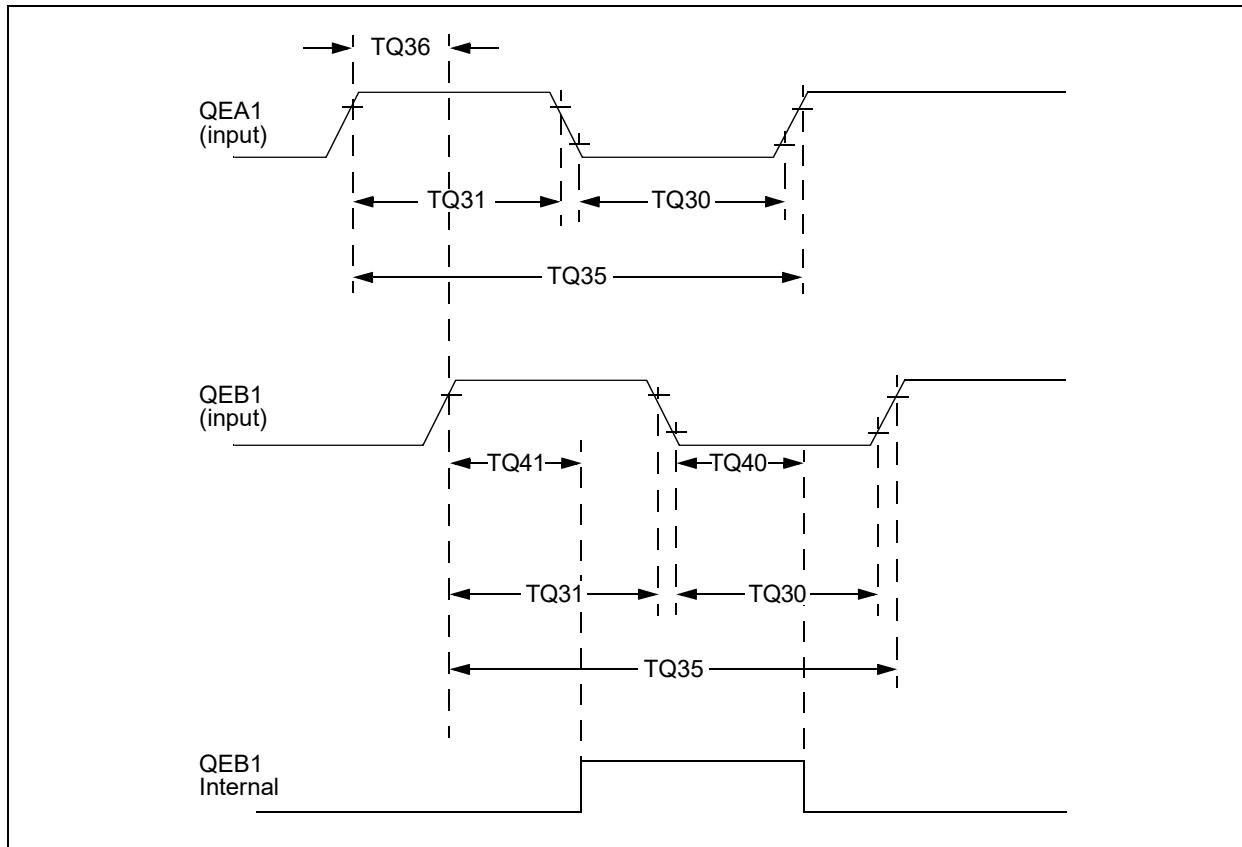


TABLE 30-31: QUADRATURE DECODER TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)			
Param No.	Symbol	Characteristic ⁽¹⁾	Typ. ⁽²⁾	Max.	Units	Conditions
TQ30	TQUL	Quadrature Input Low Time	6 TCY	—	ns	
TQ31	TQUH	Quadrature Input High Time	6 TCY	—	ns	
TQ35	TQUIN	Quadrature Input Period	12 TCY	—	ns	
TQ36	TQUP	Quadrature Phase Period	3 TCY	—	ns	
TQ40	TQUFL	Filter Time to Recognize Low with Digital Filter	$3 * N * TCY$	—	ns	$N = 1, 2, 4, 16, 32, 64, 128$ and 256 (Note 3)
TQ41	TQUFH	Filter Time to Recognize High with Digital Filter	$3 * N * TCY$	—	ns	$N = 1, 2, 4, 16, 32, 64, 128$ and 256 (Note 3)

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column are at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to "Quadrature Encoder Interface (QEI)" (DS70000601) in the "dsPIC33/PIC24 Family Reference Manual". Please see the Microchip website for the latest family reference manual sections.

FIGURE 30-13: QEI MODULE INDEX PULSE TIMING CHARACTERISTICS

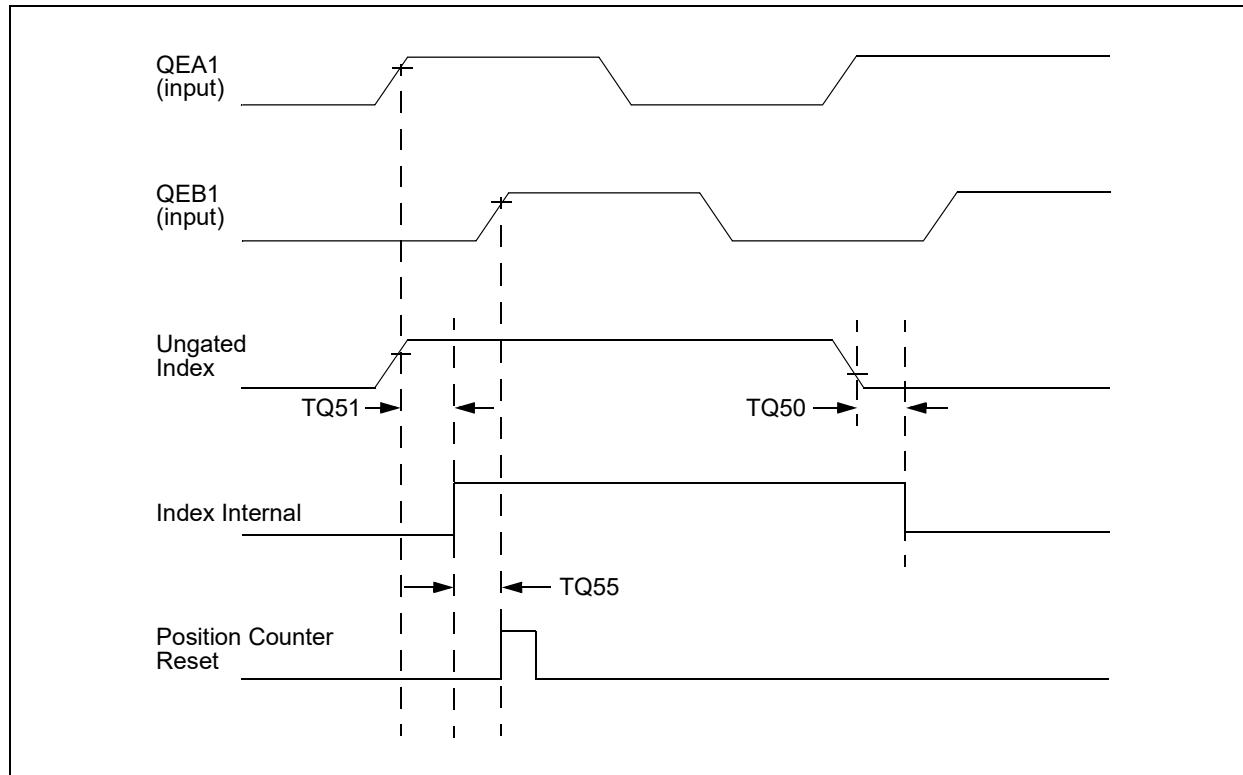
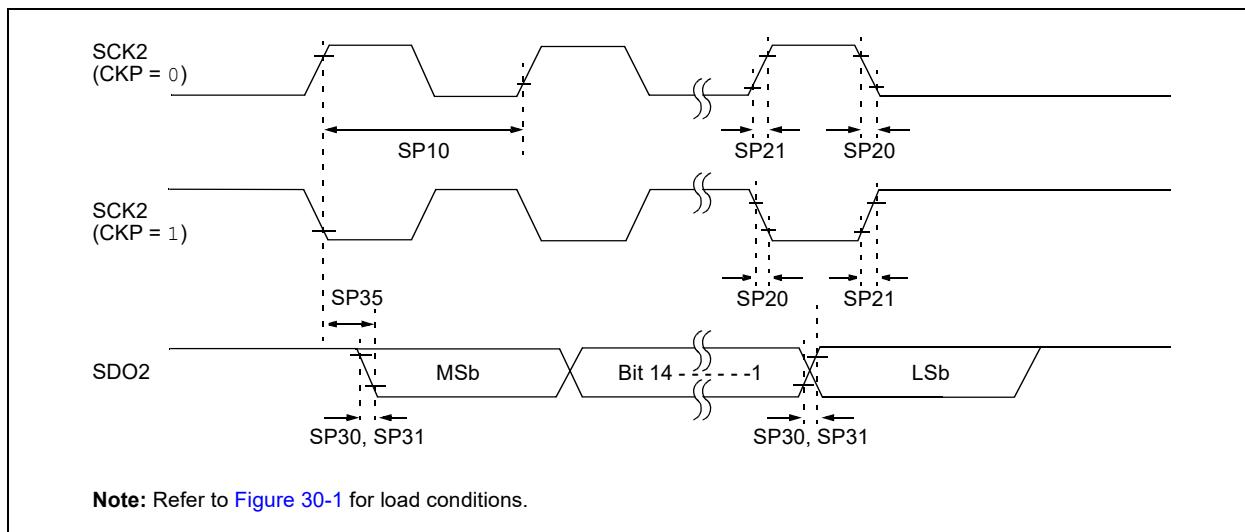


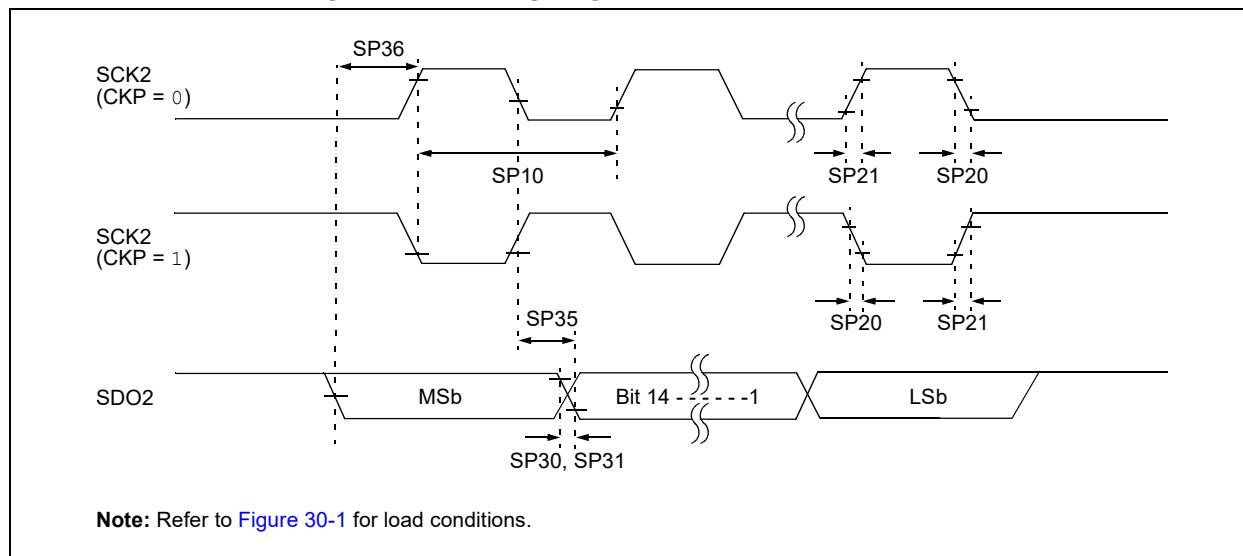
TABLE 30-32: QEI INDEX PULSE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)			
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Max.	Units	Conditions
TQ50	TqiL	Filter Time to Recognize Low with Digital Filter	$3 * N * T_{CY}$	—	ns	$N = 1, 2, 4, 16, 32, 64, 128$ and 256 (Note 2)
TQ51	TqiH	Filter Time to Recognize High with Digital Filter	$3 * N * T_{CY}$	—	ns	$N = 1, 2, 4, 16, 32, 64, 128$ and 256 (Note 2)
TQ55	Tqidxr	Index Pulse Recognized to Position Counter Reset (ungated index)	$3 T_{CY}$	—	ns	

Note 1: These parameters are characterized but not tested in manufacturing.


2: Alignment of index pulses to QEA1 and QEB1 is shown for position counter Reset timing only; shown for forward direction only (QEA1 leads QEB1). Same timing applies for reverse direction (QEA1 lags QEB1) but index pulse recognition occurs on the falling edge.

dsPIC33EDV64MC205


TABLE 30-33: SPI2 MAXIMUM DATA/CLOCK RATE SUMMARY

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)			
Host Transmit Only (Half-Duplex)	Host Transmit/Receive (Full-Duplex)	Client Transmit/Receive (Full-Duplex)	CKE	CKP	SMP
Figure 30-14, Figure 30-15, Table 30-34	—	—	0,1	0,1	0,1
—	Figure 30-16, Table 30-35	—	1	0,1	1
—	Figure 30-17, Table 30-36	—	0	0,1	1
—	—	Figure 30-18, Table 30-37	1	0	0
—	—	Figure 30-19, Table 30-38	1	1	0
—	—	Figure 30-20, Table 30-39	0	1	0
—	—	Figure 30-21, Table 30-40	0	0	0

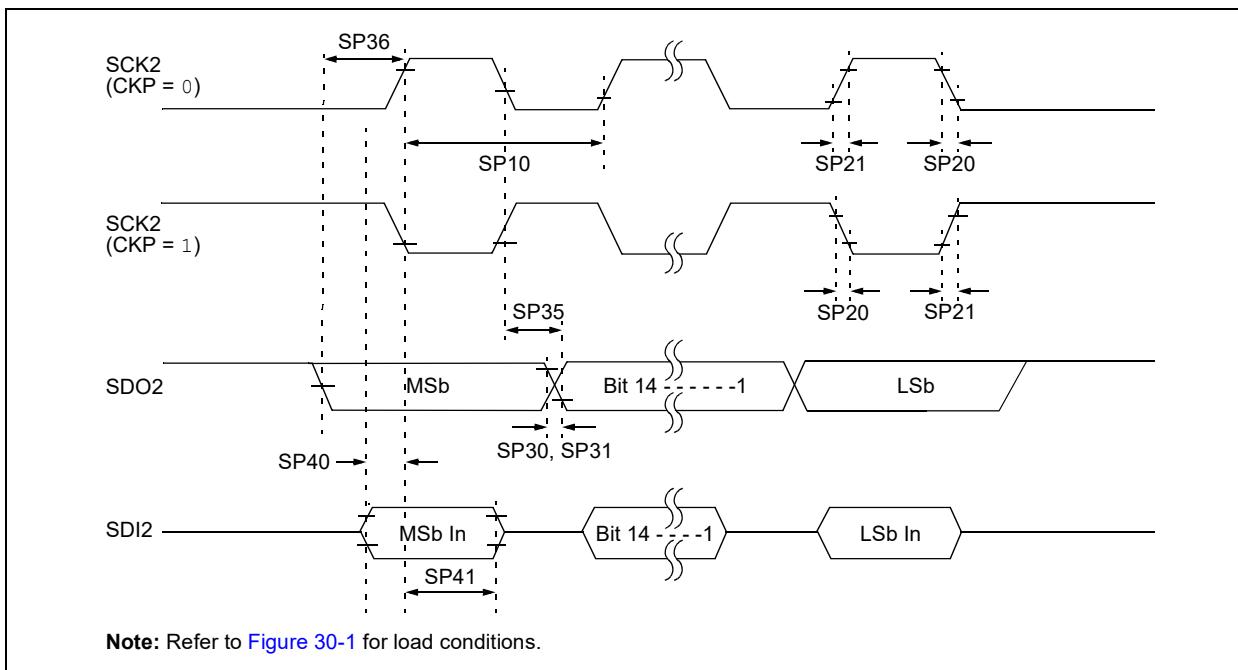
FIGURE 30-14: SPI2 HOST MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0)
TIMING CHARACTERISTICS

**FIGURE 30-15: SPI2 HOST MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1)
TIMING CHARACTERISTICS**

TABLE 30-34: SPI2 HOST MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK2 Frequency	—	—	15	MHz	Note 3
SP20	TscF	SCK2 Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK2 Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO2 Data Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO2 Data Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns	
SP36	TdiV2scH, TdiV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	—	ns	

Note 1: These parameters are characterized but not tested in manufacturing.


2: Data in "Typ." column are at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the clock generated in Host mode must not violate this specification.

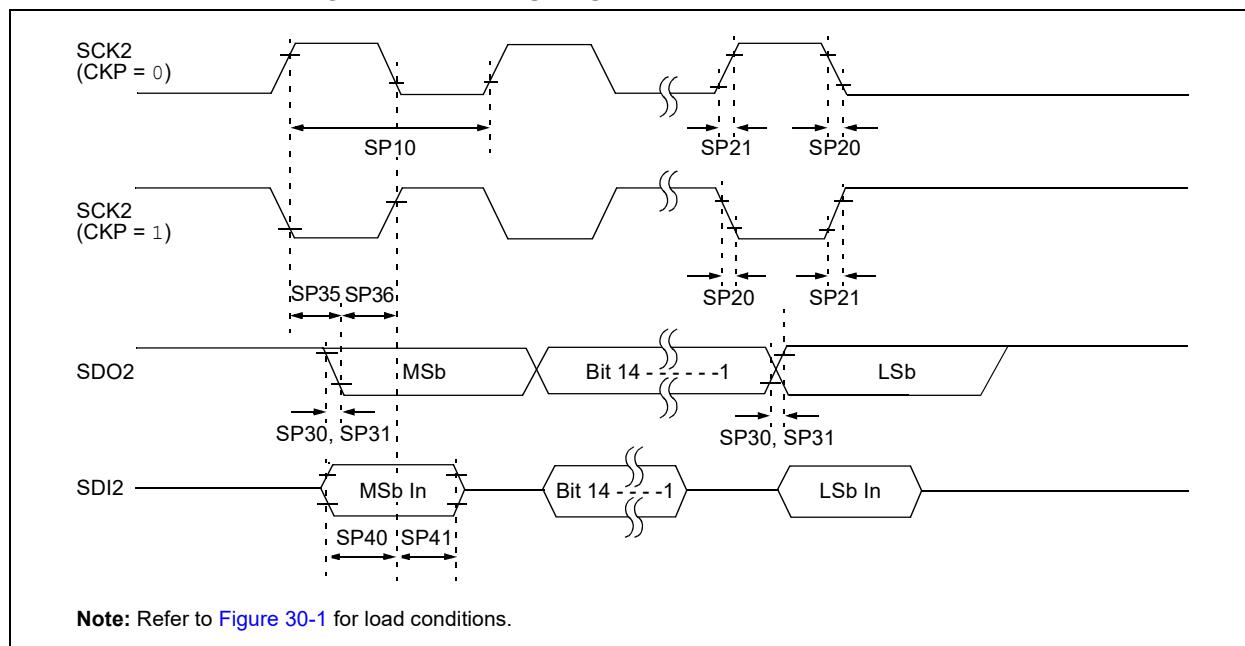
4: Assumes 50 pF load on all SPI2 pins.

dsPIC33EDV64MC205

**FIGURE 30-16: SPI2 HOST MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)
TIMING CHARACTERISTICS**

**TABLE 30-35: SPI2 HOST MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)
TIMING REQUIREMENTS**

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK2 Frequency	—	—	9	MHz	Note 3
SP20	TscF	SCK2 Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK2 Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO2 Data Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO2 Data Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns	
SP36	TdoV2sc, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—	—	ns	


Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ. column are at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 111 ns. The clock generated in Host mode must not violate this specification.

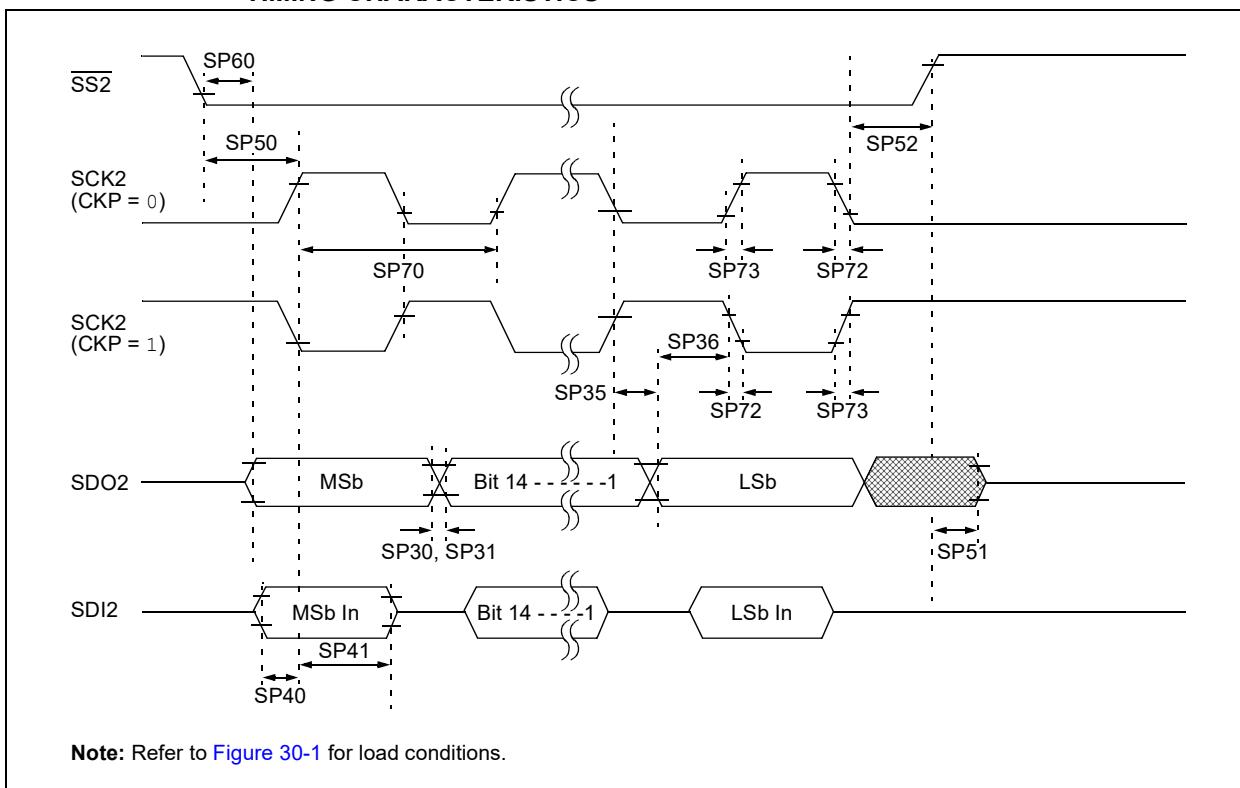
4: Assumes 50 pF load on all SPI2 pins.

**FIGURE 30-17: SPI2 HOST MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)
TIMING CHARACTERISTICS**

**TABLE 30-36: SPI2 HOST MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)
TIMING REQUIREMENTS**

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK2 Frequency	—	—	9	MHz	-40°C to +125°C (Note 3)
SP20	TscF	SCK2 Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK2 Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO2 Data Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO2 Data Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—	—	ns	

Note 1: These parameters are characterized but not tested in manufacturing.


2: Data in "Typ." column are at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 111 ns. The clock generated in Host mode must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

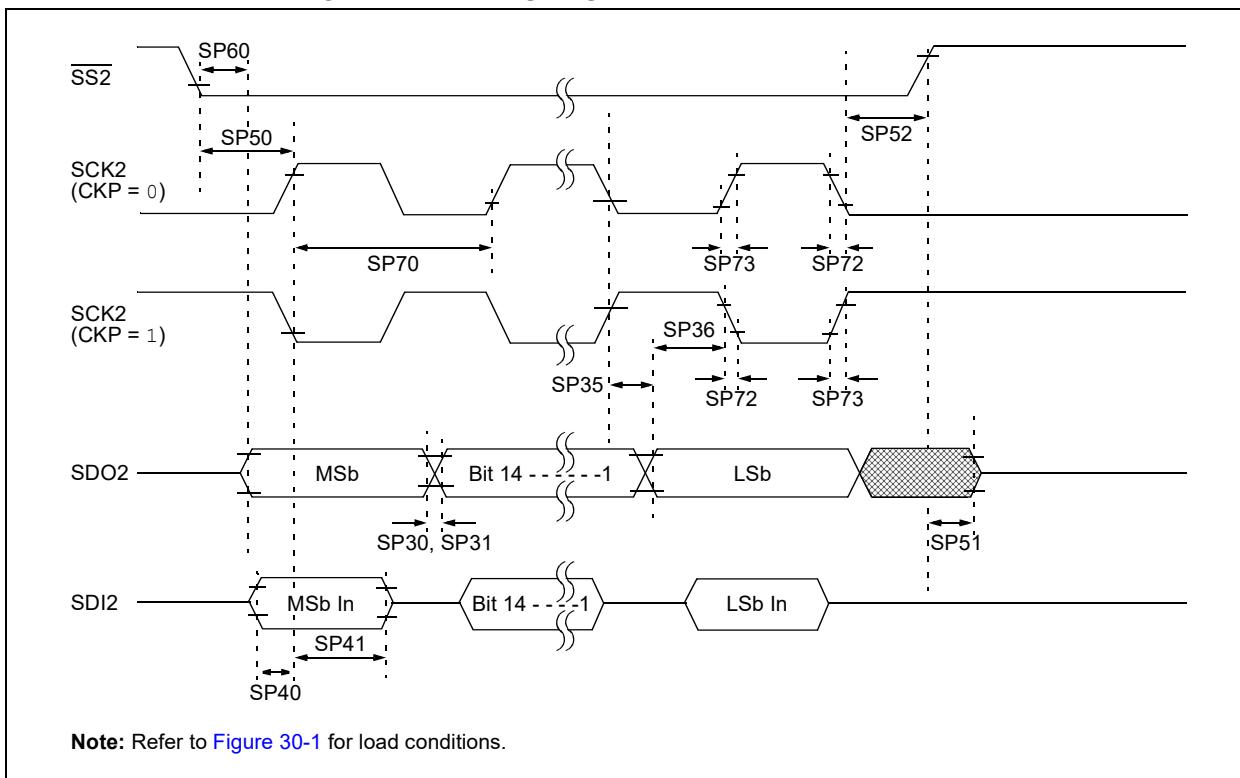
dsPIC33EDV64MC205

**FIGURE 30-18: SPI2 CLIENT MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)
TIMING CHARACTERISTICS**

**TABLE 30-37: SPI2 CLIENT MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)
TIMING REQUIREMENTS**

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK2 Input Frequency	—	—	Lesser of FP or 15	MHz	Note 3
SP72	TscF	SCK2 Input Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK2 Input Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO2 Data Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO2 Data Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—	—	ns	
SP50	TssL2scH, TssL2scL	$\overline{SS2} \downarrow$ to SCK2 \uparrow or SCK2 \downarrow Input	120	—	—	ns	
SP51	TssH2doZ	$\overline{SS2} \uparrow$ to SDO2 Output High-Impedance	10	—	50	ns	Note 4
SP52	TscH2ssH TscL2ssH	$\overline{SS2} \uparrow$ after SCK2 Edge	1.5 TCY + 40	—	—	ns	Note 4
SP60	TssL2doV	SDO2 Data Output Valid after $\overline{SS2}$ Edge	—	—	50	ns	

Note 1: These parameters are characterized but not tested in manufacturing.


2: Data in "Typ." column are at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the SCK2 clock generated by the Host must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

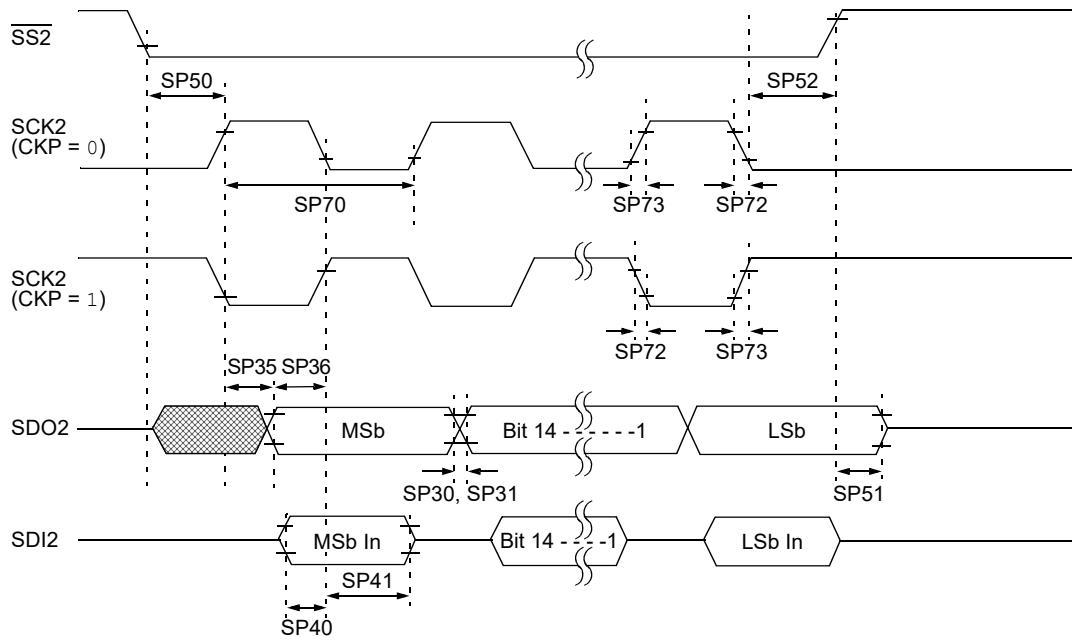
dsPIC33EDV64MC205

**FIGURE 30-19: SPI2 CLIENT MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)
TIMING CHARACTERISTICS**

**TABLE 30-38: SPI2 CLIENT MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)
TIMING REQUIREMENTS**

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK2 Input Frequency	—	—	Lesser of FP or 11	MHz	Note 3
SP72	TscF	SCK2 Input Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK2 Input Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO2 Data Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO2 Data Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—	—	ns	
SP50	TssL2scH, TssL2scL	SS2 ↓ to SCK2 ↑ or SCK2 ↓ Input	120	—	—	ns	
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	—	50	ns	Note 4
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 TCY + 40	—	—	ns	Note 4
SP60	TssL2doV	SDO2 Data Output Valid after SS2 Edge	—	—	50	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.


2: Data in "Typ." column are at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 91 ns. Therefore, the SCK2 clock generated by the Host must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

dsPIC33EDV64MC205

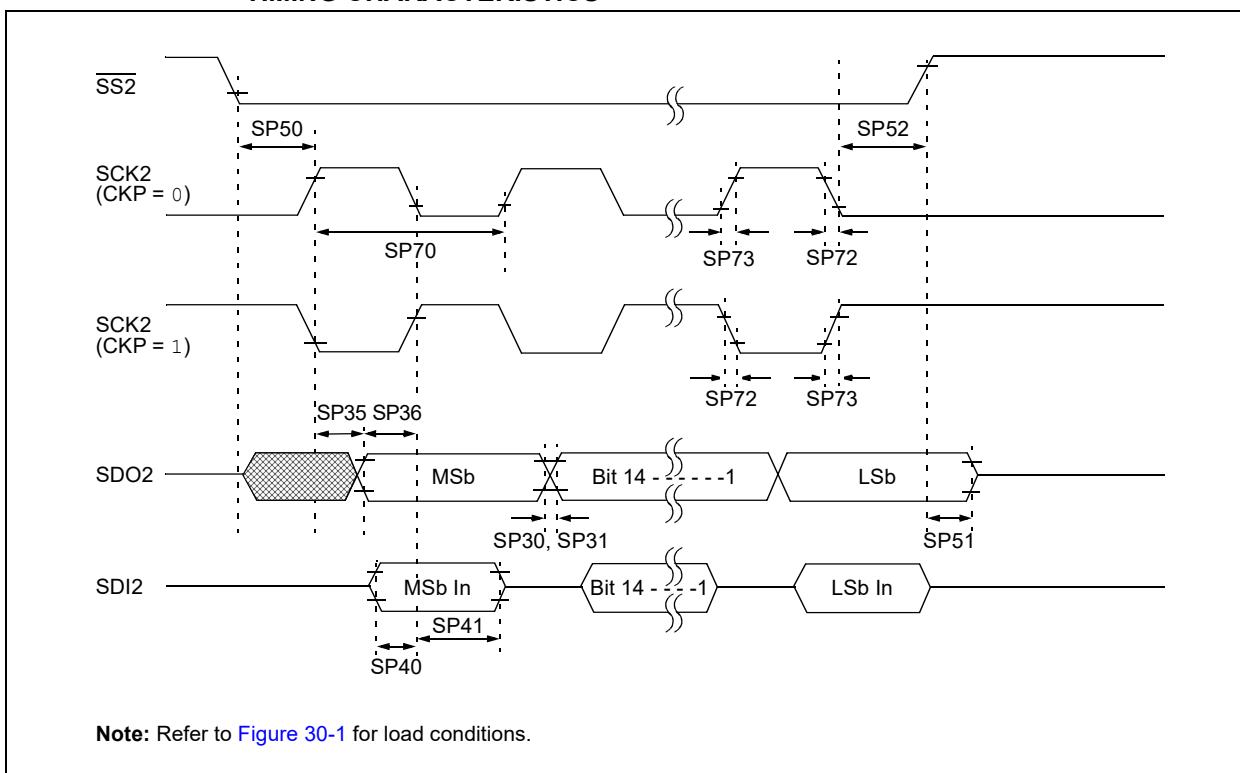
**FIGURE 30-20: SPI2 CLIENT MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)
TIMING CHARACTERISTICS**

Note: Refer to [Figure 30-1](#) for load conditions.

**TABLE 30-39: SPI2 CLIENT MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)
TIMING REQUIREMENTS**

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK2 Input Frequency	—	—	15	MHz	Note 3
SP72	TscF	SCK2 Input Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK2 Input Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO2 Data Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO2 Data Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP35	Tsch2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	—	ns	
SP41	Tsch2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—	—	ns	
SP50	TssL2scH, TssL2scL	SS2 ↓ to SCK2 ↑ or SCK2 ↓ Input	120	—	—	ns	
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	—	50	ns	Note 4
SP52	Tsch2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 TCY + 40	—	—	ns	Note 4

Note 1: These parameters are characterized but not tested in manufacturing.


2: Data in "Typ." column are at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the SCK2 clock generated by the Host must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

dsPIC33EDV64MC205

**FIGURE 30-21: SPI2 CLIENT MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)
TIMING CHARACTERISTICS**

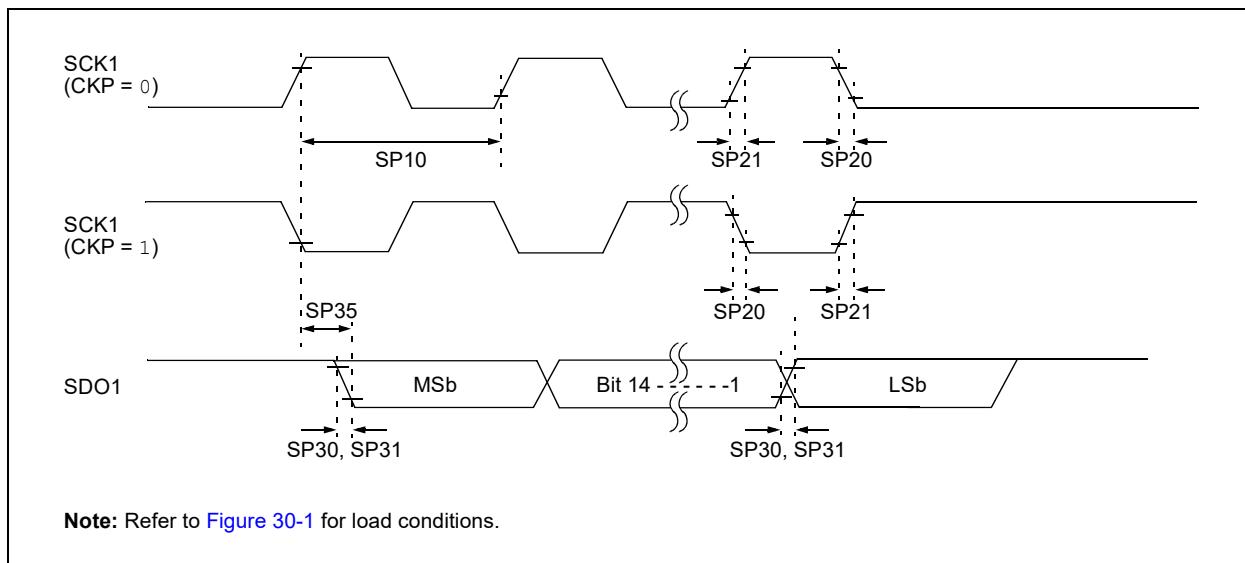
**TABLE 30-40: SPI2 CLIENT MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)
TIMING REQUIREMENTS**

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK2 Input Frequency	—	—	11	MHz	Note 3
SP72	TscF	SCK2 Input Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK2 Input Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO2 Data Output Fall Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP31	TdoR	SDO2 Data Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP35	Tsch2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	—	ns	
SP41	Tsch2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—	—	ns	
SP50	TssL2scH, TssL2scL	SS2 ↓ to SCK2 ↑ or SCK2 ↓ Input	120	—	—	ns	
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	—	50	ns	Note 4
SP52	Tsch2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 TCY + 40	—	—	ns	Note 4

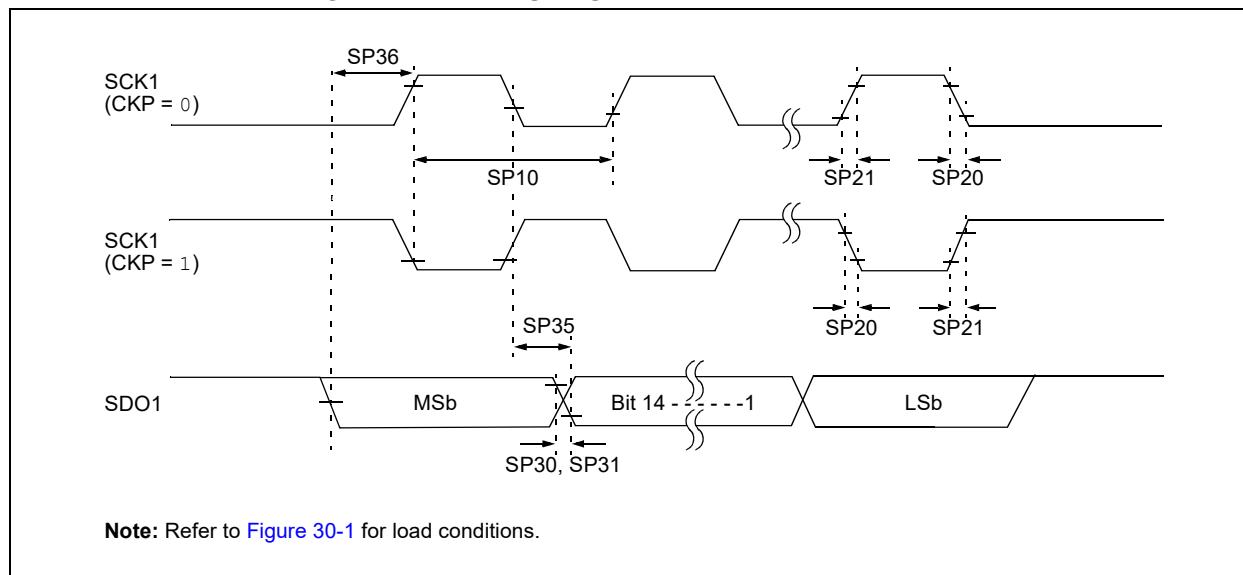
Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column are at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 91 ns. Therefore, the SCK2 clock generated by the Host must not violate this specification.


4: Assumes 50 pF load on all SPI2 pins.

dsPIC33EDV64MC205


TABLE 30-41: SPI1 MAXIMUM DATA/CLOCK RATE SUMMARY

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)			
Host Transmit Only (Half-Duplex)	Host Transmit/Receive (Full-Duplex)	Client Transmit/Receive (Full-Duplex)	CKE	CKP	SMP
Figure 30-22, Figure 30-23, Table 30-42	—	—	0,1	0,1	0,1
—	Figure 30-24, Table 30-43	—	1	0,1	1
—	Figure 30-25, Table 30-44	—	0	0,1	1
—	—	Figure 30-26, Table 30-45	1	0	0
—	—	Figure 30-27, Table 30-46	1	1	0
—	—	Figure 30-28, Table 30-47	0	1	0
—	—	Figure 30-29, Table 30-48	0	0	0

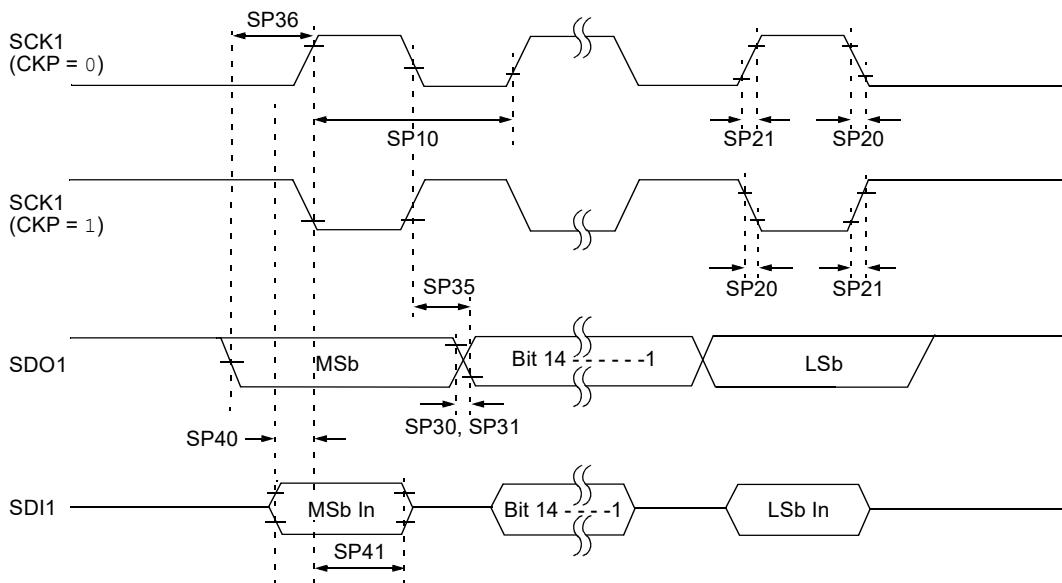
FIGURE 30-22: SPI1 HOST MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0)
TIMING CHARACTERISTICS

**FIGURE 30-23: SPI1 HOST MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1)
TIMING CHARACTERISTICS**

TABLE 30-42: SPI1 HOST MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK1 Frequency	—	—	15	MHz	Note 3
SP20	TscF	SCK1 Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK1 Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdiV2scH, TdiV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	—	ns	

Note 1: These parameters are characterized but not tested in manufacturing.


2: Data in "Typ." column are at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the clock generated in Host mode must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

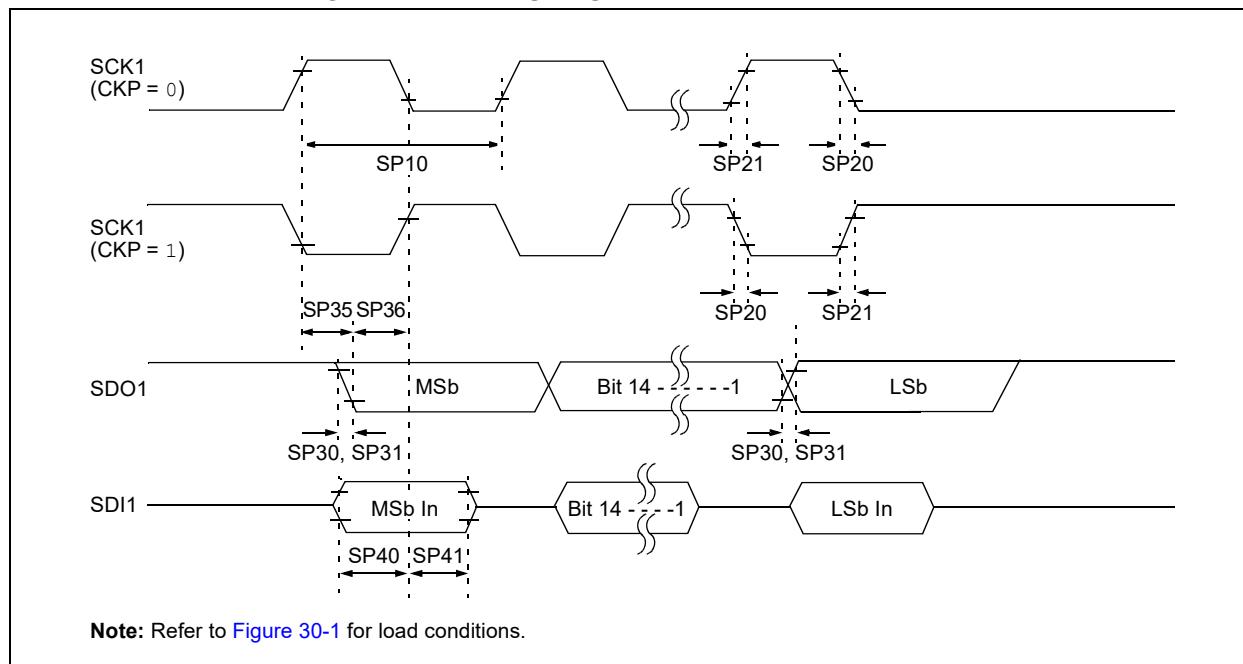
dsPIC33EDV64MC205

**FIGURE 30-24: SPI1 HOST MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)
TIMING CHARACTERISTICS**

Note: Refer to Figure 30-1 for load conditions.

**TABLE 30-43: SPI1 HOST MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)
TIMING REQUIREMENTS**

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK1 Frequency	—	—	10	MHz	Note 3
SP20	TscF	SCK1 Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK1 Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2sc, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	—	—	ns	


Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column are at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 100 ns. The clock generated in Host mode must not violate this specification.

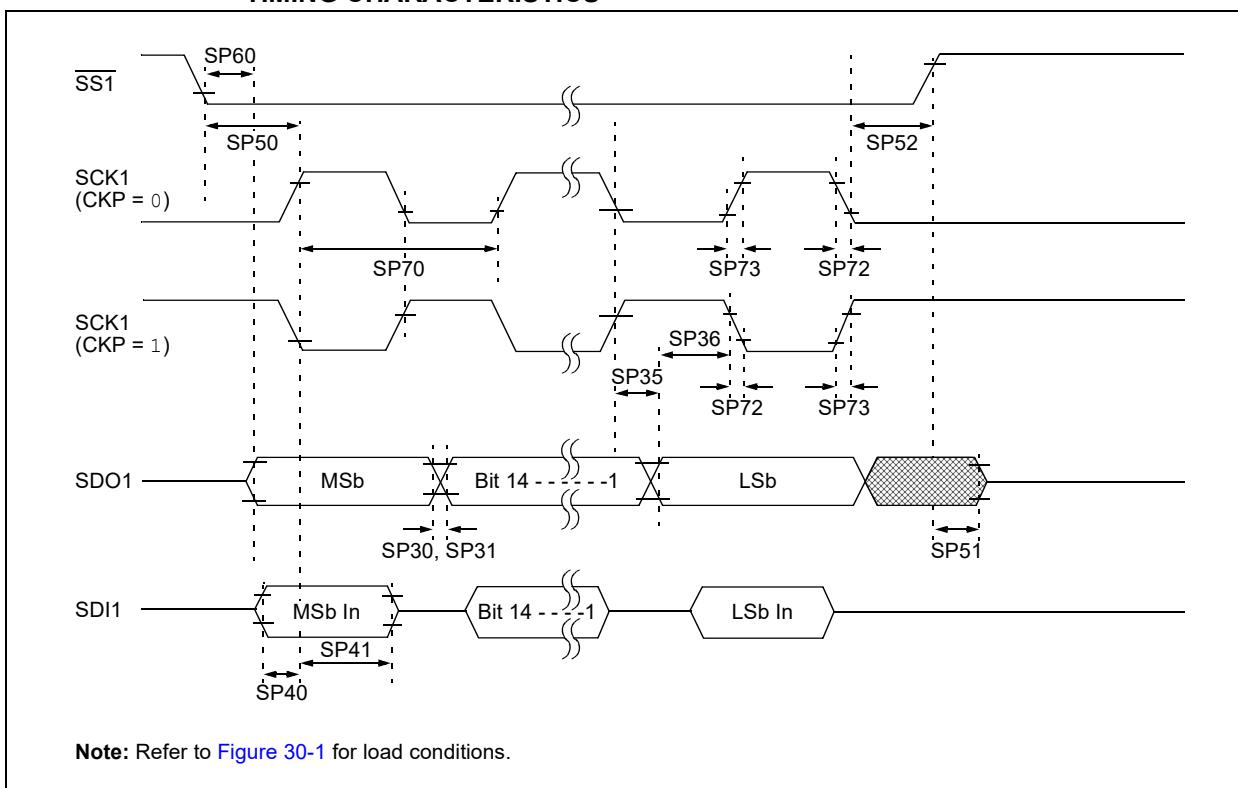
4: Assumes 50 pF load on all SPI1 pins.

**FIGURE 30-25: SPI1 HOST MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)
TIMING CHARACTERISTICS**

**TABLE 30-44: SPI1 HOST MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)
TIMING REQUIREMENTS**

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK1 Frequency	—	—	10	MHz	-40°C to +125°C (Note 3)
SP20	TscF	SCK1 Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK1 Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	—	—	ns	

Note 1: These parameters are characterized but not tested in manufacturing.


2: Data in "Typ." column are at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 100 ns. The clock generated in Host mode must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

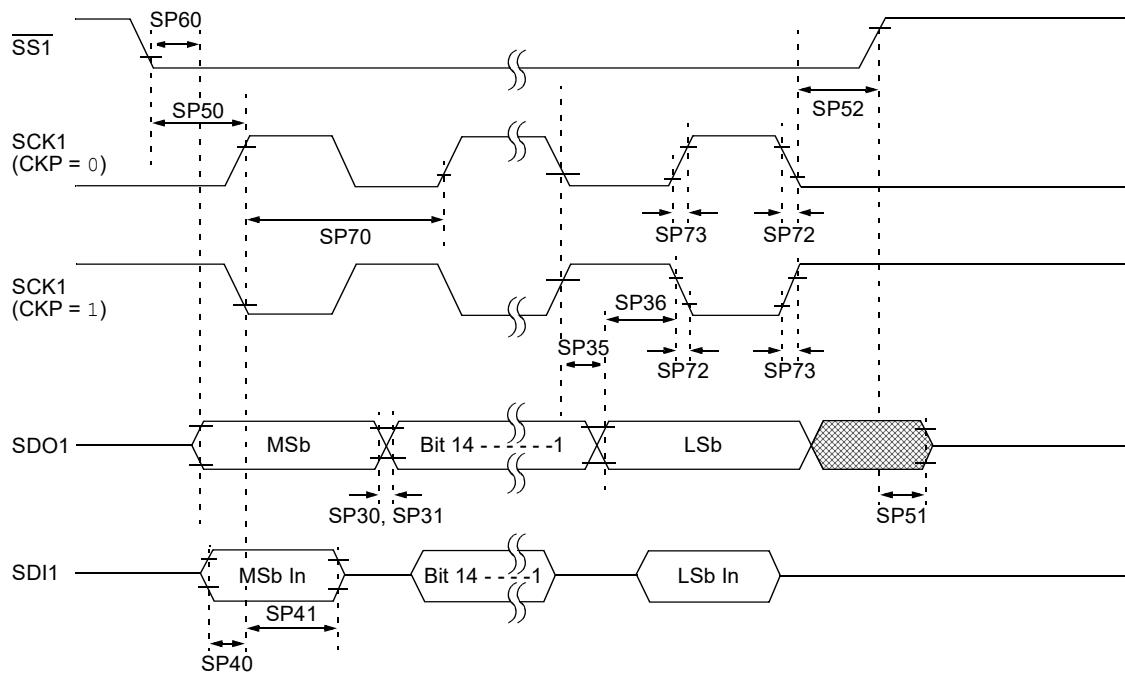
dsPIC33EDV64MC205

**FIGURE 30-26: SPI1 CLIENT MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)
TIMING CHARACTERISTICS**

**TABLE 30-45: SPI1 CLIENT MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)
TIMING REQUIREMENTS**

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency	—	—	Lesser of F _P or 15	MHz	Note 3
SP72	TscF	SCK1 Input Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK1 Input Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	—	—	ns	
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120	—	—	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	Note 4
SP52	TscH2ssH TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 TCY + 40	—	—	ns	Note 4
SP60	TssL2doV	SDO1 Data Output Valid after SS1 Edge	—	—	50	ns	

Note 1: These parameters are characterized but not tested in manufacturing.


2: Data in “Typ.” column are at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the SCK1 clock generated by the Host must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

dsPIC33EDV64MC205

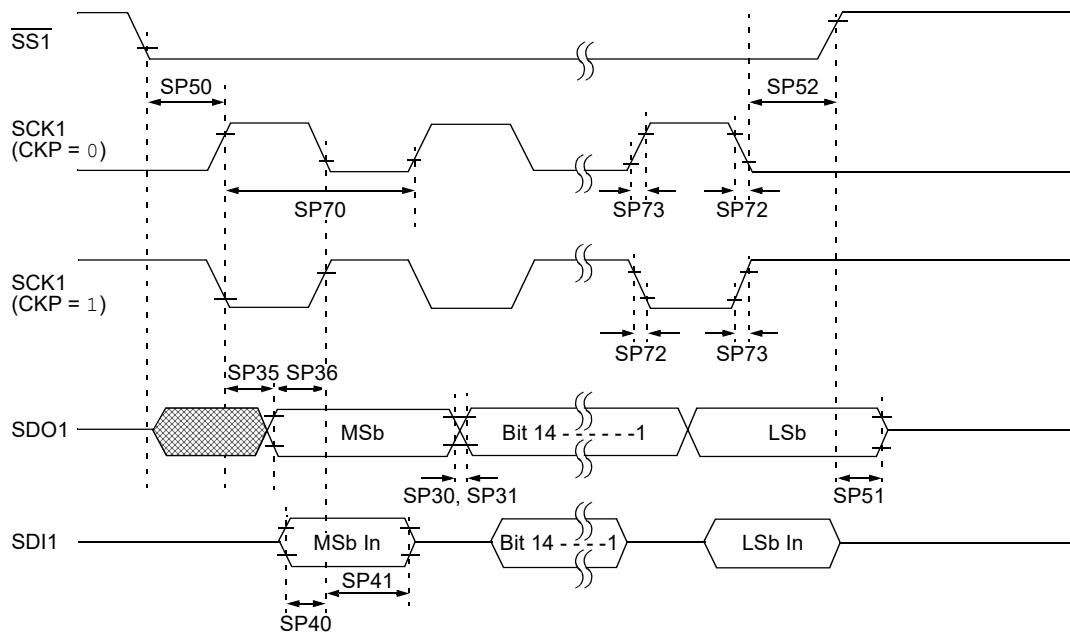
**FIGURE 30-27: SPI1 CLIENT MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)
TIMING CHARACTERISTICS**

Note: Refer to [Figure 30-1](#) for load conditions.

**TABLE 30-46: SPI1 CLIENT MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)
TIMING REQUIREMENTS**

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency	—	—	Lesser of F _P or 11	MHz	Note 3
SP72	TscF	SCK1 Input Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK1 Input Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	—	—	ns	
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120	—	—	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	Note 4
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 TCY + 40	—	—	ns	Note 4
SP60	TssL2doV	SDO1 Data Output Valid after SS1 Edge	—	—	50	ns	

Note 1: These parameters are characterized but not tested in manufacturing.


2: Data in "Typ." column are at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 91 ns. Therefore, the SCK1 clock generated by the Host must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

dsPIC33EDV64MC205

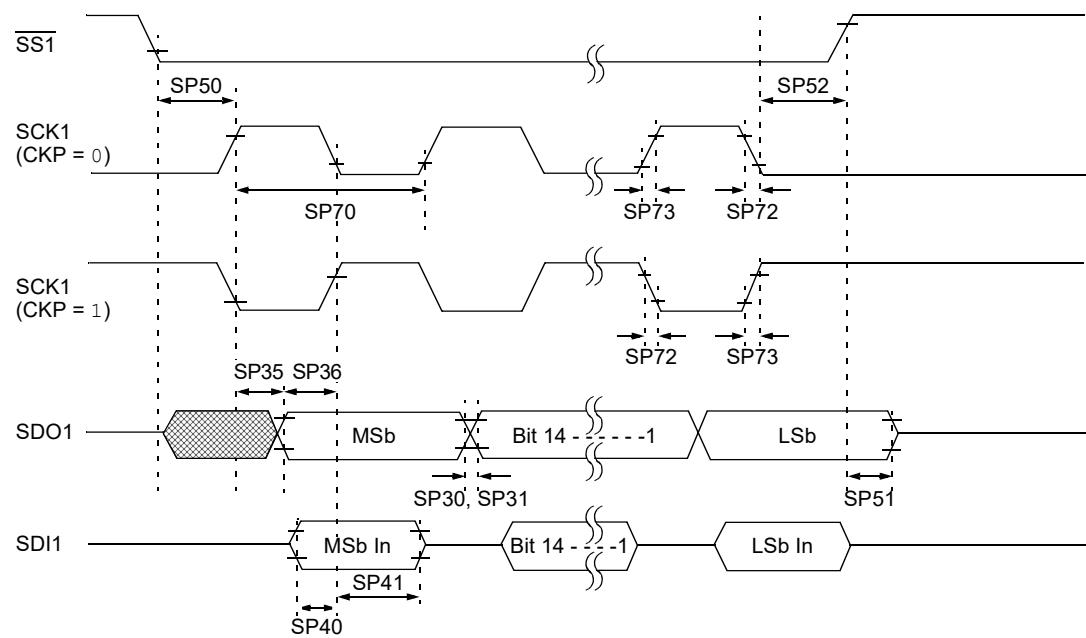
**FIGURE 30-28: SPI1 CLIENT MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)
TIMING CHARACTERISTICS**

Note: Refer to [Figure 30-1](#) for load conditions.

**TABLE 30-47: SPI1 CLIENT MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)
TIMING REQUIREMENTS**

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency	—	—	15	MHz	Note 3
SP72	TscF	SCK1 Input Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK1 Input Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP35	Tsch2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	—	ns	
SP41	Tsch2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	—	—	ns	
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120	—	—	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	Note 4
SP52	Tsch2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 TCY + 40	—	—	ns	Note 4

Note 1: These parameters are characterized but not tested in manufacturing.


2: Data in "Typ." column are at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the SCK1 clock generated by the Host must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

dsPIC33EDV64MC205

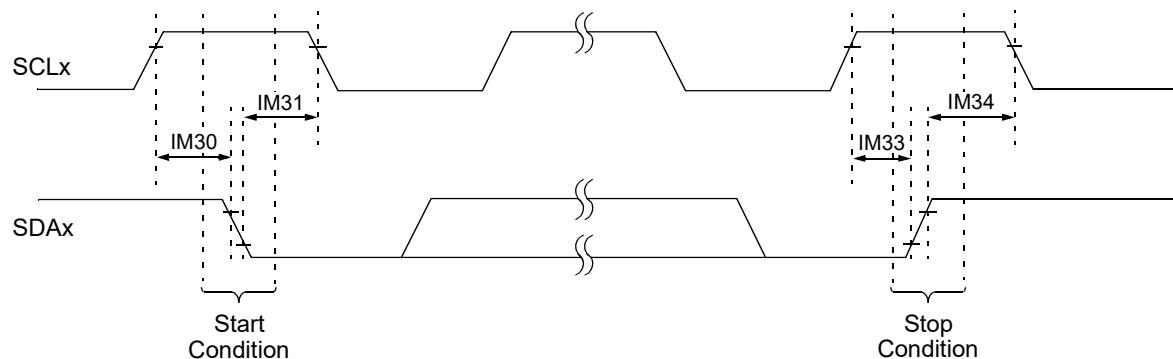
**FIGURE 30-29: SPI1 CLIENT MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)
TIMING CHARACTERISTICS**

Note: Refer to [Figure 30-1](#) for load conditions.

**TABLE 30-48: SPI1 CLIENT MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)
TIMING REQUIREMENTS**

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency	—	—	11	MHz	Note 3
SP72	TscF	SCK1 Input Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK1 Input Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP35	Tsch2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	—	ns	
SP41	Tsch2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	—	—	ns	
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120	—	—	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	Note 4
SP52	Tsch2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 TCY + 40	—	—	ns	Note 4

Note 1: These parameters are characterized but not tested in manufacturing.


2: Data in "Typ." column are at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 91 ns. Therefore, the SCK1 clock generated by the Host must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

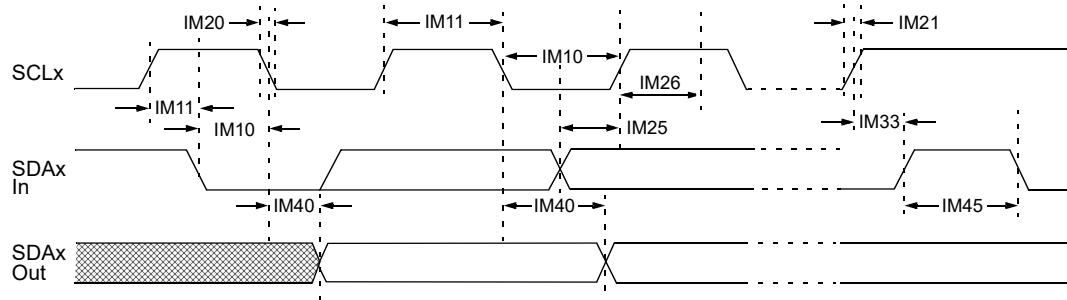

dsPIC33EDV64MC205

FIGURE 30-30: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (HOST MODE)

Note: Refer to [Figure 30-1](#) for load conditions.

FIGURE 30-31: I2Cx BUS DATA TIMING CHARACTERISTICS (HOST MODE)

Note: Refer to [Figure 30-1](#) for load conditions.

TABLE 30-49: I²Cx BUS DATA TIMING REQUIREMENTS (HOST MODE)

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)			
Param No.	Symbol	Characteristic ⁽⁴⁾	Min. ⁽¹⁾	Max.	Units	Conditions
IM10	TLO:SCL	Clock Low Time	100 kHz mode	T _{CY} /2 (BRG + 2)	—	μs
			400 kHz mode	T _{CY} /2 (BRG + 2)	—	μs
			1 MHz mode ⁽²⁾	T _{CY} /2 (BRG + 2)	—	μs
IM11	THI:SCL	Clock High Time	100 kHz mode	T _{CY} /2 (BRG + 2)	—	μs
			400 kHz mode	T _{CY} /2 (BRG + 2)	—	μs
			1 MHz mode ⁽²⁾	T _{CY} /2 (BRG + 2)	—	μs
IM20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode	—	300	ns
			400 kHz mode	20 + 0.1 CB	300	ns
			1 MHz mode ⁽²⁾	—	100	ns
IM21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns
			400 kHz mode	20 + 0.1 CB	300	ns
			1 MHz mode ⁽²⁾	—	300	ns
IM25	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns
			400 kHz mode	100	—	ns
			1 MHz mode ⁽²⁾	40	—	ns
IM26	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	μs
			400 kHz mode	0	0.9	μs
			1 MHz mode ⁽²⁾	0.2	—	μs
IM30	TSU:STA	Start Condition Setup Time	100 kHz mode	T _{CY} /2 (BRG + 2)	—	μs
			400 kHz mode	T _{CY} /2 (BRG + 2)	—	μs
			1 MHz mode ⁽²⁾	T _{CY} /2 (BRG + 2)	—	μs
IM31	THD:STA	Start Condition Hold Time	100 kHz mode	T _{CY} /2 (BRG + 2)	—	μs
			400 kHz mode	T _{CY} /2 (BRG + 2)	—	μs
			1 MHz mode ⁽²⁾	T _{CY} /2 (BRG + 2)	—	μs
IM33	TSU:STO	Stop Condition Setup Time	100 kHz mode	T _{CY} /2 (BRG + 2)	—	μs
			400 kHz mode	T _{CY} /2 (BRG + 2)	—	μs
			1 MHz mode ⁽²⁾	T _{CY} /2 (BRG + 2)	—	μs
IM34	THD:STO	Stop Condition Hold Time	100 kHz mode	T _{CY} /2 (BRG + 2)	—	μs
			400 kHz mode	T _{CY} /2 (BRG + 2)	—	μs
			1 MHz mode ⁽²⁾	T _{CY} /2 (BRG + 2)	—	μs
IM40	TAA:SCL	Output Valid From Clock	100 kHz mode	—	3500	ns
			400 kHz mode	—	1000	ns
			1 MHz mode ⁽²⁾	—	400	ns
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs
			400 kHz mode	1.3	—	μs
			1 MHz mode ⁽²⁾	0.5	—	μs
IM50	CB	Bus Capacitive Loading	—	400	pF	
IM51	TPGD	Pulse Gobbler Delay	65	390	ns	Note 3

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to “**Inter-Integrated Circuit (I²C)**” (DS70000195) in the “*dsPIC33/PIC24 Family Reference Manual*”. Please see the Microchip website for the latest family reference manual sections.

2: Maximum pin capacitance = 10 pF for all I²Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

4: These parameters are characterized but not tested in manufacturing.

dsPIC33EDV64MC205

FIGURE 30-32: I₂C_x BUS START/STOP BITS TIMING CHARACTERISTICS (CLIENT MODE)

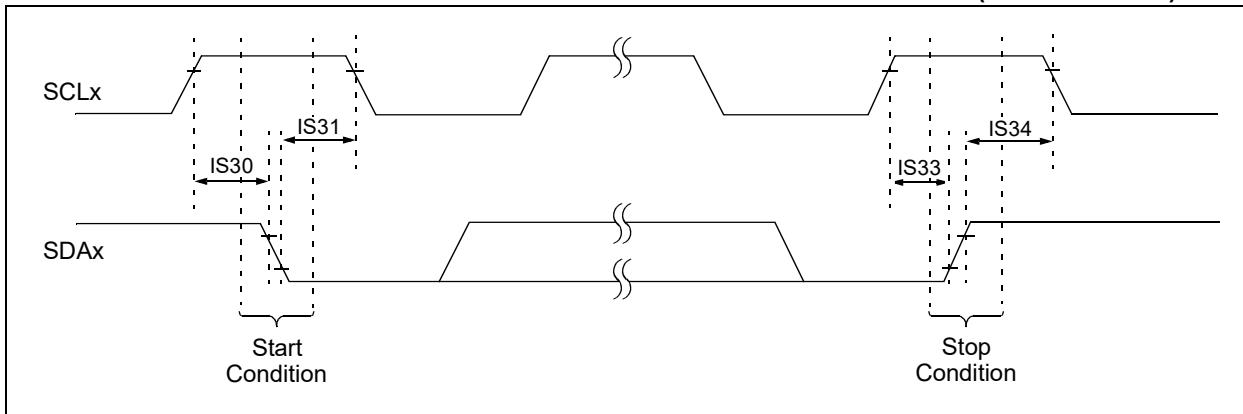


FIGURE 30-33: I₂C_x BUS DATA TIMING CHARACTERISTICS (CLIENT MODE)

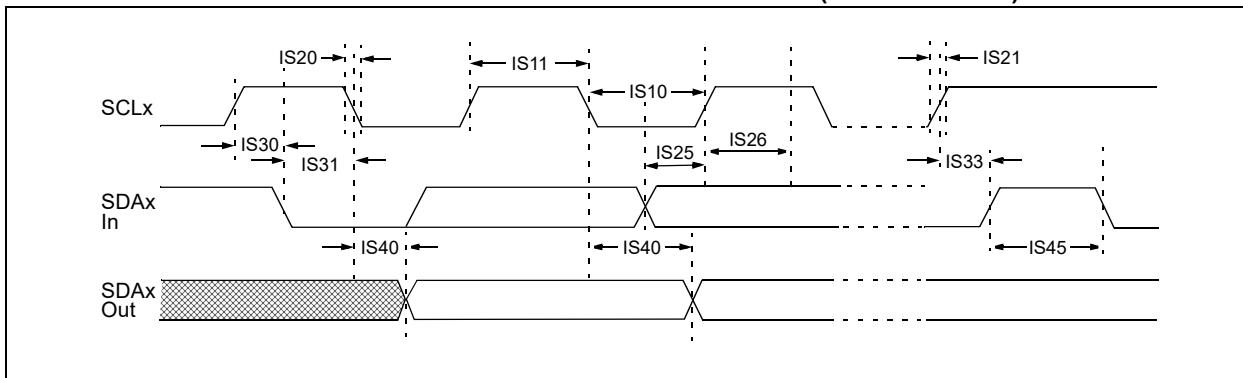


TABLE 30-50: I2Cx BUS DATA TIMING REQUIREMENTS (CLIENT MODE)

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
Param. No.	Symbol	Characteristic ⁽³⁾	Min.	Max.	Units	Conditions	
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μs	
			400 kHz mode	1.3	—	μs	
			1 MHz mode ⁽¹⁾	0.5	—	μs	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μs	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μs	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5	—	μs	
IS20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode	—	300	ns	CB is specified to be from 10 to 400 pF
			400 kHz mode	20 + 0.1 CB	300	ns	
			1 MHz mode ⁽¹⁾	—	100	ns	
IS21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns	CB is specified to be from 10 to 400 pF
			400 kHz mode	20 + 0.1 CB	300	ns	
			1 MHz mode ⁽¹⁾	—	300	ns	
IS25	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns	
			400 kHz mode	100	—	ns	
			1 MHz mode ⁽¹⁾	100	—	ns	
IS26	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	μs	
			400 kHz mode	0	0.9	μs	
			1 MHz mode ⁽¹⁾	0	0.3	μs	
IS30	TSU:STA	Start Condition Setup Time	100 kHz mode	4.7	—	μs	Only relevant for Repeated Start condition
			400 kHz mode	0.6	—	μs	
			1 MHz mode ⁽¹⁾	0.25	—	μs	
IS31	THD:STA	Start Condition Hold Time	100 kHz mode	4.0	—	μs	After this period, the first clock pulse is generated
			400 kHz mode	0.6	—	μs	
			1 MHz mode ⁽¹⁾	0.25	—	μs	
IS33	TSU:STO	Stop Condition Setup Time	100 kHz mode	4.7	—	μs	
			400 kHz mode	0.6	—	μs	
			1 MHz mode ⁽¹⁾	0.6	—	μs	
IS34	THD:STO	Stop Condition Hold Time	100 kHz mode	4	—	μs	
			400 kHz mode	0.6	—	μs	
			1 MHz mode ⁽¹⁾	0.25	—	μs	
IS40	TAA:SCL	Output Valid From Clock	100 kHz mode	0	3500	ns	
			400 kHz mode	0	1000	ns	
			1 MHz mode ⁽¹⁾	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be free before a new transmission can start
			400 kHz mode	1.3	—	μs	
			1 MHz mode ⁽¹⁾	0.5	—	μs	
IS50	C _b	Bus Capacitive Loading	—	400	pF		
IS51	TPGD	Pulse Gobbler Delay	65	390	ns	Note 2	

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

2: Typical value for this parameter is 130 ns.

3: These parameters are characterized but not tested in manufacturing.

dsPIC33EDV64MC205

FIGURE 30-34: UARTx MODULE I/O TIMING CHARACTERISTICS

TABLE 30-51: UARTx MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
UA10	TUABAUD	UARTx Baud Time	66.67	—	—	ns	
UA11	FBAUD	UARTx Baud Frequency	—	—	15	Mbps	
UA20	TCWF	Start Bit Pulse Width to Trigger UARTx Wake-up	500	—	—	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column are at 3.3V, $+25^{\circ}\text{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 30-52: OP AMP/COMPARATOR SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) ⁽¹⁾ Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C}$ for Extended				
Param No.	Symbol	Characteristic	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
Comparator AC Characteristics							
CM10	TRESP	Response Time ⁽³⁾	—	19	—	ns	V+ input step of 100 mV, V- input held at VDD/2
CM11	TMC2OV	Comparator Mode Change to Output Valid	—	—	10	μs	
Comparator DC Characteristics							
CM30	VOFFSET	Comparator Offset Voltage	—	±10	±15 ⁽⁷⁾	mV	
CM31	VHYST	Input Hysteresis Voltage ⁽³⁾	—	30	65 ⁽³⁾	mV	
CM32	TRISE/TFALL	Comparator Output Rise/Fall Time ⁽³⁾	—	20	—	ns	1 pF load capacitance on input
CM33	VGAIN	Open-Loop Voltage Gain ⁽³⁾	—	90	—	db	
CM34	VICM	Input Voltage Range	AVss	—	AVDD	V	
Op Amp AC Characteristics							
CM20	SR	Slew Rate ⁽³⁾	3.7	7.5	16	V/μs	10 pF load
CM21a	PM	Phase Margin (Configuration A) ^(3,4)	—	55	—	Degree	G = 4V/V, 10 pF load
CM21b	PM	Phase Margin (Configuration B) ^(3,5)	—	40	—	Degree	G = 4V/V, 10 pF load
CM22	GM	Gain Margin ⁽³⁾	—	20	—	db	G = 100V/V, 10 pF load
CM23a	GBW	Gain Bandwidth (Configuration A) ^(3,4)	—	10	—	MHz	10 pF load
CM23b	GBW	Gain Bandwidth (Configuration B) ^(3,5)	—	6	—	MHz	10 pF load

Note 1: Device is functional at $\text{VBORMIN} < \text{VDD} < \text{VDDMIN}$, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter **BO10** in Table 30-13 for the minimum and maximum BOR values.

- 2:** Data in "Typ." column are at 3.3V, $+25^{\circ}\text{C}$ unless otherwise stated.
- 3:** Parameter is characterized but not tested in manufacturing.
- 4:** See [Figure 25-6](#) for configuration information.
- 5:** See [Figure 25-7](#) for configuration information.
- 6:** Resistances can vary by $\pm 10\%$ between op amps.
- 7:** Input resistance (R1) must be less than or equal to 2 kΩ. The resulting minimum gain of the op amp circuit is equal to four.

dsPIC33EDV64MC205

TABLE 30-52: OP AMP/COMPARATOR SPECIFICATIONS (CONTINUED)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) ⁽¹⁾ Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C}$ for Extended				
Param No.	Symbol	Characteristic	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
Op Amp DC Characteristics							
CM40	V _{CMR}	Common-Mode Input Voltage Range	AV _{ss}	—	AV _{DD}	V	
CM41	C _{MRR}	Common-Mode Rejection Ratio ⁽³⁾	—	40	—	db	V _{CM} = AV _{DD} /2
CM42	V _{OFFSET}	Op Amp Offset Voltage ⁽³⁾	-30	± 5	+30	mV	
CM43	V _{GAIN}	Open-Loop Voltage Gain ⁽³⁾	—	90	—	db	
CM44	I _{OS}	Input Offset Current	—	—	—	—	See pad leakage currents in Table 30-11
CM45	I _B	Input Bias Current	—	—	—	—	See pad leakage currents in Table 30-11
CM46	I _{OUT}	Output Current	—	—	420	μA	With minimum value of R _{FEEDBACK} (CM48)
CM48	R _{FEEDBACK}	Feedback Resistance Value	8	—	—	kΩ	
CM49a	V _{OADC}	Output Voltage Measured at O _A X Pin Using ADC ^(3,4)	AV _{ss} + 0.077 AV _{ss} + 0.037 AV _{ss} + 0.018	— — —	AV _{DD} - 0.077 AV _{DD} - 0.037 AV _{DD} - 0.018	V	I _{OUT} = 420 μA I _{OUT} = 200 μA I _{OUT} = 100 μA
CM49b	V _{OUT}	Output Voltage Measured at O _A X _{OUT} Pin ^(3,4,5)	AV _{ss} + 0.210 AV _{ss} + 0.100 AV _{ss} + 0.050	— — —	AV _{DD} - 0.210 AV _{DD} - 0.100 AV _{DD} - 0.050	V	I _{OUT} = 420 μA I _{OUT} = 200 μA I _{OUT} = 100 μA
CM51	R _{INT1} ⁽⁶⁾	Internal Resistance 1 (Configuration A and B) ^(3,4,5)	198	264	317	Ω	Min = -40°C Typ = +25°C Max = +125°C

Note 1: Device is functional at $\text{VBORMIN} < \text{VDD} < \text{VDDMIN}$, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in [Table 30-13](#) for the minimum and maximum BOR values.

- 2:** Data in "Typ." column are at 3.3V, +25°C unless otherwise stated.
- 3:** Parameter is characterized but not tested in manufacturing.
- 4:** See [Figure 25-6](#) for configuration information.
- 5:** See [Figure 25-7](#) for configuration information.
- 6:** Resistances can vary by $\pm 10\%$ between op amps.
- 7:** Input resistance (R₁) must be less than or equal to 2 kΩ. The resulting minimum gain of the op amp circuit is equal to four.

TABLE 30-53: OP AMP/COMPARATOR VOLTAGE REFERENCE SETTLING TIME SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) ⁽²⁾ Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended				
Param No.	Symbol	Characteristic	Min.	Typ.	Max.	Units	Conditions
VR310	TSET	Settling Time	—	1	10	μs	Note 1

Note 1: Settling time is measured while CVRR = 1 and CVR[3:0] bits transition from '0000' to '1111'.

2: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

TABLE 30-54: OP AMP/COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) ⁽¹⁾ Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended				
Param No.	Symbol	Characteristics	Min.	Typ.	Max.	Units	Conditions
VRD310	CVRES	Resolution	CVRSRC/24	—	CVRSRC/32	LSb	
VRD311	CVRAA	Absolute Accuracy ⁽²⁾	—	±25	—	mV	CVRSRC = 3.3V
VRD313	CVRSRC	Input Reference Voltage	0	—	AVDD + 0.3	V	
VRD314	CVRROUT	Buffer Output Resistance ⁽²⁾	—	1.5k	—	Ω	

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

2: Parameter is characterized but not tested in manufacturing.

dsPIC33EDV64MC205

TABLE 30-55: CTMU CURRENT SOURCE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions:3.0V to 3.6V (unless otherwise stated)				
Param No.	Symbol	Characteristic	Min.	Typ.	Max.	Units	Conditions
CTMU Current Source							
CTMUI1	IOUT1	Base Range ⁽¹⁾	0.29	—	0.77	µA	CTMUICON[9:8] = 01
CTMUI2	IOUT2	10x Range ⁽¹⁾	3.85	—	7.7	µA	CTMUICON[9:8] = 10
CTMUI3	IOUT3	100x Range ⁽¹⁾	38.5	—	77	µA	CTMUICON[9:8] = 11
CTMUI4	IOUT4	1000x Range ⁽¹⁾	385	—	770	µA	CTMUICON[9:8] = 00
CTMUFV1	VF	Temperature Diode Forward Voltage ^(1,2)	—	0.598	—	V	TA = +25°C, CTMUICON[9:8] = 01
			—	0.658	—	V	TA = +25°C, CTMUICON[9:8] = 10
			—	0.721	—	V	TA = +25°C, CTMUICON[9:8] = 11
CTMUFV2	VFVR	Temperature Diode Rate of Change ^(1,2,3)	—	-1.92	—	mV/°C	CTMUICON[9:8] = 01
			—	-1.74	—	mV/°C	CTMUICON[9:8] = 10
			—	-1.56	—	mV/°C	CTMUICON[9:8] = 11

Note 1: Nominal value at center point of current trim range (CTMUICON[15:10] = 000000).

2: Parameters are characterized but not tested in manufacturing.

3: Measurements taken with the following conditions:

- VREF+ = AVDD = 3.3V
- ADC configured for 10-bit mode
- ADC module configured for conversion speed of 500 kspS
- All PMDx bits are cleared (PMDx = 0)
- Executing a `while(1)` statement
- Device operating from the FRC with no PLL

TABLE 30-56: ADC MODULE SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) ⁽¹⁾				
Param No.	Symbol	Characteristic	Min.	Typ.	Max.	Units	Conditions
Device Supply							
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or 3.0	—	Lesser of: VDD + 0.3 or 3.6	V	
AD02	AVss	Module Vss Supply	Vss – 0.3	—	Vss + 0.3	V	
Reference Inputs							
AD05	VREFH	Reference Voltage High	AVss + 2.5	—	AVDD	V	VREFH = VREF+, VREFL = VREF- (Note 1)
			3.0	—	3.6	V	VREFH = AVDD, VREFL = AVSS = 0
AD06	VREFL	Reference Voltage Low	AVss	—	AVDD – 2.5	V	Note 1
AD06a			0	—	0	V	VREFH = AVDD, VREFL = AVSS = 0
AD07	VREF	Absolute Reference Voltage	2.5	—	3.6	V	VREF = VREFH – VREFL
AD08	IREF	Current Drain	—	—	10 600	µA	ADC off ADC on
AD09	IAD	Operating Current ⁽²⁾	—	5	—	mA	ADC operating in 10-bit mode (Note 1)
			—	2	—	mA	ADC operating in 12-bit mode (Note 1)
Analog Input							
AD12	VINH	Input Voltage Range (VINH)	VINL	—	VREFH	V	This voltage reflects Sample-and-Hold Channels 0, 1, 2 and 3 (CH0-CH3), positive input
AD13	VINL	Input Voltage Range (VINL)	VREFL	—	AVss + 1V	V	This voltage reflects Sample-and-Hold Channels 0, 1, 2 and 3 (CH0-CH3), negative input
AD17	RIN	Recommended Impedance of Analog Voltage Source	—	—	200	Ω	Impedance to achieve maximum performance of ADC

Note 1: Device is functional at $V_{BORMIN} < VDD < V_{DDMIN}$, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter [BO10](#) in Table 30-13 for the minimum and maximum BOR values.

2: Parameter is characterized but not tested in manufacturing.

dsPIC33EDV64MC205

TABLE 30-57: ADC MODULE SPECIFICATIONS (12-BIT MODE)

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) ⁽¹⁾				
Param No.	Symbol	Characteristic	Min.	Typ.	Max.	Units	Conditions
ADC Accuracy (12-Bit Mode)							
AD20a	Nr	Resolution	12 Data Bits			bits	
AD21a	INL	Integral Nonlinearity	-2.5	—	2.5	LSb	-40°C ≤ TA ≤ +85°C (Note 2)
			-5.5	—	5.5	LSb	+85°C < TA ≤ +125°C (Note 2)
AD22a	DNL	Differential Nonlinearity	-1	—	1	LSb	-40°C ≤ TA ≤ +85°C (Note 2)
			-1	—	1	LSb	+85°C < TA ≤ +125°C (Note 2)
AD23a	GERR	Gain Error ⁽³⁾	-10	—	10	LSb	-40°C ≤ TA ≤ +85°C (Note 2)
			-10	—	10	LSb	+85°C < TA ≤ +125°C (Note 2)
AD24a	EOFF	Offset Error	-5	—	5	LSb	-40°C ≤ TA ≤ +85°C (Note 2)
			-5	—	5	LSb	+85°C < TA ≤ +125°C (Note 2)
AD25a	—	Monotonicity ⁽⁴⁾	—	—	—	—	Guaranteed
Dynamic Performance (12-Bit Mode)							
AD30a	THD	Total Harmonic Distortion ⁽³⁾	—	75	—	dB	
AD31a	SINAD	Signal to Noise and Distortion ⁽³⁾	—	68	—	dB	
AD32a	SFDR	Spurious Free Dynamic Range ⁽³⁾	—	80	—	dB	
AD33a	FNYQ	Input Signal Bandwidth ⁽³⁾	—	250	—	kHz	
AD34a	ENOB	Effective Number of Bits ⁽³⁾	11.09	11.3	—	bits	

Note 1: Device is functional at $V_{BORMIN} < VDD < VDDMIN$, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter **B010** in [Table 30-13](#) for the minimum and maximum BOR values.

2: For all accuracy specifications, $V_{INL} = AV_{SS} = V_{REFL} = 0V$ and $AV_{DD} = V_{REFH} = 3.6V$.

3: Parameters are characterized but not tested in manufacturing.

4: The conversion result never decreases with an increase in the input voltage.

TABLE 30-58: ADC MODULE SPECIFICATIONS (10-BIT MODE)

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) ⁽¹⁾ Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C}$ for Extended				
Param No.	Symbol	Characteristic	Min.	Typ.	Max.	Units	Conditions
ADC Accuracy (10-Bit Mode)							
AD20b	Nr	Resolution	10 Data Bits			bits	
AD21b	INL	Integral Nonlinearity	-0.625	—	0.625	LSb	$-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ (Note 2)
			-1.5	—	1.5	LSb	$+85^{\circ}\text{C} < \text{TA} \leq +125^{\circ}\text{C}$ (Note 2)
AD22b	DNL	Differential Nonlinearity	-0.25	—	0.25	LSb	$-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ (Note 2)
			-0.25	—	0.25	LSb	$+85^{\circ}\text{C} < \text{TA} \leq +125^{\circ}\text{C}$ (Note 2)
AD23b	GERR	Gain Error	-2.5	—	2.5	LSb	$-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ (Note 2)
			-2.5	—	2.5	LSb	$+85^{\circ}\text{C} < \text{TA} \leq +125^{\circ}\text{C}$ (Note 2)
AD24b	EOFF	Offset Error	-1.25	—	1.25	LSb	$-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ (Note 2)
			-1.25	—	1.25	LSb	$+85^{\circ}\text{C} < \text{TA} \leq +125^{\circ}\text{C}$ (Note 2)
AD25b	—	Monotonicity ⁽⁴⁾	—	—	—	—	Guaranteed
Dynamic Performance (10-Bit Mode)							
AD30b	THD	Total Harmonic Distortion ⁽³⁾	—	64	—	dB	
AD31b	SINAD	Signal to Noise and Distortion ⁽³⁾	—	57	—	dB	
AD32b	SFDR	Spurious Free Dynamic Range ⁽³⁾	—	72	—	dB	
AD33b	FNYQ	Input Signal Bandwidth ⁽³⁾	—	550	—	kHz	
AD34b	ENOB	Effective Number of Bits ⁽³⁾	—	9.4	—	bits	

Note 1: Device is functional at $\text{VBORMIN} < \text{VDD} < \text{VDDMIN}$, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter [BO10](#) in [Table 30-13](#) for the minimum and maximum BOR values.

2: For all accuracy specifications, $\text{VINL} = \text{AVSS} = \text{VREFL} = 0\text{V}$ and $\text{AVDD} = \text{VREFH} = 3.6\text{V}$.

3: Parameters are characterized but not tested in manufacturing.

4: The conversion result never decreases with an increase in the input voltage.

dsPIC33EDV64MC205

**FIGURE 30-35: ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS
(ASAM = 0, SSRC[2:0] = 000, SSRCG = 0)**

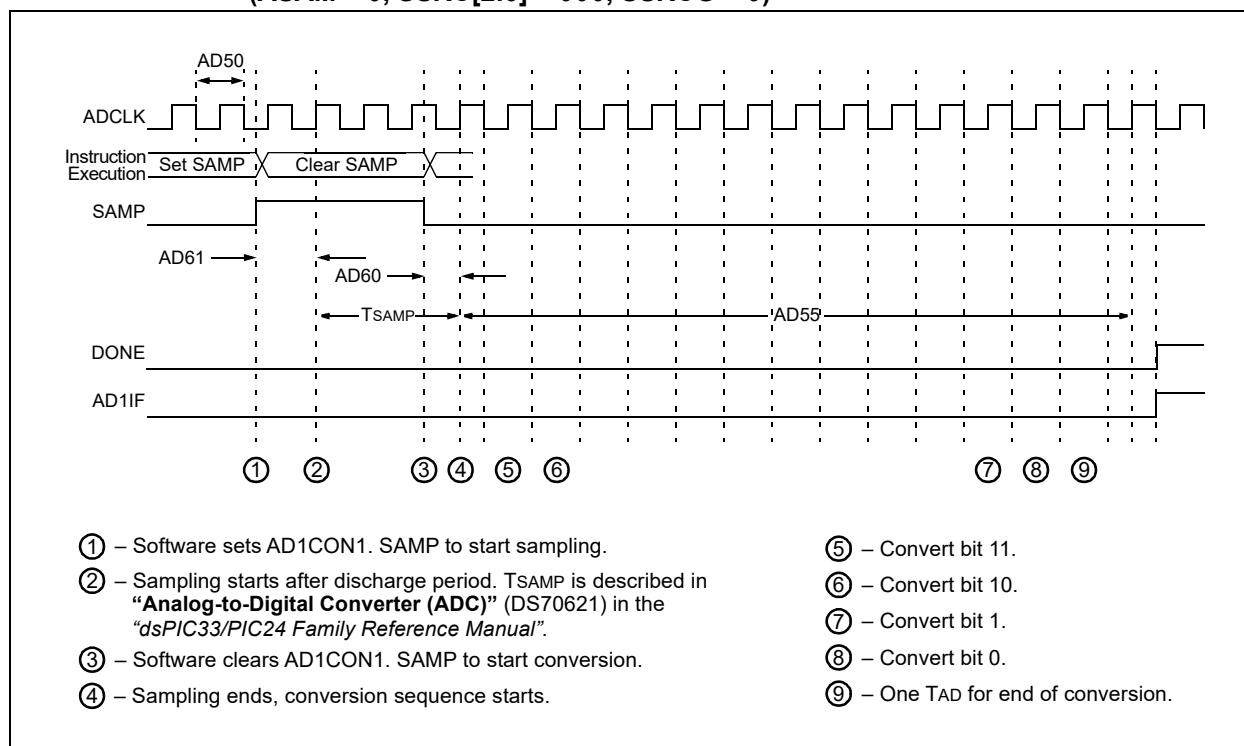
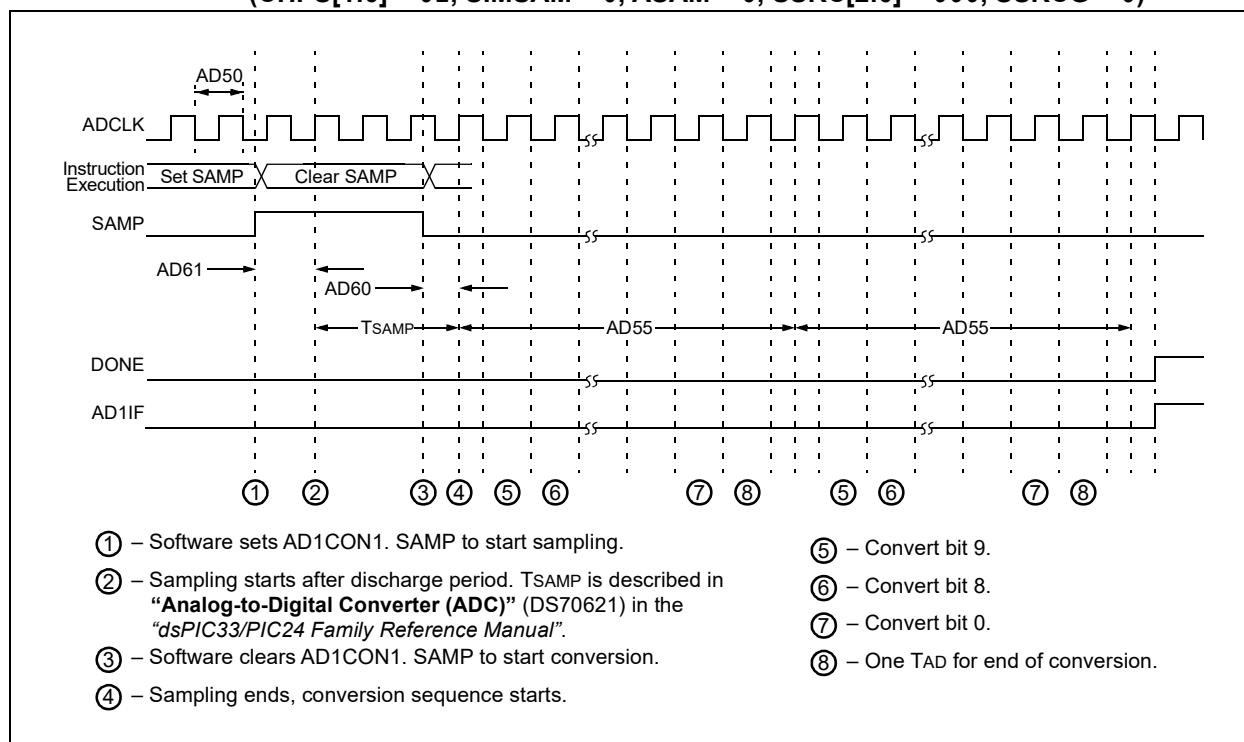


TABLE 30-59: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS


AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) ⁽¹⁾ Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended				
Param No.	Symbol	Characteristic	Min.	Typ.	Max.	Units	Conditions
Clock Parameters							
AD50	TAD	ADC Clock Period	117.6	—	—	ns	
AD51	t _{RC}	ADC Internal RC Oscillator Period ⁽²⁾	—	250	—	ns	
Conversion Rate							
AD55	t _{CONV}	Conversion Time	—	14 TAD	—	ns	
AD56	F _{CONV}	Throughput Rate	—	—	500	ksp/s	
AD57a	T _{SAMP}	Sample Time when Sampling any ANx Input	3	—	—	TAD	
AD57b	T _{SAMP}	Sample Time when Sampling the Op Amp Outputs (Configuration A and Configuration B) ^(4,5)	3	—	—	TAD	
Timing Parameters							
AD60	t _{PCS}	Conversion Start from Sample Trigger ^(2,3)	2	—	3	TAD	Auto-convert trigger is not selected
AD61	t _{PSS}	Sample Start from Setting Sample (SAMP) bit ^(2,3)	2	—	3	TAD	
AD62	t _{CSS}	Conversion Completion to Sample Start (ASAM = 1) ^(2,3)	—	0.5	—	TAD	
AD63	t _{DPU}	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)	—	—	20	μs	Note 6

Note 1: Device is functional at $V_{BORMIN} < V_{DD} < V_{DDMIN}$, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter **BO10** in Table 30-13 for the minimum and maximum BOR values.

- 2:** Parameters are characterized but not tested in manufacturing.
- 3:** Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.
- 4:** See [Figure 25-6](#) for configuration information.
- 5:** See [Figure 25-7](#) for configuration information.
- 6:** The parameter, t_{DPU}, is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADON (AD1CON1[15]) = 1). During this time, the ADC result is indeterminate.

dsPIC33EDV64MC205

**FIGURE 30-36: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS
(CHPS[1:0] = 01, SIMSAM = 0, ASAM = 0, SSRC[2:0] = 000, SSRCG = 0)**

FIGURE 30-37: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS[1:0] = 01, SIMSAM = 0, ASAM = 1, SSRC[2:0] = 111, SSRCG = 0, SAMC[4:0] = 00010)

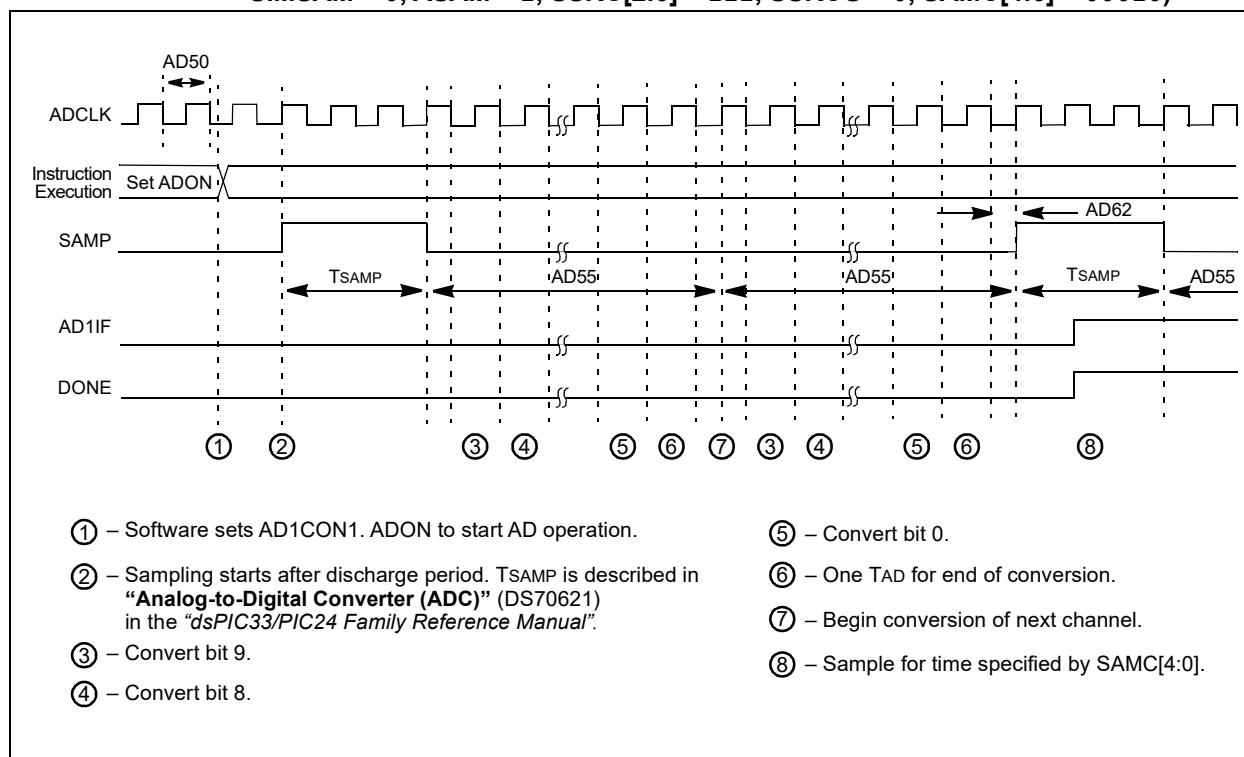


TABLE 30-60: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) ⁽¹⁾ Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended				
Param No.	Symbol	Characteristic	Min.	Typ.	Max.	Units	Conditions
Clock Parameters							
AD50	TAD	ADC Clock Period	76	—	—	ns	
AD51	t _{RC}	ADC Internal RC Oscillator Period ⁽²⁾	—	250	—	ns	
Conversion Rate							
AD55	t _{CONV}	Conversion Time	—	12	—	TAD	
AD56	F _{CNV}	Throughput Rate	—	—	1.1	MspS	Using simultaneous sampling
AD57a	T _{SAMP}	Sample Time when Sampling any ANx Input	2	—	—	TAD	
AD57b	T _{SAMP}	Sample Time when Sampling the Op Amp Outputs (Configuration A and Configuration B) ^(4,5)	4	—	—	TAD	
Timing Parameters							
AD60	t _{PCS}	Conversion Start from Sample Trigger ^(2,3)	2	—	3	TAD	Auto-convert trigger is not selected
AD61	t _{PSS}	Sample Start from Setting Sample (SAMP) bit ^(2,3)	2	—	3	TAD	
AD62	t _{CSS}	Conversion Completion to Sample Start (ASAM = 1) ^(2,3)	—	0.5	—	TAD	
AD63	t _{DPU}	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)	—	—	20	μs	Note 6

Note 1: Device is functional at $V_{BORMIN} < V_{DD} < V_{DDMIN}$, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter [BO10](#) in [Table 30-13](#) for the minimum and maximum BOR values.

- 2:** Parameters are characterized but not tested in manufacturing.
- 3:** Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.
- 4:** See [Figure 25-6](#) for configuration information.
- 5:** See [Figure 25-7](#) for configuration information.
- 6:** The parameter, t_{DPU}, is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADON (AD1CON1[15]) = 1). During this time, the ADC result is indeterminate.

dsPIC33EDV64MC205

TABLE 30-61: DMA MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended				
Param No.	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions
DM1	DMA Byte/Word Transfer Latency	1 TCY ⁽²⁾	—	—	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because DMA transfers use the CPU data bus, this time is dependent on other functions on the bus.

31.0 HIGH-TEMPERATURE ELECTRICAL CHARACTERISTICS

This section provides an overview of the dsPIC33EDV64MC205 device operating in an ambient temperature range of -40°C to +150°C.

The specifications between -40°C to +150°C are identical to those shown in [Section 30.0 “Electrical Characteristics”](#) for operation between -40°C to +125°C, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter [DC10](#) in [Section 30.0 “Electrical Characteristics”](#) is the Industrial and Extended temperature equivalent of [HDC10](#).

Absolute maximum ratings for the dsPIC33EDV64MC205 high-temperature device are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device, at these or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias ⁽²⁾	-40°C to +150°C
Storage temperature	-65°C to +160°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽³⁾	-0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽³⁾	-0.3V to 3.6V
Voltage on any 5V tolerant pin with respect to Vss when VDD ≥ 3.0V ⁽³⁾	-0.3V to 5.5V
Maximum current out of Vss pin	60 mA
Maximum current into VDD pin ⁽⁴⁾	60 mA
Maximum junction temperature	+165°C
Maximum current sourced/sunk by any 4x I/O pin	10 mA
Maximum current sourced/sunk by any 8x I/O pin	15 mA
Maximum current sunk by all ports combined	70 mA
Maximum current sourced by all ports combined ⁽⁴⁾	70 mA

Note 1: Stresses above those listed under “Absolute Maximum Ratings” can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.

- 2: AEC-Q100 reliability testing for devices intended to operate at +150°C is 1,000 hours. Any design in which the total operating time from +125°C to +150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
- 3: See the “[Pin Diagram](#)” section for the 5V tolerant pins.
- 4: Maximum allowable current is a function of device maximum power dissipation (see [Table 31-2](#)).

dsPIC33EDV64MC205

31.1 High-Temperature DC Characteristics

TABLE 31-1: OPERATING MIPS VS. VOLTAGE

Characteristic	VDD Range (in Volts)	Temperature Range (in °C)	Max MIPS
HDC5	3.0V to 3.6V ⁽¹⁾	-40°C to +150°C	40

Note 1: Device is functional at $V_{BORMIN} < VDD < V_{DDMIN}$. Analog modules, such as the ADC, may have degraded performance. Device functionality is tested but not characterized.

TABLE 31-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Typ	Max	Unit
High-Temperature Devices:					
Operating Junction Temperature Range	T _J	-40	—	+165	°C
Operating Ambient Temperature Range	T _A	-40	—	+150	°C
Power Dissipation:					
Internal Chip Power Dissipation: $P_{INT} = VDD \times (IDD - \sum I_{OH})$	P _D	$P_{INT} + P_{I/O}$			W
I/O Pin Power Dissipation: $I/O = \sum (\{VDD - VOH\} \times I_{OH}) + \sum (VOL \times I_{OL})$					
Maximum Allowed Power Dissipation	P _{DMAX}	$(T_J - T_A)/\theta_{JA}$			W

TABLE 31-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq T_A \leq +150^{\circ}\text{C}$				
Parameter No.	Symbol	Characteristic	Min	Typ	Max	Units	Conditions
Operating Voltage							
HDC10	Supply Voltage	V _{DD}	—	3.0	3.3	3.6	V $-40^{\circ}\text{C} \text{ to } +150^{\circ}\text{C}$

TABLE 31-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +150^{\circ}\text{C}$			
Parameter No.	Typical	Max	Units	Conditions		
Power-Down Current (IPD)						
HDC60e	1400	2500	μA	+150°C	3.3V	Base Power-Down Current (Notes 1, 3)
HDC61c	15	—	μA	+150°C	3.3V	Watchdog Timer Current: $\Delta\text{I}_{\text{WDT}}$ (Notes 2, 4)

Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off and VREGS (RCON[8]) = 1.

- 2:** The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 3:** These currents are measured on the device containing the most memory in this family.
- 4:** These parameters are characterized but not tested in manufacturing.

TABLE 31-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +150^{\circ}\text{C}$			
Parameter No.	Typical	Max	Units	Conditions		
HDC44e	12	30	mA	+150°C	3.3V	40 MIPS

TABLE 31-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +150^{\circ}\text{C}$			
Parameter No.	Typical	Max	Units	Conditions		
HDC20	9	15	mA	+150°C	3.3V	10 MIPS
HDC22	16	25	mA	+150°C	3.3V	20 MIPS
HDC23	30	50	mA	+150°C	3.3V	40 MIPS

TABLE 31-7: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +150^{\circ}\text{C}$			
Parameter No.	Typical	Max	Doze Ratio	Units	Conditions	
HDC72a	24	35	1:2	mA	+150°C	3.3V
HDC72f ⁽¹⁾	14	—	1:64	mA		
HDC72g ⁽¹⁾	12	—	1:128	mA		

Note 1: Parameters with Doze ratios of 1:64 and 1:128 are characterized, but are not tested in manufacturing.

dsPIC33EDV64MC205

TABLE 31-8: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +150^{\circ}\text{C}$				
Param.	Symbol	Characteristic	Min.	Typ.	Max.	Units	Conditions
HDO10	V _{OL}	Output Low Voltage 4x Sink Driver Pins ⁽²⁾	—	—	0.4	V	I _{OL} \leq 5 mA, V _{DD} = 3.3V (Note 1)
		Output Low Voltage 8x Sink Driver Pins ⁽³⁾	—	—	0.4	V	I _{OL} \leq 8 mA, V _{DD} = 3.3V (Note 1)
HDO20	V _{OH}	Output High Voltage 4x Source Driver Pins ⁽²⁾	2.4	—	—	V	I _{OH} \geq -10 mA, V _{DD} = 3.3V (Note 1)
		Output High Voltage 8x Source Driver Pins ⁽³⁾	2.4	—	—	V	I _{OH} \geq 15 mA, V _{DD} = 3.3V (Note 1)
HDO20A	V _{OH1}	Output High Voltage 4x Source Driver Pins ⁽²⁾	1.5	—	—	V	I _{OH} \geq -3.9 mA, V _{DD} = 3.3V (Note 1)
			2.0	—	—		I _{OH} \geq -3.7 mA, V _{DD} = 3.3V (Note 1)
			3.0	—	—		I _{OH} \geq -2 mA, V _{DD} = 3.3V (Note 1)
		Output High Voltage 8x Source Driver Pins ⁽³⁾	1.5	—	—	V	I _{OH} \geq -7.5 mA, V _{DD} = 3.3V (Note 1)
			2.0	—	—		I _{OH} \geq -6.8 mA, V _{DD} = 3.3V (Note 1)
			3.0	—	—		I _{OH} \geq -3 mA, V _{DD} = 3.3V (Note 1)

Note 1: Parameters are characterized but not tested.

2: Includes all I/O pins that are not 8x sink driver pins (see below).

3: Includes the following pins: RA4, RA9, RB7-RB15, RC3 and RC15.

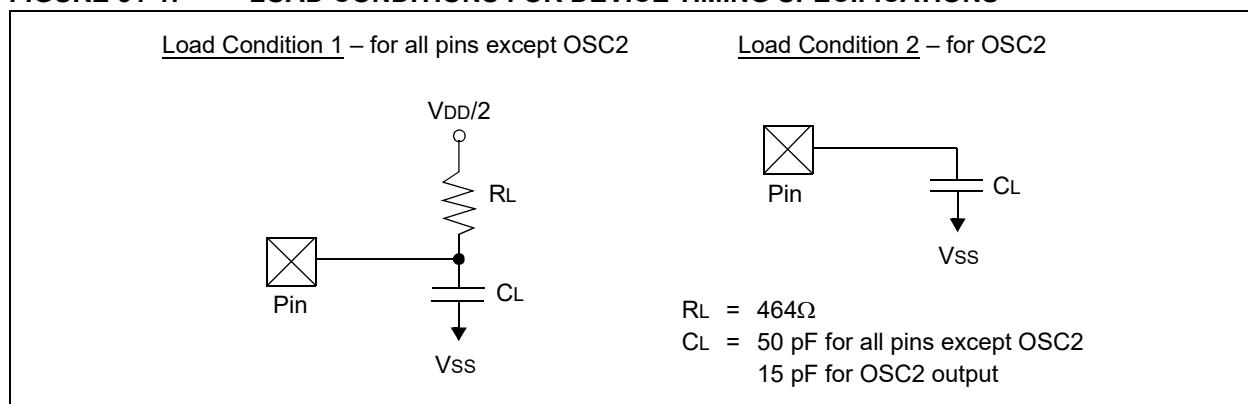
TABLE 31-9: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +150^{\circ}\text{C}$ for High Temperature				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ.	Max.	Units	Conditions
HD130	EP	Program Flash Memory Cell Endurance	10,000	—	—	E/W	-40°C to +150°C ⁽²⁾
HD134	TRETD	Characteristic Retention	20	—	—	Year	1000 E/W cycles or less and no other specifications are violated

Note 1: These parameters are assured by design, but are not characterized or tested in manufacturing.

2: Programming of the Flash memory is allowed up to +150°C.

31.2 AC Characteristics and Timing Parameters


The information contained in this section defines the dsPIC33EDV64MC205 device AC characteristics and timing parameters for high-temperature devices. However, all AC timing specifications in this section are the same as those in [Section 30.2 “AC Characteristics and Timing Parameters”](#), with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter [OS53](#) in [Section 30.2 “AC Characteristics and Timing Parameters”](#) is the Industrial and Extended temperature equivalent of [HOS53](#).

TABLE 31-10: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

AC CHARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +150^{\circ}\text{C}$ Operating voltage VDD range as described in Table 31-1 .
---------------------------	--

FIGURE 31-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 31-11: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +150^{\circ}\text{C}$				
Param No.	Symbol	Characteristic	Min	Typ	Max	Units	Conditions
HOS53	DCLK	CLKO Stability (Jitter) ⁽¹⁾	-5	0.5	5	%	Measured over 100 ms period

Note 1: These parameters are characterized by similarity, but are not tested in manufacturing. This specification is based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases or communication clocks use this formula:

$$\text{Peripheral Clock Jitter} = \frac{DCLK}{\sqrt{\left(\frac{FOSC}{\text{Peripheral Bit Rate Clock}} \right)}}$$

For example: Fosc = 32 MHz, DCLK = 5%, SPIx bit rate clock (i.e., SCKx) is 2 MHz.

$$\text{SPI SCK Jitter} = \left[\frac{DCLK}{\sqrt{\left(\frac{32 \text{ MHz}}{2 \text{ MHz}} \right)}} \right] = \left[\frac{5\%}{\sqrt{16}} \right] = \left[\frac{5\%}{4} \right] = 1.25\%$$

dsPIC33EDV64MC205

TABLE 31-12: INTERNAL RC ACCURACY

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +150°C					
Param No.	Characteristic	Min	Typ	Max	Units	Conditions	
LPRC @ 32.768 kHz^(1,2)							
HF21	LPRC	-30	—	+30	%	-40°C ≤ TA ≤ +150°C	VDD = 3.0V - 3.6V

Note 1: Change of LPRC frequency as VDD changes.

2: LPRC accuracy impacts the Watchdog Timer Time-out (TwDT) period. See [Section 27.7 “Watchdog Timer \(WDT\)”](#) for more information.

TABLE 31-13: INTERNAL FRC ACCURACY

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature +125°C ≤ TA ≤ +150°C for High Temperature					
Param No.	Characteristic	Min	Typ	Max	Units	Conditions	
Internal FRC Accuracy @ FRC Frequency = 7.37 MHz⁽¹⁾							
HF20	FRC	-3	-2	+3	%	+125°C ≤ TA ≤ +150°C	VDD = 3.0V - 3.6V

Note 1: Frequency is calibrated at +25°C and 3.3V.

TABLE 31-14: ADC MODULE SPECIFICATIONS (12-BIT MODE)

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +150^{\circ}\text{C}$				
Param No.	Symbol	Characteristic	Min	Typ	Max	Units	Conditions
ADC Accuracy (12-Bit Mode)⁽¹⁾							
HAD20a	Nr	Resolution ⁽³⁾		12 Data Bits		bits	
HAD21a	INL	Integral Nonlinearity	-5.5	—	5.5	LSb	$\text{VINL} = \text{AVSS} = \text{VREFL} = 0\text{V}$, $\text{AVDD} = \text{VREFH} = 3.6\text{V}$
HAD22a	DNL	Differential Nonlinearity	-1	—	1	LSb	$\text{VINL} = \text{AVSS} = \text{VREFL} = 0\text{V}$, $\text{AVDD} = \text{VREFH} = 3.6\text{V}$
HAD23a	GERR	Gain Error	-10	—	10	LSb	$\text{VINL} = \text{AVSS} = \text{VREFL} = 0\text{V}$, $\text{AVDD} = \text{VREFH} = 3.6\text{V}$
HAD24a	EOFF	Offset Error	-5	—	5	LSb	$\text{VINL} = \text{AVSS} = \text{VREFL} = 0\text{V}$, $\text{AVDD} = \text{VREFH} = 3.6\text{V}$
Dynamic Performance (12-Bit Mode)⁽²⁾							
HAD33a	FNYQ	Input Signal Bandwidth	—	—	200	kHz	

Note 1: These parameters are characterized, but are tested at 20 kspS only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents $> |0|$ can affect the ADC results by approximately 4-6 counts.

TABLE 31-15: ADC MODULE SPECIFICATIONS (10-BIT MODE)

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +150^{\circ}\text{C}$				
Param No.	Symbol	Characteristic	Min	Typ	Max	Units	Conditions
ADC Accuracy (10-Bit Mode)⁽¹⁾							
HAD20b	Nr	Resolution ⁽³⁾		10 Data Bits		bits	
HAD21b	INL	Integral Nonlinearity	-1.5	—	1.5	LSb	$\text{VINL} = \text{AVSS} = \text{VREFL} = 0\text{V}$, $\text{AVDD} = \text{VREFH} = 3.6\text{V}$
HAD22b	DNL	Differential Nonlinearity	-0.25	—	0.25	LSb	$\text{VINL} = \text{AVSS} = \text{VREFL} = 0\text{V}$, $\text{AVDD} = \text{VREFH} = 3.6\text{V}$
HAD23b	GERR	Gain Error	-2.5	—	2.5	LSb	$\text{VINL} = \text{AVSS} = \text{VREFL} = 0\text{V}$, $\text{AVDD} = \text{VREFH} = 3.6\text{V}$
HAD24b	EOFF	Offset Error	-1.25	—	1.25	LSb	$\text{VINL} = \text{AVSS} = \text{VREFL} = 0\text{V}$, $\text{AVDD} = \text{VREFH} = 3.6\text{V}$
Dynamic Performance (10-Bit Mode)⁽²⁾							
HAD33b	FNYQ	Input Signal Bandwidth	—	—	400	kHz	

Note 1: These parameters are characterized, but are tested at 20 kspS only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents $> |0|$ can affect the ADC results by approximately 4-6 counts.

dsPIC33EDV64MC205

TABLE 31-16: OP AMP/COMPARATOR SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +150^{\circ}\text{C}$				
Param No.	Symbol	Characteristic	Min	Typ	Max	Units	Conditions
Op Amp DC Characteristics							
HCM42	V _{OFFSET}	Op Amp Offset Voltage	-40	± 5	+40	mV	

32.0 MOSFET GATE DRIVER ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings⁽¹⁾

Input Voltage, HVDD	(GND – 0.3V) to +40.0V
Internal Power Dissipation	Internally Limited
Operating Ambient Temperature Range.....	-40°C to +150°C
Operating Junction Temperature (Note 3)	-40°C to +165°C
Transient Junction Temperature (Note 2)	+170°C
Digital I/O	-0.3V to 5.5V
Low-Voltage Analog I/O	-0.3V to 5.5V
VBx, WAKE	(GND – 0.3V) +40.0V
CAP1, CAP2	(GND – 0.3V) +40.0V
PHx, HSx	(GND – 5.5V) to +40.0V
VBOOT, LSx	(GND – 0.3V) to +13.2V

Note 1: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

2: Transient junction temperatures should not exceed one second in duration. Sustained junction temperatures above +170°C may impact the device reliability.

3: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., TA, TJ, θ_{JA}). Exceeding the maximum allowable power dissipation may cause the device operating junction temperature to exceed the maximum +165°C rating. Sustained junction temperatures above +165°C can impact the device reliability and ROM data retention.

dsPIC33EDV64MC205

32.1 AC/DC Characteristics

TABLE 32-1: POWER SUPPLY INPUT

Electrical Specifications: Unless otherwise noted: $T_J = -40^{\circ}\text{C}$ to $+150^{\circ}\text{C}$; typical values are for $+25^{\circ}\text{C}$; $\text{HVDD} = 13.5\text{V}$; $\text{CVBOOT} = 4.7 \mu\text{F}$; $\text{CVREG} = 4.7 \mu\text{F}$; $\text{CCP} = 220 \text{nF}$.

Parameters	Symbol	Min.	Typ.	Max.	Units	Conditions
Input Operating Voltage	HVDD	4.5	—	40.0	V	VREG active
		6.0	—	29.0		Driver output active
		—	—	40.0		Sleep mode, VREG inactive
Input Supply Current	Isup	—	5	15.0	μA	Sleep mode, $T_J = +25^{\circ}\text{C}$
		—	180	330		Standby, OE = 0V
		—	500	—		Active, $\text{HVDD} > 13.5\text{V}$, $\text{OE} > \text{VDIG_HI_TH}$
		—	1900	—		Active, $\text{HVDD} = 6\text{V}$, $T_J = +25^{\circ}\text{C}$

TABLE 32-2: BIAS GENERATOR

Parameters	Symbol	Min.	Typ.	Max.	Units	Conditions
+12V Regulated Charge Pump (VBOOT)						
Charge Pump Current	ICP	20	—	—	mA	HVDD = 9.0V (Note 1)
Charge Pump Start	CPSTART	12.50	12.75	—	V	Falling
Charge Pump Stop	CPSTOPT	—	13.25	14	V	Rising
Charge Pump Frequency	CPFSW	—	76.80	—	kHz	HVDD = 9.0V
		—	0	—		HVDD = 14V
Charge Pump Switch Resistance	CPRDSON	—	14	—	Ω	RDS _{ON} sum of high side and low side (Note 1)
Output Voltage	VBOOT	—	12	—	V	HVDD ≥ 14V, I _{OUT} = 30 mA
		9	12	—		7V ≤ HVDD < 14V, CPUMP = 150 nF, I _{OUT} = 20 mA
		9	—	—		6.25V ≤ HVDD < 7V, CPUMP = 270 nF, I _{OUT} = 15 mA
Output Voltage Tolerance	TOLV _{OUT12}	—	—	4.0	%	I _{OUT} = 30 mA
Output Current	I _{BOOT}	30	—	—	mA	Average current
Output Current Limit	I _{BOOTLIMIT}	50	60	75	mA	Average current
Output Voltage Temperature Coefficient	TCV _{OUT12}	—	50	—	ppm/°C	Note 1
Line Regulation	ΔV _{OUT} /(V _{OUT} × Δ)	—	0.1	0.5	%/V	13.5V < HVDD < 19V, I _{OUT} = 30 mA
Load Regulation	ΔV _{OUT} /V _{OUT}	—	0.2	1.0	%	I _{OUT} = 0.1 mA to 30 mA
Power Supply Rejection Ratio	PSRR	—	60	—	dB	f = 1 kHz, I _{OUT} = 10 mA (Note 1)
Output Capacitor Capacitance Range	CV _{BOOT}	4.7	—	10	μF	Ceramic, Tantalum, Electrolytic (Note 1)
Flying Capacitor Capacitance Range	CCP	100	220	1000	nF	Note 1
Output Capacitor ESR Range	CESRV _{BOOT}	0.010	—	1.0	Ω	Note 1
V _{BOOT} Ready Threshold	V _{12SM_PG}	—	50	—	%V _{BOOT}	State machine V _{BOOT} Power Good threshold to move to next state (Note 1)
+3.3V Linear Regulator (V_{REG})						
Output Voltage	V _{REG}	—	—	—	V	HVDD = 6V, I _{OUT} = 70 mA
		3.168	3.3	3.432		V _{REG} = 3.3V
Output Voltage Tolerance	TOLV _{REG}	—	—	4.0	%	
Output Current	I _{OUT}	70	—	—	mA	Average current
Output Foldback Current Corner	I _{FOLD}	80	95	120	mA	Average current
Output Foldback Current Limit	I _{FOLD_LIM}	—	10	—	mA	R _{LOAD} = 10 mΩ
Line Regulation	ΔV _{OUT} /(V _{OUT} × ΔHVDD)	—	0.1	0.5	%/V	7.5V < HVDD < 19V, I _{OUT} = 70 mA
Load Regulation	ΔV _{OUT} /V _{OUT}	—	0.2	1.0	%	I _{OUT} = 0.1 mA to 70 mA
Power Supply Rejection Ratio	PSRR	—	60	—	dB	f = 1 kHz, I _{OUT} = 10 mA (Note 1)
Output Capacitor Capacitance Range	CV _{REG}	4.7	—	30	μF	Ceramic, Tantalum, Electrolytic (Note 1)
Output Capacitor ESR Range	CESRV _{REG}	0.010	—	1.0	Ω	Note 1

Note 1: Limits by design, not production tested.

dsPIC33EDV64MC205

TABLE 32-2: BIAS GENERATOR (CONTINUED)

Electrical Specifications: Unless otherwise noted: $T_J = -40^{\circ}\text{C}$ to $+150^{\circ}\text{C}$; typical values are for $+25^{\circ}\text{C}$; $\text{HVDD} = 13.5\text{V}$; $\text{CVBOOT} = 4.7\text{ }\mu\text{F}$; $\text{CVREG} = 4.7\text{ }\mu\text{F}$; $\text{CCP} = 220\text{ nF}$.

Parameters	Symbol	Min.	Typ.	Max.	Units	Conditions
Voltage Supervisor						
VREG Undervoltage Fault Inactive	VREGUVFINACT	—	92	—	%VREG	VREG rising
VREG Undervoltage Fault Active	VREGUVFACT	—	88	—	%VREG	VREG falling
VREG Undervoltage Fault Hysteresis	VREGUVFHYS	—	4	—	%VREG	
HVDD Undervoltage Lockout Inactive	UVLOINACT	—	6.0	6.25	V	Rising
HVDD Undervoltage Lockout Active	UVLOACT	5.1	5.5	—	V	Falling
HVDD Undervoltage Lockout Hysteresis	UVLOHYS	—	0.5	—	V	
HVDD Undervoltage Shutdown Active	UVSHDNACT	4.0	4.25	—	V	$\text{HVDD} < \text{UVSHDNACT}$
HVDD Undervoltage Shutdown Inactive	UVSHDNINACT	UVLOINACT			V	$\text{HVDD} > \text{UVLOINACT}$
HVDD Overvoltage Lockout Active	OVLOACT	—	32.0	33.0	V	HVDD rising
HVDD Overvoltage Lockout Inactive	OVLOINACT	29.0	30.0	—	V	HVDD falling
HVDD Overvoltage Lockout Hysteresis	OVLOHYS	—	2.0	—	V	
Temperature Supervisor						
Thermal Warning Temperature	TWARN	—	72	—	%TSD	Rising temperature ($+115^{\circ}\text{C}$)
Thermal Warning Hysteresis	ΔTWARN	—	15	—	°C	Falling temperature
Thermal Shutdown Temperature	TSD	170	190	—	°C	Rising temperature (Note 1)
Thermal Shutdown Hysteresis	ΔTSD	—	25	—	°C	Falling temperature

Note 1: Limits by design, not production tested.

TABLE 32-3: MOTOR CONTROL UNIT

Parameters	Symbol	Min.	Typ.	Max.	Units	Conditions
Gate Output Drivers						
Output Driver Source Current	ISOURCE	0.3	0.5	—	A	HVDD = 12V, HS[A:C], LS[A:C] (Note 1)
Output Driver Sink Current	ISINK	0.5	0.5	—	A	HVDD = 12V, HS[A:C], LS[A:C] (Note 1)
Output Driver Source Resistance	RDSOURCE	—	14	26	Ω	IOUT = 10 mA, HS[A:C], LS[A:C]
Output Driver Sink Resistance LS	RDSINKLS	—	14	26	Ω	IOUT = 10 mA, LS[A:C]
Output Driver Sink Resistance HS Dynamic	RDSINKHSDYN	—	14	26	Ω	IOUT = 10 mA, HS[A:C], t < 1 ms
Output Driver Sink Resistance HS	RDSINKHS	—	19	31	Ω	IOUT = 10 mA, HS[A:C]
Output Driver Fault Blanking Time (UVLO and OCP)	tBLANK	500 3900 2000 900 400	— 4400 2200 1100 550	4000 4900 2400 1300 700	ns	Set in CFG2[1:0] bits 00 – Default (Note 1) 01 (Note 1) 10 (Note 1) 11 (Note 1)
Output Driver UVLO Threshold	VDUVLO	4	—	4.5	V	Configuration Register 0 (bit 3 = 0)
Output Driver PWM Dead Time	tPWM_DEAD	250 1800 1550 1350 1100 900 650 450 200	— 2000 1750 1500 1250 1000 750 500 250	2000 2200 1950 1650 1400 1150 900 650 350	ns	Set in CFG2[4:2] bits 001 Default (Note 1) 001 (Note 1) 010 (Note 1) 011 (Note 1) 100 (Note 1) 101 (Note 1) 110 (Note 1) 111 (Note 1)
Output Driver Propagation Delay Time On	tGATE_PROP_ON	—	40	80	ns	From PWMxy active, HSx/LSx > 10% (Note 1)
Output Driver Propagation Delay Time Off	tGATE_PROP_OFF	—	40	80	ns	From PWMxy inactive, HSx/LSx < 90% (Note 1)
Output Driver HS Drive Voltage	VHS	4.5 -5.5	12	12.5 —	V	With respect to Phase pin (Notes 1,2) With respect to ground (Note 1)
Output Driver LS Drive Voltage	VLS	4.5	12	12.5	V	With respect to ground (Note 1)

Note 1: Limits by design, not production tested.

2: Bias input voltage (VBx pin) should not exceed VPHASE voltage (PHx) by more than 12V. Biasing VBx pins using VBOOT, as shown in [Figure 17-2](#), meets this requirement.

dsPIC33EDV64MC205

TABLE 32-3: MOTOR CONTROL UNIT (CONTINUED)

Parameters	Symbol	Min.	Typ.	Max.	Units	Conditions
Output Driver Short-Circuit Protection Threshold (High Side: HVDD – VPHX) (Low Side: VPHX – PGND)	DSC_THR	0.25	—	1.00	V	Set in CFG0 register
		0.230	0.250	0.270		00 – Default (Note 1)
		0.470	0.500	0.530		01 (Note 1)
		0.720	0.750	0.780		10 (Note 1)
		0.960	1.000	1.040		11 (Note 1)
		—	—	—		CLOAD = 1000 pF, HVDD = 12V
Output Driver Short-Circuit Filter Time	TSC_DLY	—	—	—	ns	Detection after filtering (Note 1)
		230	—	600		
Power-up or Sleep to Standby	tPOWER	—	5	—	ms	IVREG = 70 mA
Standby to Motor Operational	tMOTOR	—	35	—	μs	OE high-low-high transition < 1 ms Fault clearing pulse
		—	5	10	ms	OE low-high transition, Standby state to operational (Note 1)
		—	—	16	ms	OE low-high transition, Standby state to operational if VBOOT fails to reach V12SM_PG
Fault to Driver Output Turn-Off	TFAULT_OFF	—	—	—	μs	CLOAD = 1000 pF, HVDD = 12V, time after Fault occurs (Note 1)
		—	0.420	1.0		XOCP
		—	2.4	4.0		OVLO
		—	4.2	6.0		All other Faults
OE Low to Driver Output Turn-Off	TDEL_OFF	—	3.2	4.0	μs	CLOAD = 1000 pF, HVDD = 12V, time after OE = Low (Note 1)
OE Low to Standby State	tSTANDBY	0.9	—	1.35	ms	Time after OE = Low, SLEEP bit = 0
OE Low to Sleep State	tsLEEP	0.9	—	1.35	ms	Time after OE = Low, SLEEP bit = 1
OE Fault Clearing Pulse	tFAULT_CLR	1	—	900	μs	OE high-low-high transition time

Note 1: Limits by design, not production tested.

2: Bias input voltage (VBx pin) should not exceed VPHASE voltage (PHx) by more than 12V. Biasing VBx pins using VBOOT, as shown in [Figure 17-2](#), meets this requirement.

TABLE 32-4: I/O PORTS

Parameters	Symbol	Min.	Typ.	Max.	Units	Conditions
Digital Interface						
Digital Input/Output	DIGITAL _{I/O}	0	—	3.3	V	Note 1
Digital Open-Drain Low Voltage	DIGITALV _{I/O}	—	—	50	mV	I _{LOAD} = 1 mA
Digital Input Rising Threshold	V _{DIG_HI_TH}	—	—	1.26	V	
Digital Input Falling Threshold	V _{DIG_LO_TH}	0.54	—	—	V	
Digital Input Current	I _{DIG}	—	30	100	μA	V _{DIG} = 3.0V
		—	0.2	—		V _{DIG} = 0V
Input Pull-Down Resistance	R _{PULLDN}	—	51	—	kΩ	PWM[A:C]H/L, OE pins
Analog Interface						
Analog Low-Voltage Input	ANALOGVIN	0	—	5.5	V	Excludes high-voltage pins (Note 1)
Analog Low-Voltage Output	ANALOGVOUT	0	—	V _{REG}	V	Excludes high-voltage pins (Note 1)
WAKE Input						
Input Voltage	WAKE _{I/O}	0	—	HVDD	V	
Input Rising Threshold	V _{WAKE_HI_TH}	—	—	1.26	V	Note 1
Input Falling Threshold	V _{WAKE_LO_TH}	0.54	—	—	V	
Input Current	I _{WAKE}	—	0.2	—	μA	V _{WAKE} = 0.0V (Note 1)
		—	70	—		V _{WAKE} = 3.3V (Note 1)
		—	106	—		V _{WAKE} = 5.0V (Note 1)
		—	596	—		V _{WAKE} = 28V (Note 1)
Input Pull-Down Resistance	R _{WAKE_PULLDN}	—	51	—	kΩ	
Wake-up Signal Setup Time	t _{WAIT_SETUP}	150	—	—	μs	Minimum time WAKE pin must be logic low before rising edge of wake-up pulse
DE2 Communications						
Baud Rate	BAUD	9030	9600	10170	bps	Half-duplex
Power-up Delay	PU_DELAY	—	1	—	ms	Time from rising HVDD \geq 6V to DE2 active
DE2 Sink Current	I _{DE2_SINK}	1	—	—	mA	V _{DE2} \leq 50 mV
DE2 Message Response Time	t _{DE2_RSP}	0	—	1	ms	Time from last received Stop bit to response Start bit
DE2 Host Wait Time	t _{DE2_WAIT}	2.8	—	—	ms	Minimum time for host to wait for response; three packets based on 9600 Baud
DE2 Message Receive Time-out	DE2RCVTOUT	—	—	1.45	ms	Time after Start bit received to NACK for no Stop bit

Note 1: Limits by design, not production tested.

dsPIC33EDV64MC205

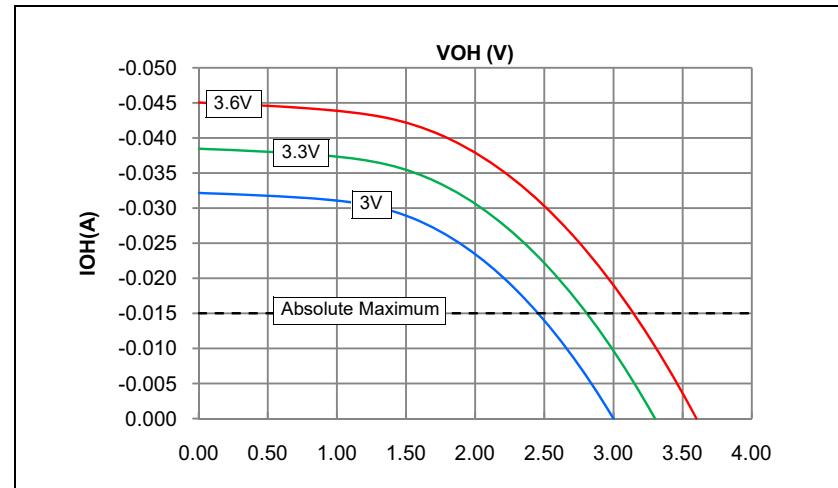
TABLE 32-4: I/O PORTS (CONTINUED)

Electrical Specifications: Unless otherwise noted: $T_J = -40^{\circ}\text{C}$ to $+150^{\circ}\text{C}$; typical values are for $+25^{\circ}\text{C}$, $\text{HVDD} = 13.5\text{V}$, $\text{CVBOOT} = 4.7\text{ }\mu\text{F}$, $\text{CVREG} = 4.7\text{ }\mu\text{F}$; $\text{CCP} = 220\text{ nF}$.

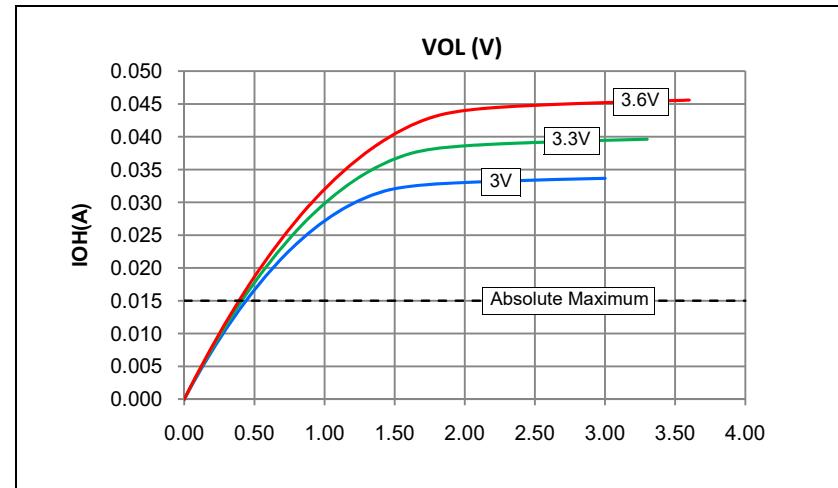
Parameters	Symbol	Min.	Typ.	Max.	Units	Conditions
Auto-Baud Detection Window (Break)	ABUADDET	1.29	—	2.00	ms	Window for valid detection of continuous logic low on DE2 link
Auto-Baud Response Delay	ABAUDDLY	—	1.00	—	ms	Delay from ABUAD _{DET} to start of sending 0x55 byte
Auto-Baud Complete Delay	ABAUDCOMP	—	2.00	—	ms	Delay after sending 0x55 byte before exiting auto-baud function
Delay Between Bytes of Multibyte Message from Host	tDE2_HOST_MULTI_DLY	—	—	1.3	ms	Delay between message bytes arriving from Host

Note 1: Limits by design, not production tested.

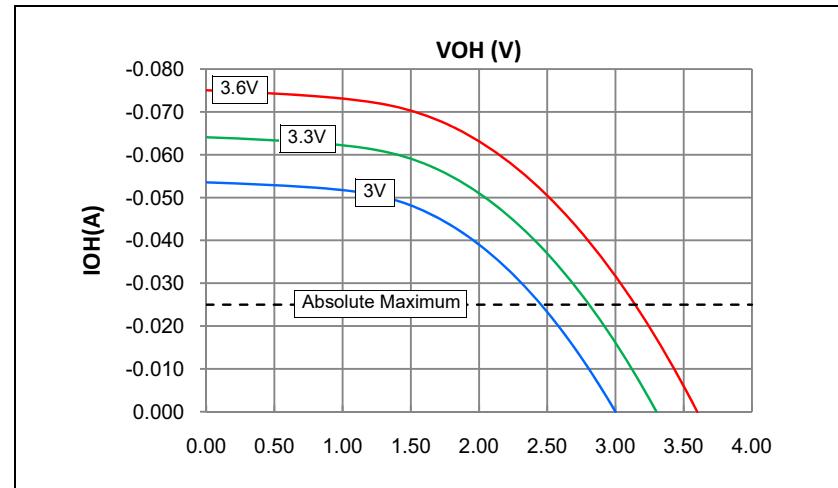
TABLE 32-5: TEMPERATURE SPECIFICATIONS

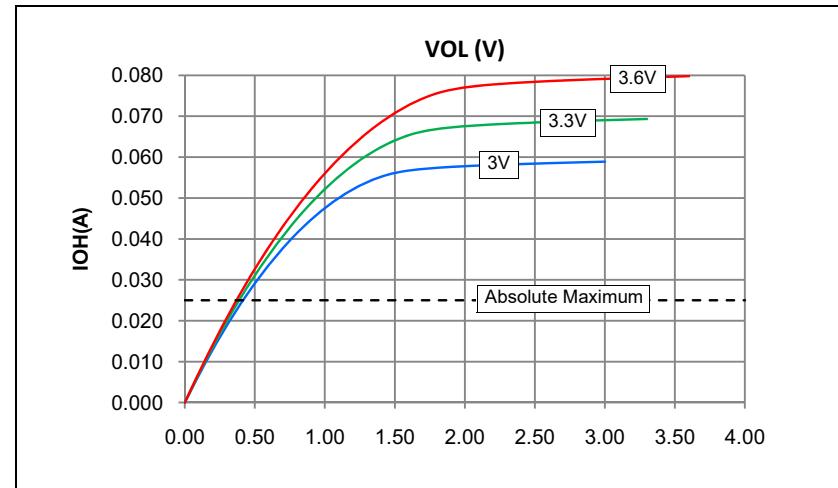

Parameters	Sym.	Min.	Typ.	Max.	Units	Conditions
Temperature Ranges (Note 1)						
Specified Temperature Range	T_A	-40	—	+150	°C	
Operating Temperature Range	T_A	-40	—	+150	°C	
	T_J	-40	—	+165	°C	

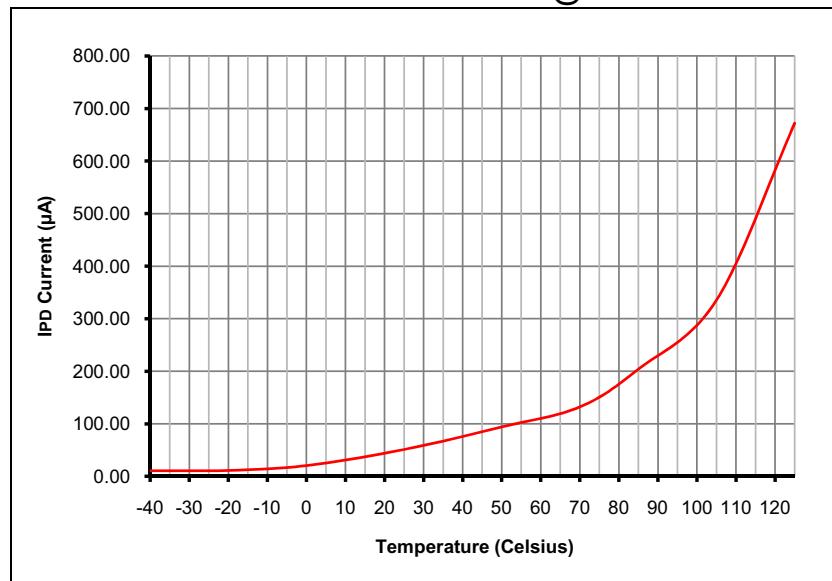
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A , T_J , θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum $+165^{\circ}\text{C}$ rating. Sustained junction temperatures above $+165^{\circ}\text{C}$ can impact the device reliability.

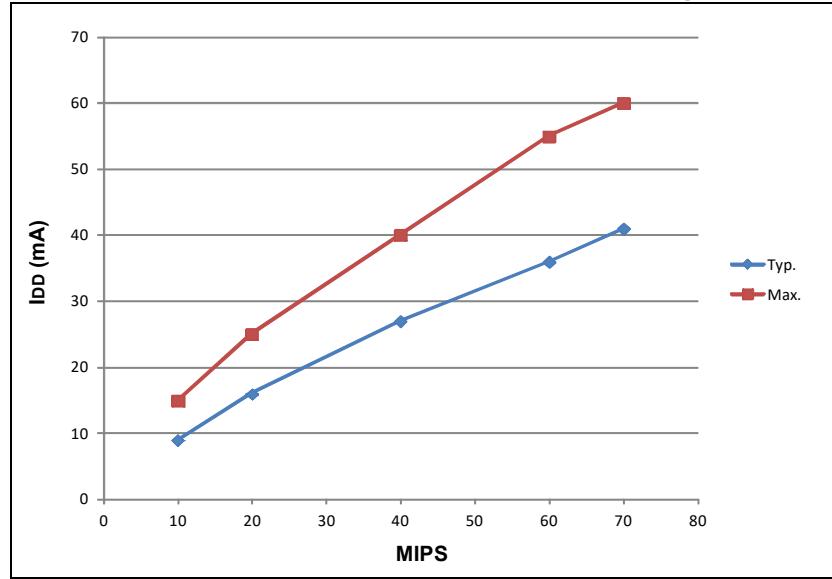

33.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.


FIGURE 33-1: V_{OH} – 4x DRIVER PINS


FIGURE 33-3: V_{OL} – 4x DRIVER PINS


FIGURE 33-2: V_{OH} – 8x DRIVER PINS


FIGURE 33-4: V_{OL} – 8x DRIVER PINS

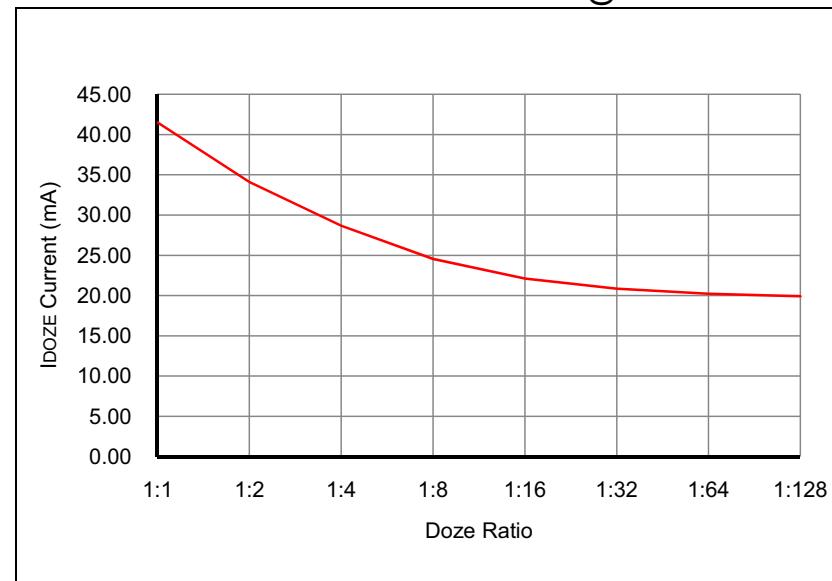

FIGURE 33-5: TYPICAL IPD CURRENT @ VDD = 3.3V

FIGURE 33-6: TYPICAL/MAXIMUM IDD CURRENT @ VDD = 3.3V

FIGURE 33-7: TYPICAL IDOZE CURRENT @ VDD = 3.3V

FIGURE 33-8: TYPICAL IDLE CURRENT @ VDD = 3.3V

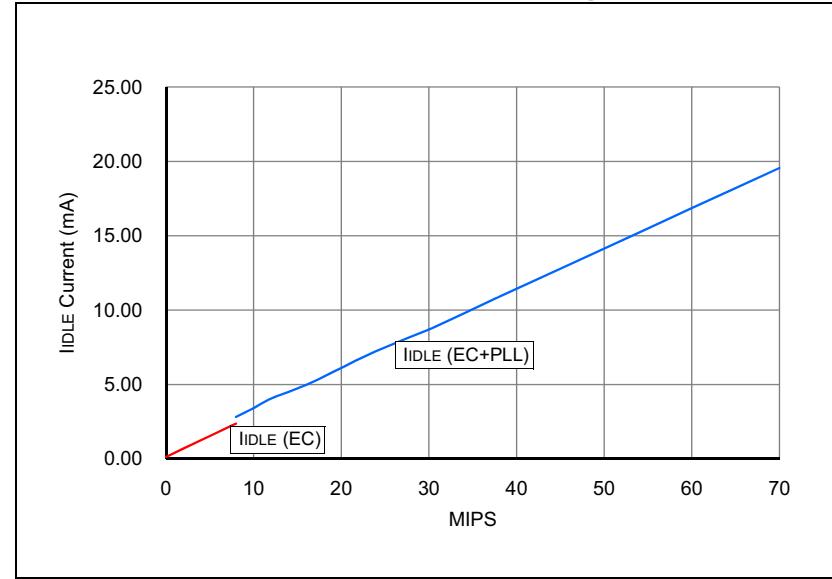


FIGURE 33-9: TYPICAL FRC FREQUENCY @ VDD = 3.3V

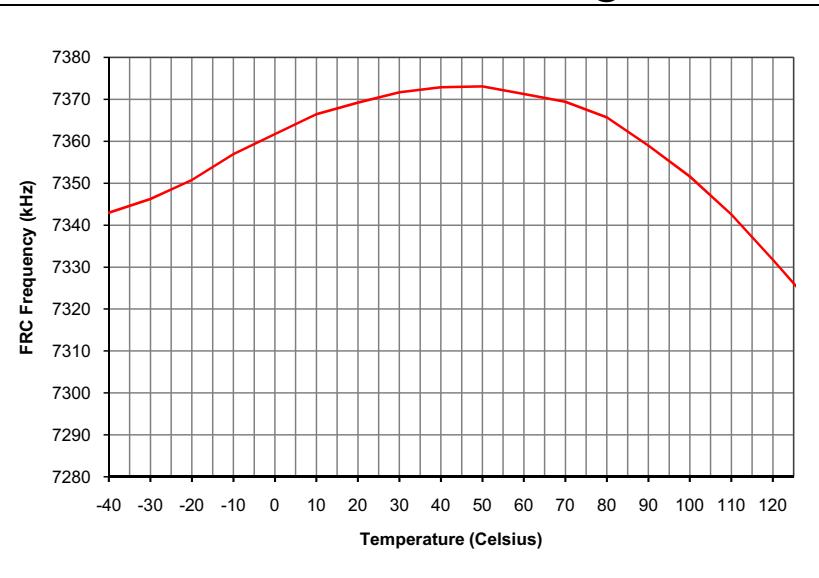


FIGURE 33-11: TYPICAL CTMU TEMPERATURE DIODE FORWARD VOLTAGE

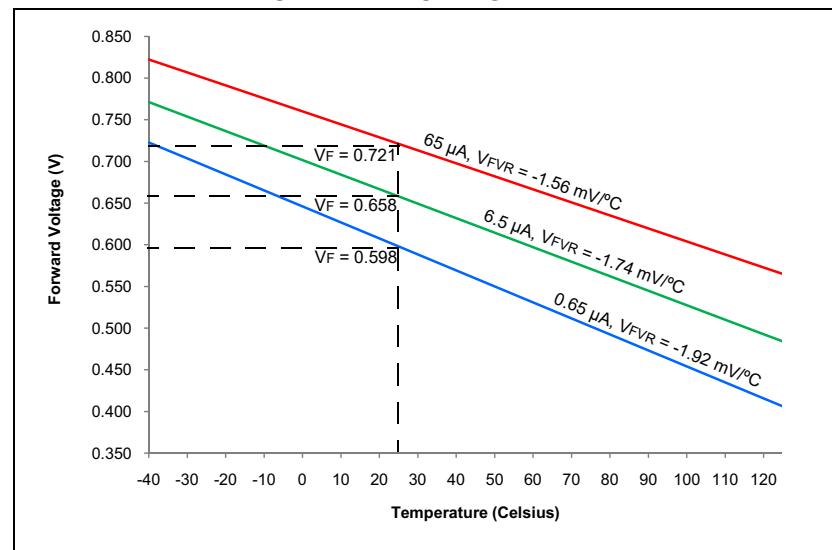
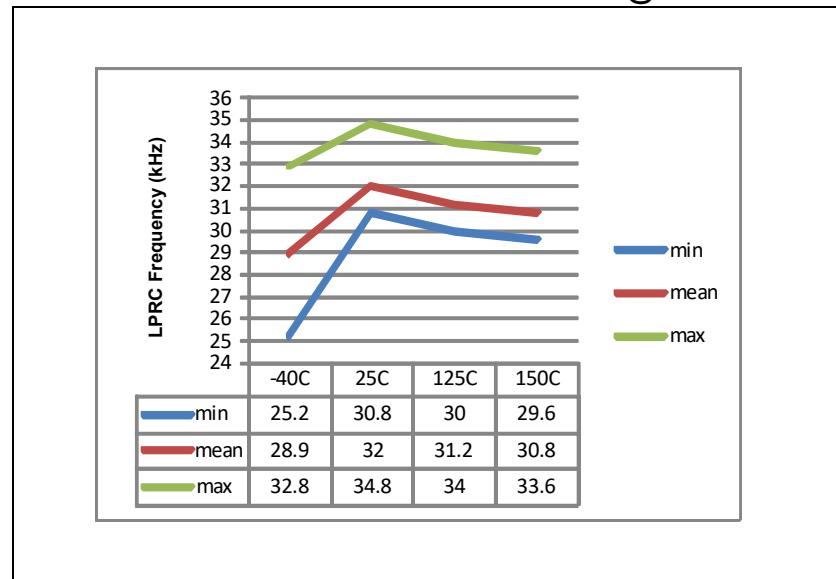
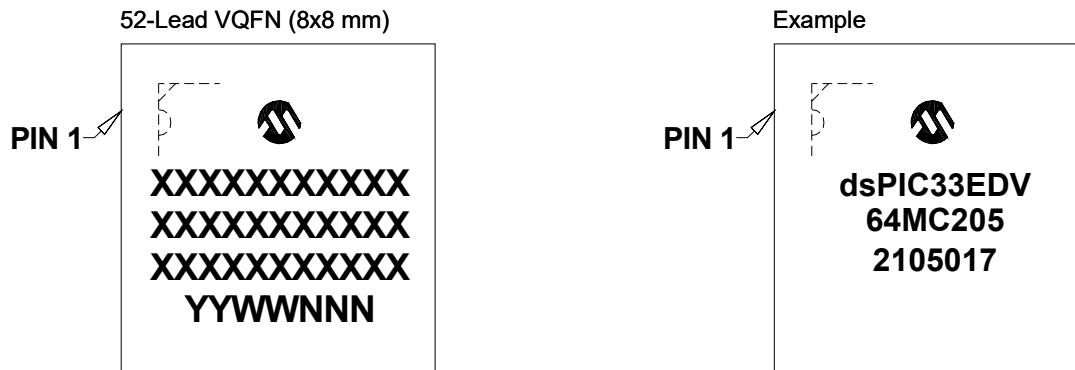



FIGURE 33-10: TYPICAL LPRC FREQUENCY @ VDD = 3.3V

dsPIC33EDV64MC205



NOTES:

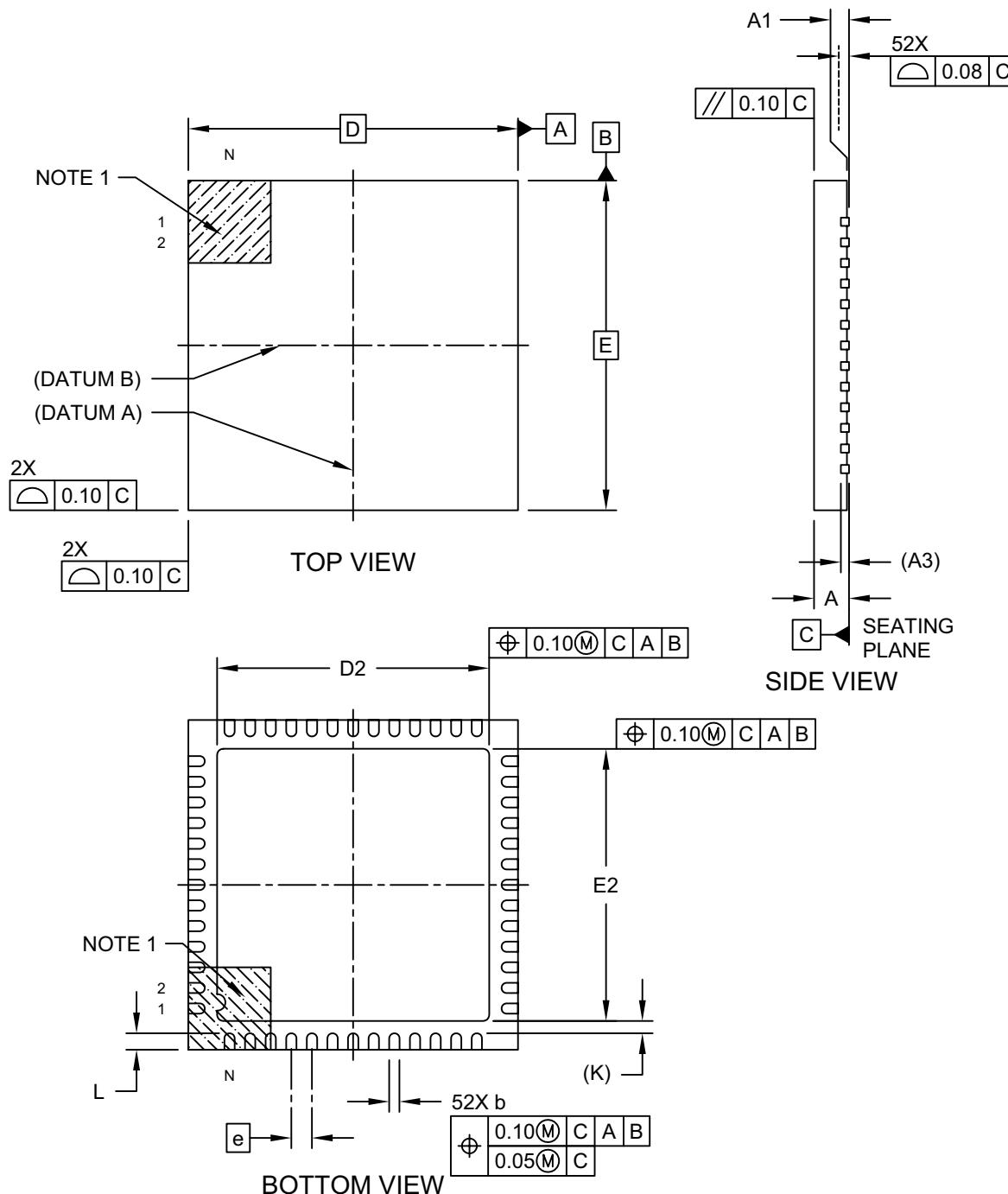
34.0 PACKAGING INFORMATION

34.1 Package Marking Information

Legend:

XX...X	Customer-specific information
Y	Year code (last digit of calendar year)
YY	Year code (last 2 digits of calendar year)
WW	Week code (week of January 1 is week '01')
NNN	Alphanumeric traceability code

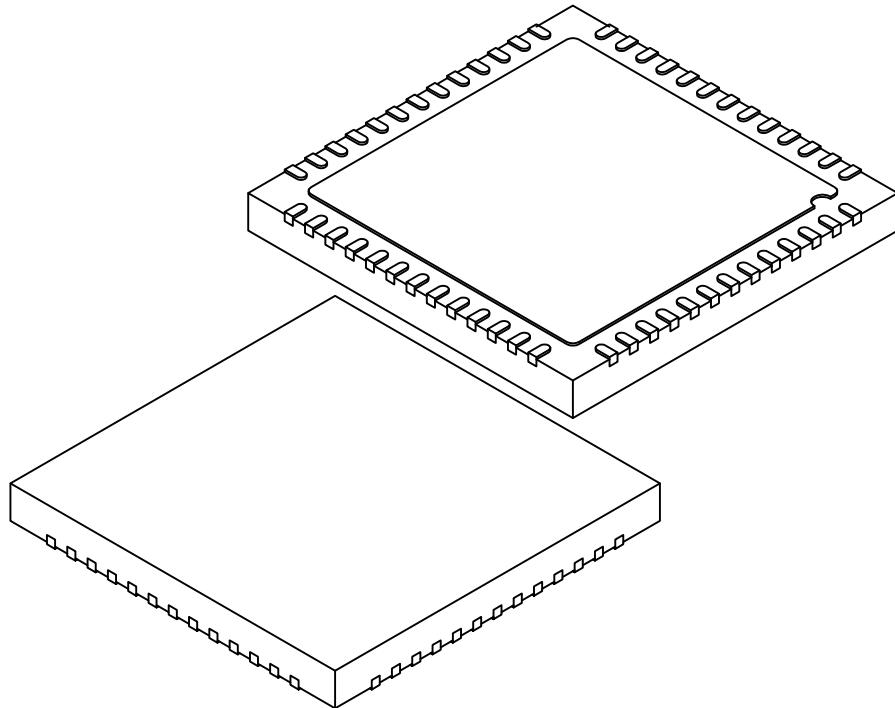
Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.


dsPIC33EDV64MC205

34.2 Package Details

The following sections give the technical details of the package.

52-Lead Very Thin Plastic Quad Flat, No-Lead Package (M7) - 8x8 mm Body [VQFN] With 6.6x6.6 mm Exposed Pad


Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

Microchip Technology Drawing C04-430-M7 Rev B Sheet 1 of 2

52-Lead Very Thin Plastic Quad Flat, No-Lead Package (M7) - 8x8 mm Body [VQFN] With 6.6x6.6 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Terminals		52		
Pitch		e 0.50 BSC		
Overall Height		A 0.80	0.85	0.90
Standoff		A1 0.00	0.02	0.05
Terminal Thickness		A3 0.20 REF		
Overall Length		D 8.00 BSC		
Exposed Pad Length		D2 6.50	6.60	6.70
Overall Width		E 8.00 BSC		
Exposed Pad Width		E2 6.50	6.60	6.70
Terminal Width		b 0.18	0.25	0.30
Terminal Length		L 0.35	0.40	0.45
Terminal-to-Exposed-Pad		K 0.30	REF	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

dsPIC33EDV64MC205

52-Lead Very Thin Plastic Quad Flat, No-Lead Package (M7) - 8x8 mm Body [VQFN] With 6.6x6.6 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Optional Center Pad Width	X2			6.70
Optional Center Pad Length	Y2			6.70
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X52)	X1			0.30
Contact Pad Length (X52)	Y1			0.80
Contact Pad to Contact Pad (X48)	G1	0.30		
Contact Pad to Center Pad (X52)	G2	0.25		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2430-M7 Rev B

APPENDIX A: REVISION HISTORY

Revision A (November 2016)

This is the initial version of this document.

Revision B (September 2017)

Changed device name to dsPIC33EDV64MC205.

- Sections:

- Updated [Section 17.6.1 “DE2 Communications”](#).
- Added [Section 27.3 “Unique Device Identifier \(UDID\)”](#) and [Section 27.5 “On-Chip 3.3V Regulator Output”](#).

- Figures:

- Updated [Figure 4-1](#), [Figure 17-2](#) and [Figure 27-1](#).

- Tables:

- Updated [Table 2](#), [Table 1-1](#), [Table 11-2](#) and [Table 27-1](#).

Revision C (May 2018)

Added [Section 31.0 “Motor Gate Driver Electrical Characteristics”](#).

Adds website links to the “[Referenced Sources](#)” section.

Minor updates to text and formatting were incorporated throughout the document.

Revision D (November 2018)

All instances of “Motor Gate Driver” and “Motor Driver” were updated to “MOSFET Gate Driver” and “MOSFET Driver”, respectively.

Changed the ESD and Latch-up Protection (All Other Pins) ratings in the “[Absolute Maximum Ratings^{\(1\)}](#)” in [Section 32.0 “MOSFET Gate Driver Electrical Characteristics”](#).

Updated the 52-Pin VQFN pin diagram.

- Figures:

- Updated [Figure 1-1](#) and [Figure 17-2](#).

- Tables:

- Updated [Table 1-2](#), [Table 30-3](#), [Table 32-1](#) through [Table 32-6](#).

Revision E (September 2020)

- Sections:

- Updated “[Operating Conditions](#)”, “[MOSFET Gate Driver Module \(based on MCP8021 device\)](#)”, “[Pin Diagram](#)”, [Section 2.9 “Oscillator Value Conditions on Device Start-up”](#), [Section 4.6 “Modulo Addressing”](#), [Section 16.0 “High-Speed PWM Module”](#), [Section 17.17 “Bias Generator”](#) through [Section 17.24 “Register Definitions”](#), [Section 31.0 “High-Temperature Electrical Characteristics”](#) and [Section 32.0 “MOSFET Gate Driver Electrical Characteristics”](#).

- Added [Section 17.2 “Communications Port \(DE2\)”](#) through [Section 17.16 “State Diagrams”](#) and [Section 17.25 “Application Information”](#).

- Registers:

- Updated [Register 5-1](#), [Register 13-1](#), [Register 13-2](#), [Register 14-2](#), [Register 16-13](#), [Register 17-3](#), [Register 23-5](#), [Register 23-6](#), [Register 23-8](#), [Register 25-2](#), [Register 25-3](#) and [Register 25-7](#).

- Figures:

- Updated [Figure 4-1](#), [Figure 9-1](#), [Figure 17-2](#), [Figure 25-1](#), [Figure 25-2](#) and [Figure 25-5](#).

- Tables:

- Updated [Table 4-20](#), [Table 7-1](#), [Table 9-1](#), [Table 27-2](#), [Table 30-4](#), [Table 30-6](#), [Table 30-7](#), [Table 30-8](#), [Table 30-10](#), [Table 31-2](#), [Table 32-1](#), [Table 32-2](#), [Table 32-3](#), [Table 32-4](#) and [Table 32-5](#).
Changed the title of [Table 1-1](#).

- Added [Table 31-9](#).

dsPIC33EDV64MC205

Revision F (November 2021)

- Sections:
 - Updated “[Protection Features](#)”,
[Section 17.13 “+3.3V \(VREG\)”,](#)
[Section 17.14 “Power Supply Input \(HVDD\)”,](#) [Section 17.15 “Charge Pump Flying Capacitor \(CAP1, CAP2\)”,](#)
[Section 17.17.1 “Charge Pump”,](#)
[Section 17.17.3 “VREG Low-Dropout \(LDO\) Linear Regulator”,](#) [Section 17.18.1 “Voltage Supervisor”,](#) [Section 17.20.2 “Fault Handling Sequence”,](#)
[Section 17.20.4 “Power Control Status \(PCON\)”,](#) [Section 17.20.4.1 “Internal Function Block Status”,](#) [Section 17.21.4.1 “Cross Conduction Protection”,](#)
[Section 17.25.1.3 “Charge Pump Output Capacitor”,](#) [Section 17.26.2 “Bootstrap Voltage Suppression”,](#) [Section 32.0 “MOSFET Gate Driver Electrical Characteristics” and “Product Identification System”.](#)
 - Added “[Terminology Cross Reference](#)” section.
- Registers:
 - Updates [Register 17-2](#), [Register 17-3](#) and [Register 17-5](#).
- Figures:
 - Updated [Figure 17-2](#).
- Tables:
 - Updated [Table 1](#), [Table 1-1](#), [Table 1-2](#),
[Table 17-3](#), [Table 17-4](#), [Table 17-6](#),
[Table 17-7](#), [Table 32-1](#), [Table 32-2](#),
[Table 32-3](#) and [Table 32-4](#).
- Removed Input Operating Voltage Rise Rate parameter from [Table 32-1](#).

INDEX

A

Absolute Maximum Ratings	353
AC Characteristics	365
10-Bit ADC Conversion Timing Requirements	417
12-Bit ADC Conversion Timing Requirements	415
ADC Module Specifications	411
ADC Module Specifications (10-Bit Mode)	413
ADC Module Specifications (12-Bit Mode)	412
Capacitive Loading Requirements on Output Pins	365
DMA Timing Requirements	418
External Clock Timing Requirements	366
High-Speed PWMx Timing Requirements	374
I/O Timing Requirements	368
I2Cx Bus Data Timing Requirements (Client Mode)	405
I2Cx Bus Data Timing Requirements (Host Mode)	403
Input Capture x Timing Requirements	372
Internal FRC Accuracy	367
Internal LPRC Accuracy	367
Load Conditions	365
OCx/PWMx Mode Timing Requirements	373
Op Amp/Comparator Voltage Reference	
Settling Time Specifications	409
Output Compare x Timing Requirements	373
PLL Clock Timing Specifications	367
QEI External Clock Timing Requirements	375
QEI Index Pulse Timing Requirements	377
Quadrature Decoder Timing Requirements	376
Reset, Watchdog Timer, Oscillator Start-up Timer,	
Power-up Timer Requirements	369
SPI1 Client Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0) Requirements	401
SPI1 Client Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0) Requirements	399
SPI1 Client Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0) Requirements	397
SPI1 Host Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1) Requirements	393
SPI1 Host Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1) Requirements	392
SPI1 Host Mode (Half-Duplex, Transmit Only)	
Requirements	391
SPI1 Maximum Data/Clock Rate Summary	390
SPI2 Client Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0) Requirements	389
SPI2 Client Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0) Requirements	387
SPI2 Client Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0) Requirements	383
SPI2 Client Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0) Requirements	385
SPI2 Host Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1) Requirements	381
SPI2 Host Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1) Requirements	380
SPI2 Host Mode (Half-Duplex, Transmit Only)	
Requirements	379
SPI2 Maximum Data/Clock Rate Summary	378
Timer1 External Clock Timing Requirements	370
Timer2/Timer4 External Clock Timing	
Requirements	371
Timer3/Timer5 External Clock	
Timing Requirements	371
UARTx I/O Timing Requirements	406

ADC

Control Registers	277
Helpful Tips	276
Key Features	273
Resources	276
Analog-to-Digital Converter. See ADC.	
Arithmetic Logic Unit (ALU)	30
B	
Bit-Reversed Addressing	69
Example	70
Implementation	69
Sequence Table (16-Entry)	70
Block Diagrams	
16-Bit Timer1 Module	151
ADC Conversion Clock Period	275
ADC with Connection Options for ANx Pins and	
Op Amps	274
Arbiter Architecture	64
CALL Stack Frame	65
Charge Pump	220
Comparator (Module 4)	308
Connections for Internal 1.8V Core	
Logic Regulator	337
CPU Core	22
CRC Module	325
CRC Shift Engine	326
CTMU Module	268
Data Access from Program Space	
Address Generation	71
Digital Filter Interconnect	309
DMA Controller	95
DMA Controller Module	93
dsPIC33EDV64MC205 Host dsPIC DSC	12
dsPIC33EDV64MC205 Interconnections	11
EDS Read Address Generation	59
EDS Write Address Generation	60
Example of MCLR Pin Connections	18
High-Speed PWMx Architectural Overview	175
High-Speed PWMx Register Interconnection	176
I2Cx Module	254
Input Capture x	161
MOSFET Driver Module	195
MOSFET Driver Typical Application Circuit	196
Multiplexing Remappable Output for RPn	134
Op Amp Configuration A	310
Op Amp Configuration B	311
Op Amp/Comparator Voltage Reference Module	308
Op Amp/Comparator x (Modules 1, 2, 3)	307
Oscillator Circuit Placement	20
Oscillator System	107
Output Compare x Module	167
Overvoltage Protection	225
PLL Module	108
Programmer's Model	24
PTG Module	290
Quadrature Encoder Interface	228
Recommended Minimum Connection	18
Remappable Input for U1RX	130
Reset System	77
Shared Port Structure	128
SPIx Module	246
Transient Voltage Clamp	221

dsPIC33EDV64MC205

Type B Timer (Timer2 and Timer4).....	156
Type B/Type C Timer Pair (32-Bit Timer).....	157
Type C Timer (Timer3 and Timer5)	156
UARTx Module.....	261
User-Programmable Blanking Function	309
Watchdog Timer (WDT).....	338
Brown-out Reset (BOR)	337
C	
Charge Time Measurement Unit. See CTMU.	
Code Examples	
dsPIC DSC Auto-Baud.....	224
Port Write/Read	129
PWMMx Write-Protected Register	
Unlock Sequence.....	174
PWRSAV Instruction Syntax.....	117
Sleep Mode PWRSAV Instruction Syntax	118
Code Protection	331, 339
CodeGuard Security.....	331, 339
Configuration Bits.....	331
Description	333
CPU	
Addressing Modes	21
Clocking System Options.....	108
Fast RC (FRC) Oscillator	108
FRC Oscillator with PLL	108
FRC Oscillator with Postscaler	108
Low-Power RC (LPRC) Oscillator	108
Primary (XT, HS, EC) Oscillator.....	108
Primary Oscillator with PLL.....	108
Control and Status Registers	26
Data Space Addressing	21
Instruction Set	21
Resources	25
CRC	
CTMU	
Control Registers	269
Resources	268
Customer Change Notification Service	451
Customer Notification Service	451
Customer Support.....	451
Cyclic Redundancy Check. See CRC.	
D	
Data Address Space	33
Memory Map for dsPIC33EDV64MC205 Device	34
Near Data Space	33
Organization, Alignment.....	33
SFR Space.....	33
Width.....	33
Data Memory	
Arbitration and Bus Initiator Priority	64
Data Space	
Extended X	63
Paged Memory Scheme	59
DC and AC Characteristics	
Graphs	435
DC Characteristics	
BOR	363
CTMU Current Source Specifications	410
Doze Current (IDOZE)	359
I/O Pin Input Specifications.....	360
I/O Pin Output Specifications	363
Idle Current (IIDLE)	357
Op Amp/Comparator Specifications.....	407
Op Amp/Comparator Voltage Reference	
Specifications	409
Operating Current (IDD)	356
Operating MIPS vs. Voltage	354
Power-Down Current (IPD).....	358
Program Memory	364
Temperature and Voltage Specifications.....	355
Watchdog Timer Delta Current (Δ lWDT).....	358
Development Support	351
Direct Memory Access. See DMA.	
DMA Controller	
Channel to Peripheral Associations	94
Control Registers	95
DMAxCNT	95
DMAxCON	95
DMAxPAD	95
DMAxREQ	95
DMAxSTA	95
DMAxSTB	95
Resources	95
Supported Peripherals	93
Doze Mode	119
DSP Engine	30
E	
Electrical Characteristics	353
AC.....	365
Filter Capacitor (CEFC) Specifications	355
Equations	
Bootstrap Voltage	201
Device Operating Frequency	108
FPLL0 Calculation	108
FVCO Calculation	108
HVDD Bulk Capacitor Calculation	198
OE Pin High to VBOOT Ready	201
Snubber Capacitor Power Dissipation	223
VBOOT Capacitor	201
Errata	7
F	
Flash Program Memory	73
Control Registers	74
Programming Operations	74
Resources	74
RTSP Operation	74
Table Instructions	73
Flexible Configuration	331
Flowcharts	
DE2 Data Reception, Auto-Baud Rate	
Sequence (Part 1)	199
DE2 Data Reception, Auto-Baud Rate	
Sequence (Part 2)	200
G	
Getting Started Guidelines	
External Oscillator Layout Guidance	19
External Oscillator Pins	19
Guidelines for Getting Started	17
Basic Connection Requirements	17
CPU Logic Filter Capacitor Connection (VCAP)	18
Decoupling Capacitors	17
ICSP Pins	19
Master Clear (MCLR) Pin	18
Oscillator Value Conditions on Start-up	20
Power Requirements	17
Unused I/Os	20

H	
High-Speed PWM	173
Control Registers	178
Faults	173
Resources	177
High-Temperature AC Characteristics	423
ADC Module (10-Bit Mode)	425
ADC Module (12-Bit Mode)	425
Internal FRC Accuracy	424
Internal RC Accuracy	424
Load Conditions	423
Op Amp/Comparator	426
PLL Clock Timing	423
High-Temperature and Voltage Specifications	423
AC	423
High-Temperature DC Characteristics	423
Doze Current (I _{DOZE})	421
I/O Pin Output Specifications	422
Idle Current (I _{IDLE})	421
Operating Current (I _{DD})	421
Operating MIPS vs. Voltage	420
Power-Down Current (I _{PD})	421
Program Memory	422
Temperature and Voltage Specifications	420
High-Temperature Electrical Characteristics	419
Absolute Maximum Ratings	419
I	
I/O Ports	127
Configuring Analog and Digital Port Pins	128
Helpful Tips	135
Open-Drain Configuration	128
Parallel I/O (PIO)	127
Resources	136
Write/Read Timing	128
In-Circuit Debugger	339
In-Circuit Emulation	331
In-Circuit Serial Programming (ICSP)	331, 339
Input Capture	161
Control Registers	163
Resources	162
Input Change Notification (ICN)	129
Instruction Addressing Modes	66
File Register Instructions	66
Fundamental Modes Supported	66
MAC Instructions	67
MCU Instructions	66
Move and Accumulator Instructions	67
Other Instructions	67
Instruction Set	
Overview	344
Summary	341
Symbols Used in Opcode Descriptions	342
Inter-Integrated Circuit (I ² C)	253
Control/Status Registers	256
Resources	255
Inter-Integrated Circuit. See I ² C.	
Internet Address	451
Interrupt Controller	
Control and Status Registers	85
INTCON1	85
INTCON2	85
INTCON3	85
INTCON4	85
INTTREG	85
Interrupt Vector Details	83
Interrupt Vector Table (IVT)	81
Reset Sequence	81
Resources	85
M	
Memory Maps	
Extended Data Space	63
Memory Organization	31
Resources	35
Microchip Internet Website	451
Modulo Addressing	
Applicability	69
Operation Example	68
Start and End Address	68
W Address Register Selection	68
MOSFET Gate Driver	195
+3.3V (V _{REG})	198
Absolute Maximum Ratings	427
AC/DC Characteristics	428
Bias Generator	429
I/O Ports	433
Motor Control Unit	431
Power Supply Input	428
Temperature Specifications	434
Application Information	220
Bias Generator	201
Bootstrap Inputs (V _{BA} , V _{BB} , V _{BC})	197
Bootstrap Supply (V _{BOOT})	198
Charge Pump Flying Capacitor (CAP1, CAP2)	198
Communications Port (DE2)	197
DE2 Communication Port	209
Device Protection	221
Electrical Characteristics	427
Fault Output (FAULT)	197
Faults	203
Functional Overview	195
High-Side N-MOSFET Gate Driver Outputs (HSA, HSB, HSC)	197
High-Side PWM Inputs (PWMAH, PWMBH, PWMCH)	197
Low-Side N-MOSFET Gate Driver Outputs (LSA, LSB, LSC)	198
Low-Side PWM Inputs (PWMAH, PWMBH, PWMCH)	197
Motor Control Unit	206
Motor Phase Inputs (PHA, PHB, PHC)	197
Output Enable (OE)	202
Output Enable (OE) Input	197
Power Supply Input (HV _{DD})	198
Register Definitions	216
State Diagrams	199
Supervisor	202
Wake Input (WAKE)	197
O	
Op Amp	
Application Considerations	310
Configuration A	310
Configuration B	311
Op Amp/Comparator	307
Control/Status Registers	312
Resources	311
Oscillator	
Control Registers	110
Resources	109

dsPIC33EDV64MC205

Oscillator Configuration	107
Output Compare	167
Control Registers	169
Resources	168

P

Packaging	
Details	440
Marking	439
Peripheral Module Disable (PMD)	119
Peripheral Pin Select (PPS)	129
Available Peripherals	129
Available Pins	129
Control	130
Control Registers	137
Input Mapping	130
Output Selection for Remappable Pins	134
Pin Selection for Selectable Input Sources	132
Selectable Input Sources	131
Peripheral Trigger Generator (PTG) Module	289
Peripheral Trigger Generator. See PTG.	
Pin Diagram	4
Pinout I/O Descriptions (table)	13
Power-Saving Features	117
Clock Frequency	117
Clock Switching	117
Instruction-Based Modes	117
Idle	118
Interrupts Coincident with Power Save Instructions	118
Sleep	118
Resources	119
Program Address Space	31
Construction	71
Data Access from Program Memory Using Table Instructions	72
Interfacing with Data Memory Spaces	71
Memory Map	31
Table Read High Instructions (TBLRDH)	72
Table Read Low Instructions (TBLRDL)	72
Program Memory	
Organization	32
Reset Vector	32
Programmable CRC Generator	325
Control Registers	327
Overview	326
Resources	326
Setup Examples for 16/32-Bit Polynomial	326
Programmer's Model	23
Register Descriptions	23
PTG	
Control/Status Registers	292
Introduction	289
Output Descriptions	306
Resources	291
Step Commands and Format	303

Q

QEI	
Control/Status Registers	230
Resources	229
Quadrature Encoder Interface (QEI)	227
Quadrature Encoder Interface. See QEI.	

R

Referenced Sources	8
Register Maps	
ADC1	49
Configuration Byte	332
CPU Core	36
CRC	50
CTMU	54
DMAC	55
I2C1 and I2C2	47
Input Capture 1 through Input Capture 4	41
Interrupt Controller	38
NVM	52
Op Amp/Comparator	54
Output Compare 1 through Output Compare 4	42
Peripheral Pin Select Input	51
Peripheral Pin Select Output	50
PMD	53
PORTA	56
PORTB	56
PORTC	57
PORTD	57
PORTE	58
PORTF	58
PORTG	58
PTG	43
PWM	44
PWM Generator 1	44
PWM Generator 2	45
PWM Generator 3	45
QEI1	46
Reference Clock	52
SPI1 and SPI2	48
System Control	52
Timer1 through Timer5	40
UART1 and UART2	47

Registers

AD1CHS0 (ADC1 Input Channel 0 Select)	285
AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select)	283
AD1CON1 (ADC1 Control 1)	277
AD1CON2 (ADC1 Control 2)	279
AD1CON3 (ADC1 Control 3)	281
AD1CON4 (ADC1 Control 4)	282
AD1CSSH (ADC1 Input Scan Select High)	287
AD1CSSL (ADC1 Input Scan Select Low)	288
ALTDTRx (PWMx Alternate Dead-Time)	186
AUXCONx (PWMx Auxiliary Control)	194
CFG0 (Configuration 0)	216
CFG2 (Configuration 2)	217
CHOP (PWMx Chop Clock Generator)	182
CLKDIV (Clock Divisor)	112
CM4CON (Comparator 4 Control)	316
CMSTAT (Op Amp/Comparator Status)	312
CMxCON (Comparator x Control, x = 1,2,3)	314
CMxFLTR (Comparator x Filter Control)	322
CMxMSKCON (Comparator x Mask Gating Control)	320
CMxMSKSRC (Comparator x Mask Source Select Control)	318
CORCON (Core Control)	28, 87
CRCCON1 (CRC Control 1)	327
CRCCON2 (CRC Control 2)	328

CRCXORH (CRC XOR Polynomial High).....	329
CRCXORL (CRC XOR Polynomial Low).....	329
CTMUCON1 (CTMU Control 1).....	269
CTMUCON2 (CTMU Control 2).....	270
CTMUICON (CTMU Current Control).....	271
CVRCON (Comparator Voltage Reference Control).....	323
DEVID (Device ID).....	335
DEVREV (Device Revision).....	335
DMALCA (DMA Last Channel Active Status).....	104
DMAPPS (DMA Ping-Pong Status).....	105
DMAPWC (DMA Peripheral Write Collision Status).....	102
DMARQC (DMA Request Collision Status).....	103
DMAxCNT (DMA Channel x Transfer Count).....	100
DMAxCON (DMA Channel x Control).....	96
DMAxPAD (DMA Channel x Peripheral Address)....	100
DMAxREQ (DMA Channel x IRQ Select).....	97
DMAxSTAH (DMA Channel x Start Address A, High).....	98
DMAxSTAL (DMA Channel x Start Address A, Low).....	98
DMAxSTBH (DMA Channel x Start Address B, High).....	99
DMAxSTBL (DMA Channel x Start Address B, Low).....	99
DSADRH (DMA Most Recent RAM High Address)...	101
DSADRL (DMA Most Recent RAM Low Address)....	101
DTRx (PWMx Dead-Time).....	186
FCLCONx (PWMx Fault Current-Limit Control).....	190
I2CxCON (I2Cx Control).....	256
I2CxMSK (I2Cx Client Mode Address Mask).....	260
I2CxSTAT (I2Cx Status).....	258
ICxCON1 (Input Capture x Control 1).....	163
ICxCON2 (Input Capture x Control 2).....	164
INDX1CNTH (Index Counter 1 High Word).....	238
INDX1CNTL (Index Counter 1 Low Word).....	238
INDX1HLD (Index Counter 1 Hold).....	239
INT1HLDH (Interval 1 Timer Hold High Word).....	244
INT1HLDL (Interval 1 Timer Hold Low Word).....	244
INT1TMRH (Interval 1 Timer High Word).....	243
INT1TMRL (Interval 1 Timer Low Word).....	243
INTCON1 (Interrupt Control 1).....	88
INTCON2 (Interrupt Control 2).....	90
INTCON3 (Interrupt Control 3).....	91
INTCON4 (Interrupt Control 4).....	91
INTTREG (Interrupt Control and Status).....	92
IOCONx (PWMx I/O Control).....	188
LEBCONx (PWMx Leading-Edge Blanking Control).....	192
LEBDLYx (PWMx Leading-Edge Blanking Delay)....	193
MDC (PWMx Master Duty Cycle).....	182
NVMADRH (Nonvolatile Memory Address High).....	76
NVMADRL (Nonvolatile Memory Address Low).....	76
NVMCON (Nonvolatile Memory (NVM) Control).....	75
NVMKEY (Nonvolatile Memory Key).....	76
OCxCON1 (Output Compare x Control 1).....	169
OCxCON2 (Output Compare x Control 2).....	171
OSCCON (Oscillator Control).....	110
OSCTUN (FRC Oscillator Tuning).....	115
PDCx (PWMx Generator Duty Cycle).....	185
PHASEx (PWMx Primary Phase-Shift).....	185
PLLFBD (PLL Feedback Divisor).....	114
PMD1 (Peripheral Module Disable Control 1).....	120
PMD2 (Peripheral Module Disable Control 2).....	122
PMD3 (Peripheral Module Disable Control 3).....	123
PMD4 (Peripheral Module Disable Control 4).....	123
PMD6 (Peripheral Module Disable Control 6).....	124
PMD7 (Peripheral Module Disable Control 7).....	125
POS1CNTH (Position Counter 1 High Word).....	236
POS1CNTL (Position Counter 1 Low Word).....	236
POS1HLD (Position Counter 1 Hold).....	237
PTCON (PWMx Time Base Control).....	178
PTCON2 (PWMx Primary Server Clock Divider Select 2).....	180
PTGADJ (PTG Adjust).....	300
PTGBTE (PTG Broadcast Trigger Enable).....	295
PTGC0LIM (PTG Counter 0 Limit).....	299
PTGC1LIM (PTG Counter 1 Limit).....	299
PTGCON (PTG Control).....	294
PTGCST (PTG Control/Status).....	292
PTGHOLD (PTG Hold).....	300
PTGL0 (PTG Literal 0).....	301
PTGQPTR (PTG Step Queue Pointer).....	301
PTGQUEx (PTG Step Queue x).....	302
PTGSDLIM (PTG Step Delay Limit).....	298
PTGT0LIM (PTG Timer0 Limit).....	297
PTGT1LIM (PTG Timer1 Limit).....	297
PTPER (PWMx Primary Time Base Period).....	181
PWMCONx (PWMx Control).....	183
QE1ICON (QE1 Control).....	230
QE1GECH (QE1 Greater Than or Equal Compare High Word).....	242
QE1GECL (QE1 Greater Than or Equal Compare Low Word).....	242
QE1ICH (QE1 Initialization/Capture High Word)....	240
QE1ICL (QE1 Initialization/Capture Low Word)....	240
QE1IOC (QE1 I/O Control).....	232
QE1LECH (QE1 Less Than or Equal Compare High Word).....	241
QE1LECL (QE1 Less Than or Equal Compare Low Word).....	241
QE1STAT (QE1 Status).....	234
RCON (Reset Control).....	79
REFOCON (Reference Oscillator Control).....	116
REV_ID (Hardware Revision ID).....	219
RPINR0 (Peripheral Pin Select Input 0).....	137
RPINR1 (Peripheral Pin Select Input 1).....	137
RPINR11 (Peripheral Pin Select Input 11).....	139
RPINR12 (Peripheral Pin Select Input 12).....	140
RPINR14 (Peripheral Pin Select Input 14).....	140
RPINR15 (Peripheral Pin Select Input 15).....	141
RPINR18 (Peripheral Pin Select Input 18).....	141
RPINR19 (Peripheral Pin Select Input 19).....	142
RPINR22 (Peripheral Pin Select Input 22).....	142
RPINR23 (Peripheral Pin Select Input 23).....	143
RPINR3 (Peripheral Pin Select Input 3).....	138
RPINR37 (Peripheral Pin Select Input 37).....	143
RPINR38 (Peripheral Pin Select Input 38).....	144
RPINR39 (Peripheral Pin Select Input 39).....	144
RPINR7 (Peripheral Pin Select Input 7).....	138
RPINR8 (Peripheral Pin Select Input 8).....	139
RPOR0 (Peripheral Pin Select Output 0).....	145
RPOR1 (Peripheral Pin Select Output 1).....	145
RPOR2 (Peripheral Pin Select Output 2).....	146
RPOR3 (Peripheral Pin Select Output 3).....	146
RPOR4 (Peripheral Pin Select Output 4).....	147
RPOR5 (Peripheral Pin Select Output 5).....	147
RPOR6 (Peripheral Pin Select Output 6).....	148
RPOR7 (Peripheral Pin Select Output 7).....	148

dsPIC33EDV64MC205

RPOR8 (Peripheral Pin Select Output 8).....	149	I2Cx Bus Start/Stop Bits (Client Mode).....	404
RPOR9 (Peripheral Pin Select Output 9).....	149	I2Cx Bus Start/Stop Bits (Host Mode).....	402
SEVTCMP (PWMx Primary Special Event Compare).....	181	Input Capture x (ICx)	372
SPIxCON1 (SPIx Control 1).....	250	OCx/PWMx Characteristics	373
SPIxCON2 (SPIx Control 2).....	252	Output Compare x (OCx) Characteristics	373
SPIxSTAT (SPIx Status and Control).....	248	QEA1/QEB1 Input Characteristics	376
SR (CPU STATUS).....	26, 86	QEI Module Index Pulse Characteristics	377
STAT0 (Status 0).....	218	SPI1 Client Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0).....	400
STAT1 (Status 1).....	219	SPI1 Client Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0).....	398
T1CON (Timer1 Control).....	153	SPI1 Client Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0).....	394
TRGCONx (PWMx Trigger Control).....	187	SPI1 Host Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1).....	393
TRIGx (PWMx Primary Trigger Compare Value).....	189	SPI1 Host Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1).....	392
TxCON (Timer2 and Timer4 Control).....	158	SPI1 Host Mode (Half-Duplex, Transmit Only, CKE = 0).....	390
TyCON (Timer3 and Timer5 Control).....	159	SPI1 Host Mode (Half-Duplex, Transmit Only, CKE = 1).....	391
UxMODE (UARTx Mode).....	263	SPI2 Client Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0).....	388
UxSTA (UARTx Status and Control).....	265	SPI2 Client Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0).....	386
VEL1CNT (Velocity Counter 1).....	237	SPI2 Client Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0).....	382
Resets	77	SPI2 Client Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0).....	384
Brown-out Reset (BOR).....	77	SPI2 Host Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1).....	381
Configuration Mismatch Reset (CM).....	77	SPI2 Host Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1).....	380
Illegal Condition Reset (IOPUWR).....	77	SPI2 Host Mode (Half-Duplex, Transmit Only, CKE = 0).....	378
Illegal Opcode	77	SPI2 Host Mode (Half-Duplex, Transmit Only, CKE = 1).....	379
Security	77	Timer1-Timer5 External Clock	370
Uninitialized W Register	77	TimerQ (QEI Module) External Clock Characteristics	375
Master Clear (MCLR) Pin Reset	77	UARTx I/O Characteristics.....	406
Power-on Reset (POR)	77		
RESET Instruction (SWR).....	77		
Resources	78		
Trap Conflict Reset (TRAPR).....	77		
Watchdog Timer Time-out Reset (WDTO).....	77		
Revision History	443		
S			
Serial Peripheral Interface (SPI)	245		
Serial Peripheral Interface. See SPI.			
Software Stack Pointer (SSP).....	65		
Special Features of the CPU.....	331		
SPI			
Control/Status Registers	248		
Helpful Tips	247		
Resources	247		
T			
Temperature and Voltage Specifications			
AC	365		
Thermal Operating Conditions	354, 420	Unique Device Identifier (UDID)	336
Thermal Packaging Characteristics	354	Universal Asynchronous Receiver Transmitter (UART) ...	261
Timer1	151	Control/Status Registers	263
Control Register	153	Helpful Tips	262
Resources	152	Resources	262
Timer2/3 and Timer4/5	155	Universal Asynchronous Receiver Transmitter. See UART.	
Control Registers	158	User ID Words	336
Resources	157		
Timing Diagrams			
BOR and Master Clear Reset	368	V	
DE2 Packet	211	Voltage Regulator	
External Clock	366	3.3V On-Chip Output	337
High-Speed PWMx Characteristics	374	Internal 1.8V	337
High-Speed PWMx Fault Characteristics	374		
I/O Characteristics	368	W	
I2Cx Bus Data (Client Mode)	404	Watchdog Timer (WDT)	331, 338
I2Cx Bus Data (Host Mode)	402	Programming Considerations	338

THE MICROCHIP WEBSITE

Microchip provides online support via our WWW site at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: <http://microchip.com/support>

dsPIC33EDV64MC205

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

dsPIC 33 E D V 64 MC 205 T I / M7 - XXX		Examples:
Microchip Trademark	<input type="text"/>	dsPIC33EDV64MC205-I/M7:
Architecture	<input type="text"/>	dsPIC33E DSC with MOSFET Gate
Flash Memory Family	<input type="text"/>	Driver and Voltage Regulator,
MOSFET Gate Driver	<input type="text"/>	64-Kbyte Program Memory,
Voltage Regulator	<input type="text"/>	for Motor Control, 52-Pin,
Program Memory Size (Kbyte)	<input type="text"/>	Industrial Temperature,
Product Group	<input type="text"/>	VQFN Package.
Pin Count	<input type="text"/>	
Tape and Reel Flag (if applicable)	<input type="text"/>	
Temperature Range	<input type="text"/>	
Package	<input type="text"/>	
Pattern	<input type="text"/>	

Architecture: 33 = 16-Bit Digital Signal Controller

Flash Memory Family: E = Enhanced Performance

Product Group: MC = Motor Control family

Pin Count: 05 = 52-pin

Temperature Range: I = -40°C to +85°C (Industrial)
E = -40°C to +125°C (Extended)
H = -40°C to +150°C (High)

Package: M7 = Very Thin Plastic Quad, No Lead Package – (52-pin) 8x8 mm Body (VQFN)

dsPIC33EDV64MC205

NOTES:

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable". Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at <https://www.microchip.com/en-us/support/design-help/client-support-services>.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, Optolyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, QuietWire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Parallelizing, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, NVM Express, NVMe, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQL, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, Symmcom, and Trusted Time are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2016-2021, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-5224-9404-1

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

MICROCHIP

Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
<http://www.microchip.com/support>
Web Address:
www.microchip.com

Atlanta

Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX

Tel: 512-257-3370

Boston

Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago

Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Novi, MI
Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983

Indianapolis

Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles

Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC

Tel: 919-844-7510

New York, NY

Tel: 631-435-6000

San Jose, CA

Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto

Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra'anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7288-4388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820