

FEATURES

- Patents protected
- DC link voltage 1kVDC
- UL62368-1 recognised4
- ANSI/AAMI ES60601-1, 2 MOOP, 1MOPP recognised⁵
- 5.2kVDC Isolation 'Hi Pot Test'
- Substrate embedded transformer
- Automated manufacture
- Short circuit protection³
- Halogen free
- Operation to 95°C with derating
- Ultra low isolation capacitance 2pF

PRODUCT OVERVIEW

The NXJ2 series is a new range of lower profile, fully automated manufacture surface mount DC-DC converters. The NXJ2 series automated manufacturing process with substrate embedded transformer, offers increased product reliability and repeatability of performance in a halogen free, iLGA inspectable package. The NXJ2 series, industry standard footprint is compatible with existing designs.

The NXJ2 series has a MSL rating 2, and is compatible with a peak reflow solder temperature of 260°C as per J-STD-020.

SELECTION GUIDE														
Order Code ¹	Nominal Input Voltage	: Voltage	Rated Input Current	Output Current	Regulation (Typ)	Regulation (Max)	Output Ripple & Noise (Typ)	Output Ripple & Noise (Max)	Efficiency (Min)	Efficiency (Typ)	Switching quency (Typ)	Isolation Capacitance		TF ²
	Nomir Vo	Output	Rated In	Outpu	Load R	Load R	Output F & Noise	Outpu & Nois	Efficie	Efficie	Switchii Frequency	Iso	MIL 217	Telecordia
	V	V	mA	mA	%	%	m۷	р-р	%	%	kHz	pF	kŀ	Irs
NXJ2S0505MC	5	5	550	400	7.5	10	50	110	68.5	72.5	140	2	2874	40967
NXJ2S1212MC	12	12	215	167	7	9	30	70	72	75	120	2	1766	65080
NXJ2S1215MC	12	15	215	133	8	10	25	60	75	77.5	110	2.2	1334	49049
NXJ2S2405MC	24	5	110	400	8	10	70	170	73	76.5	100	2.4	2026	33111
NXJ2S2415MC	24	15	105	133	6.5	8	20	50	74.5	78.5	95	2.4	1232	44260

INPUT CHARACTERISTICS								
Parameter	Conditions	Min.	Тур.	Max.	Units			
	Continuous operation, 5V input types	4.5	5.0	5.5				
Voltage range	Continuous operation, 12V input types	10.8	12	13.2	V			
	Continuous operation, 24V input types	21.6	24	26.4				
Input reflected ripple	5V input		15		mA n n			
current	12V & 24V input		5		mA p-p			

ISOLATION CHARACTERISTICS								
Parameter		Conditions	Min.	Тур.	Max.	Units		
Isolation voltage		Production tested for 1 second	5200			VDC		
		Qualification tested for 1 minute	5200			VDC		
Resistance		Viso= 1000VDC	10			GΩ		
UL62368-1		Reinforced			250			
Safety standard	ANSI/AAMI ES60601-1	2 MOOP, 1 MOPP			250	Vrms		

OUTPUT CHARACTERISTICS								
Parameter	Conditions	Min.	Тур.	Max.	Units			
Rated power	T _A =-40°C to 85°C			2.0	W			
Voltage set point accuracy	See tolerance envelo							
Line on solution	High V. to low V.	24V input types		1	1.1	0/ /0/		
Line regulation	High V _{IN} to low V _{IN}	All other input types		1.1	1.2	%/%		

www.murata.com/en-global/ products/power/rohs

- 1. Components are supplied in tape and reel packaging, please refer to package specification section. Orderable part numbers are NXJ2SXXXXMC-R7 (135 pieces per reel), or NXJ2SXXXXMC-R13 (600 pieces per reel).
- 2. Calculated using MIL-HDBK-217 FN2 and Telecordia SR-332 calculation model at TA=25°C with nominal input voltage at full load.
- 3. Please refer to short circuit application notes.
- 4. NXJ2S2405MC and NXJ2S2415MC do not hold UL62368-1 recognition.
- 5. NXJ2S2405MC and NXJ2S2415MC do not hold ANSI/AAMI ES60601-1 recognition.

 $All \ specifications \ typical \ at \ T_A=25^{\circ}C, \ nominal \ input \ voltage \ and \ rated \ output \ current \ unless \ otherwise \ specified.$

TEMPERATURE CHARACTERISTICS								
Parameter	Conditions	Min.	Тур.	Max.	Units			
Specification	All output types	-40		85				
Storage		-50		125				
Product temperature rise above ambient	5V input types		35		°C			
	12V input types		30					
	24V input types		25					
Cooling	Free air convection							

ABSOLUTE MAXIMUM RATINGS					
Input voltage V _{IN} , NXJ2S05 types	7V				
Input voltage V _{IN} , NXJ2S12 types	15V				
Input voltage V _{IN} , NXJ2S24 types	28V				

Isolated 2W Single Output SM DC-DC Converters

TECHNICAL NOTES

ISOLATION VOLTAGE

'Hi Pot Test', 'Flash Tested', 'Withstand Voltage', 'Proof Voltage', 'Dielectric Withstand Voltage' & 'Isolation Test Voltage' are all terms that relate to the same thing, a test voltage, applied for a specified time, across a component designed to provide electrical isolation, to verify the integrity of that isolation.

Murata Power Solutions NXJ2 series of DC-DC converters are all 100% production tested at 5.2kVDC for 1 second and have been qualification tested at 5.2kVDC for 1 minute.

The NXJ2 series is recognised by Underwriters Laboratory, please see safety approval section for more information. When the insulation in the NXJ2 series is not used as a safety barrier, i.e. provides functional isolation only, continuous or switched voltages across the barrier up to 1kV are sustainable. This is established by measuring the partial discharge Inception voltage in accordance with IEC 60270. Please contact Murata for further information.

REPEATED HIGH-VOLTAGE ISOLATION TESTING

It is well known that repeated high-voltage isolation testing of a barrier component can actually degrade isolation capability, to a lesser or greater degree depending on materials, construction and environment. The NXJ2 series has a PCB embedded isolated transformer, using FR4 as an insolation barrier between primary and secondary windings. While parts can be expected to withstand several times the stated test voltage, the isolation capability does depend on the FR4 insulation properties. Any material, including FR4 is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage should be reduced by 20% from specified test voltage.

This consideration equally applies to agency recognised parts rated for better than functional isolation where the insulation is always supplemented by a further insulation system of physical spacing or barriers.

SAFETY APPROVAL

ANSI/AAMI ES60601-1

The NXJ2 series is recognised by Underwriters Laboratory (UL) to ANSI/AAMI ES60601-1 and provides 1 MOPP (Means Of Patient Protection) and 2 MOOP (Means Of Operator Protection) based upon a working voltage of 250 Vrms max, between input and output. The NXJ2S2405MC and NXJ2S2415MC do not hold ANSI/AAMI ES60601-1 recognition.

UL62368-1

The NXJ2 series is recognised by Underwriters Laboratory (UL) to UL62368-1 for reinforced insulation to a working voltage of 250Vrms. The NXJ2S2405MC and NXJ2S2415MC do not hold UL62368-1 recognition.

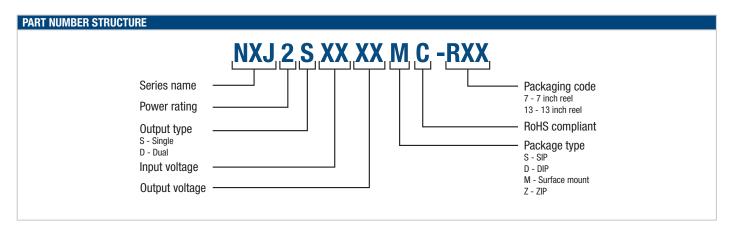
Creepage and clearance 5mm. Working altitude 5000m Over voltage category (OVC) II

FUSING

The NXJ2 Series of converters are not internally fused so to meet the requirements of UL an anti-surge input line fuse should always be used with ratings as defined below.

Input Voltage, 5V: 1A Input Voltage, 12V: 500mA Input Voltage, 24V: 250mA

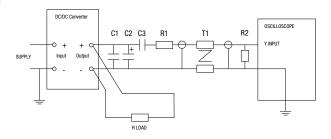
All fuses should be UL recognised and rated to at least the maximum allowable DC input voltage.


ROHS COMPLIANCE AND MSL INFORMATION

This series is compatible with Pb-Free soldering systems and is also backward compatible with Sn/Pb soldering systems. The NXJ2 series can be soldered in accordance with J-STD-020 and have a classification temperature of 260°C and moisture sensitivity level 2. The termination finish on this product is Gold with plating thickness 0.12 microns.

For further information, please visit www.murata.com/en-global/products/power/rohs

ENVIRONMENTAL VALIDA	TION TESTING	
	conducted on this product series, as part of our d if further information about the tests is required.	esign verification process. The datasheet characteristics specify user operating conditions for this
Test	Standard	Condition
Temperature cycling (5V and 12V input types)	JEDEC JESD22-A104	1000 cycles between two temperature extremes set to achieve -40°C and +105°C. 2 full cycles per hour.
Temperature cycling (24V input types)	JEDEC JESD22-A104	500 cycles between two temperature extremes set to achieve -40°C and +105°C. 2 full cycles per hour.
HAST	JEDEC JESD22-A110	96 Hrs at 130°C ±2°C, 85% ±5% R.H. H
Storage life	JEDEC JESD22-A103, Condition A	>125°C for 1008 hours, read point at end point 1008 hours.
MSL	IPC/JEDEC J-STD-020	Bake samples in 125 (+5/-0°C) for 24 hours minimum before conditioning in the Temperature/ Humidity chamber. 168 hours 85°C/60%RH and Pb Free JEDEC Max profile conditioning with electrical testing, co-planarity (<100µm) and >8X microscope inspection before and after.
Vibration	BS EN 61373, with respect to BS EN 60068- 2- 64	Test Fh Category 1 Class B: 5 – 150Hz. Level at each axis – Vertical: 5.72m/s² rms; Traverse: 5.72/s² rms; Longitudinal: 5.72m/s² rms. 5 hours in each axis. Crest factor: 3 Sigma. Device is secured by pads.
Shock	BS EN 61373: Category 1 Class B	Test is 30ms duration, 3 shocks in each sense of 3 mutually perpendicular axes (18 shocks total). Level at each axis as follows: Vertical, Traverse and Longitudinal: 50m/s². Device is secured by pads.
Solderability	IPC/ECA J-STD-002. Test A1	Pb-free (Test A1) For lead free solderability the parts are conditioned in a steam ager for 8 hours ± 15 min. at a temperature of 93°C ± 3 °C. Dipped in solder at 245°C ± 5 °C for 5 (+0/-0.5) seconds.
Solvent cleaning	Resistance to cleaning agents	Solvent – Novec 71IPA & Topklean EL-20A. Pulsed ultrasonic immersion 45°C–65°C
Solvent Resistance	MIL-STD-883 Method 2015	The parts and the bristle portion of the brush are immersed in Isopropanol for a minimum of 1 minute. The parts are brushed 3 times, after the third time the parts are blown dry and inspected.


CHARACTERISATION TEST METHODS

Ripple & Noise Characterisation Method

Ripple and noise measurements are performed with the following test configuration.

C1	1µF X7R multilayer ceramic capacitor, voltage rating to be a minimum of 3 times the output voltage of the DC-DC converter
C2	$10\mu F$ tantalum capacitor, voltage rating to be a minimum of 1.5 times the output voltage of the DC-DC converter with an ESR of less than $100 \text{m}\Omega$ at 100kHz
C3	100nF multilayer ceramic capacitor, general purpose
R1	450Ω resistor, carbon film, ±1% tolerance
R2	50Ω BNC termination
T1	3T of the coax cable through a ferrite toroid
RLOAD	Resistive load to the maximum power rating of the DC-DC converter. Connections should be made via twisted wires
Measured va	lues are multiplied by 10 to obtain the specified values.

Differential Mode Noise Test Schematic

APPLICATION NOTES

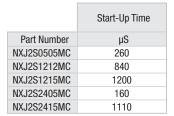
Short Circuit Performance

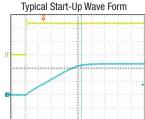
The NXJ2 series short circuit performance is currently being evaluated. Please contact Murata for further information.

Gate Drive Applications Advisory Note

For general guidence for product usage in gate drive applications please refer to "gate drive application notes".

Advisory Notes


The NXJ2 series is not hermetically sealed, customers should ensure that parts are fully dried before input power application.

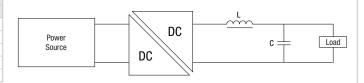

Minimum Load

The minimum load to meet datasheet specification is 10% of the full rated load across the specified input voltage range. Lower than 10% minimum loading will result in an increase in output voltage, which may rise to typically double the specified output voltage if the output load falls to less than 5%.

Capacitive Loading & Start Up

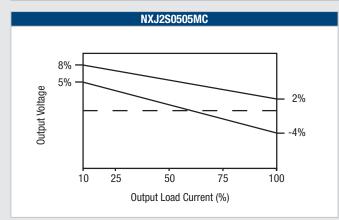
Typical start up times for this series, with a typical input voltage rise time of 2.2µs with resistive only load, and with added output capacitance of 10µF, are shown in the table below.

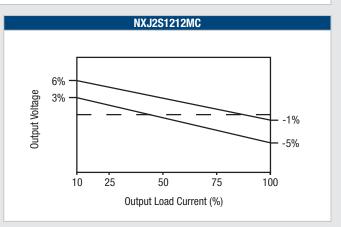
Output Ripple Reduction

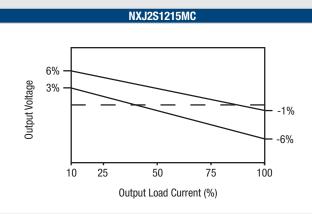

By using the values of inductance and capacitance stated, the output ripple at the rated load is lowered to 5mV p-p max.

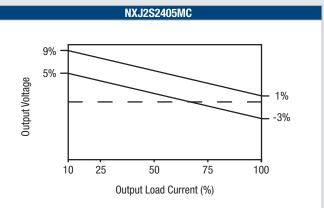
Component selection

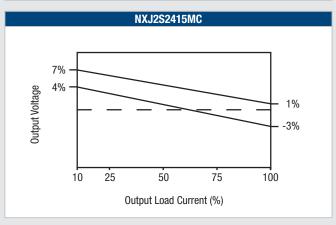
Capacitor: It is required that the ESR (Equivalent Series Resistance) should be as low as possible, ceramic types are recommended. The voltage rating should be at least twice (except for 15V output), the rated output voltage of the DC-DC converter.

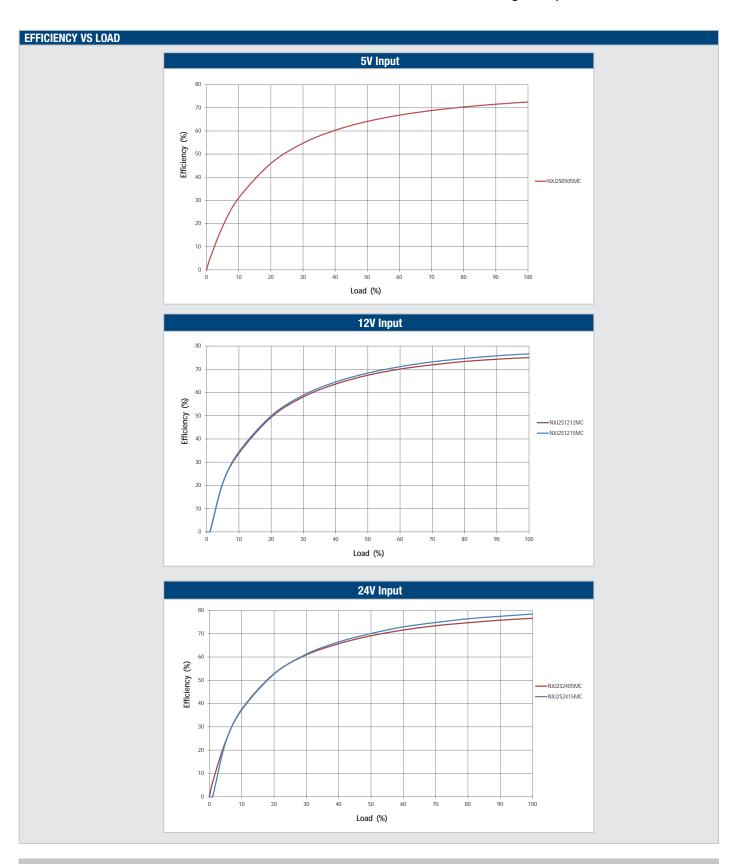

Inductor: The rated current of the inductor should not be less than that of the output of the DC-DC converter. At the rated current, the DC resistance of the inductor should be such that the voltage drop across the inductor is <2% of the rated voltage of the DC-DC converter. The SRF (Self Resonant Frequency) should be >20MHz.

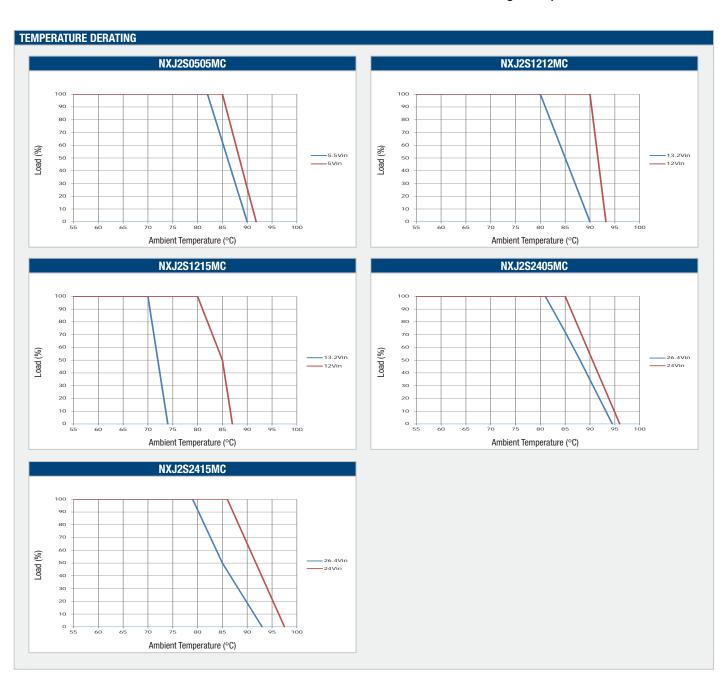

		Capacitor		
	L, µH SMD Through Hole		C, µF	
NXJ2S0505MC	4.7	82472C	11R472C	10
NXJ2S1212MC	4.7	82472C	11R472C	4.7
NXJ2S1215MC	4.7	82472C	11R472C	4.7
NXJ2S2405MC	4.7	82472C	11R472C	10
NXJ2S2415MC	4.7	82472C	11R472C	4.7



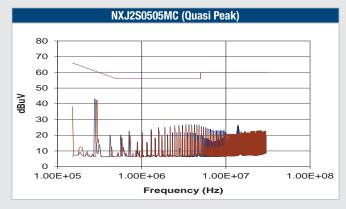

TOLERANCE ENVELOPES

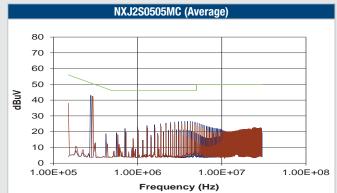

The voltage tolerance envelope shows typical load regulation characteristics for this product series. The tolerance envelope is the maximum output voltage variation due to changes in output loading.

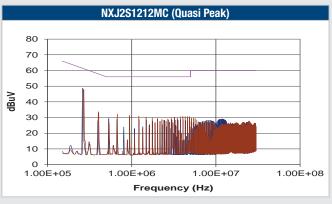


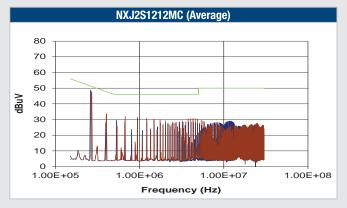


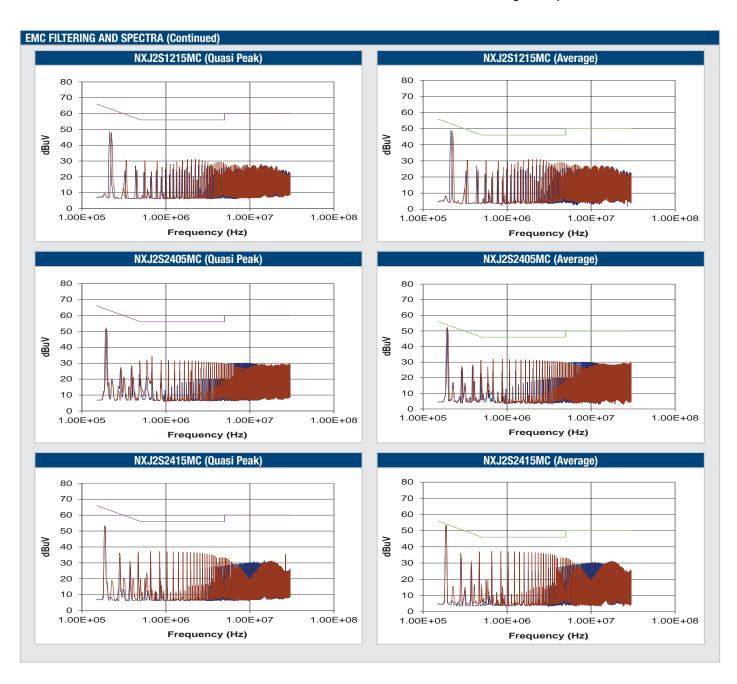


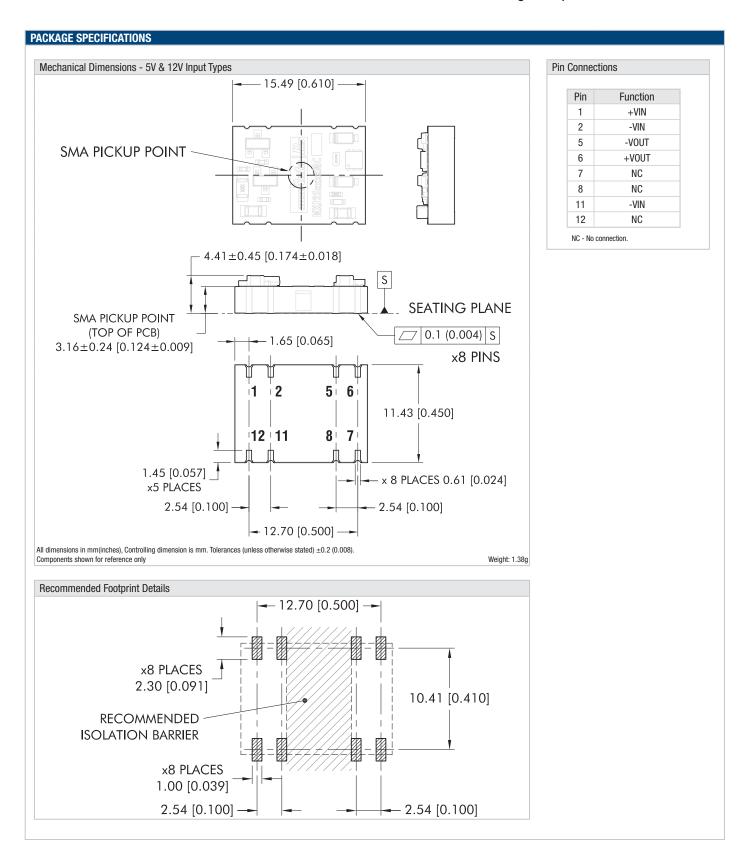

EMC FILTERING AND SPECTRA

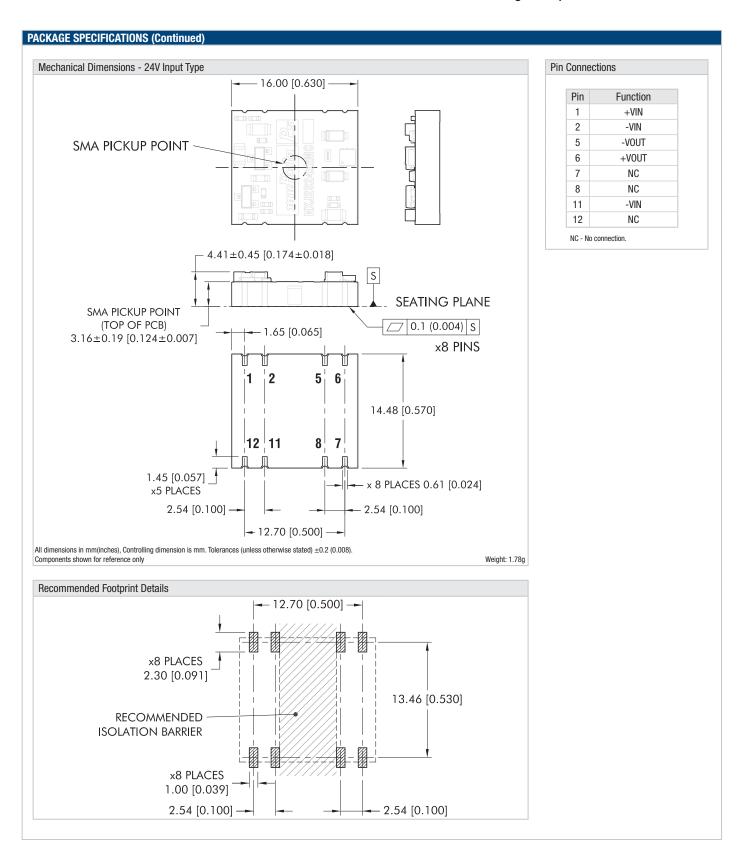

FILTERING

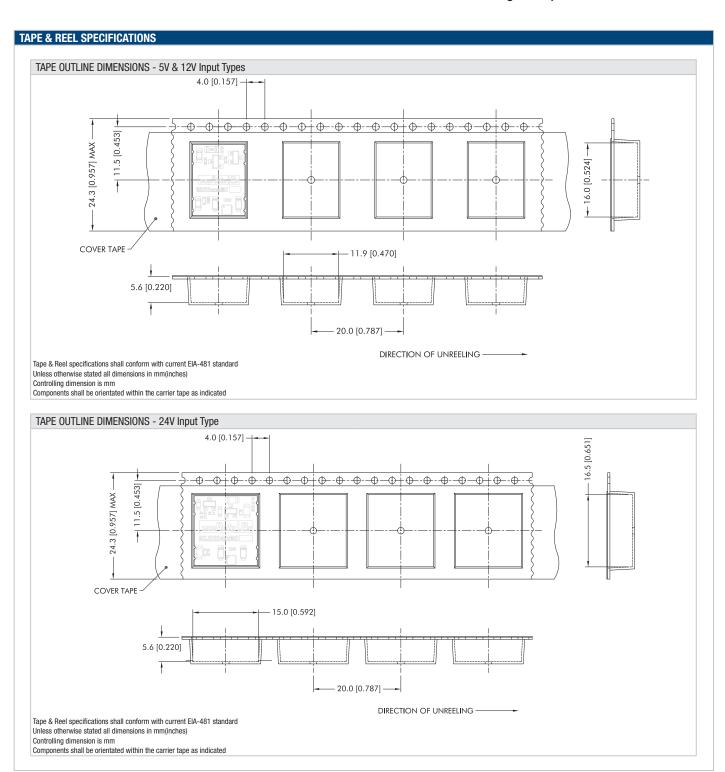

The following table shows the additional input capacitor and input inductor typically required to meet EN 55022 Curve A & B CISPR22 Average Limit as shown in the following plots. The following plots show positive and negative average limit and CISPR22 Average Limit A (pink line) and CISPR22 Average Limit B (green line) adherence limits. The below values are for guidance only and should be evaluated in the application circuit.




		Induc	tor		Capacitor
	L, µH	SMD	Through Hole	C, µF	SMD
NXJ2S0505MC	10	84103C	11R103C	15	GRM55ER71E156KA01
NXJ2S1212MC	10	82103C	11R103C	15	GRM55ER71E156KA01
NXJ2S1215MC	10	82103C	11R103C	15	GRM55ER71E156KA01
NXJ2S2405MC	10	82103C	11R103C	15	KRM55LR7YA156KH01
NXJ2S2415MC	10	82103C	11R103C	15	KRM55LR7YA156KH01







TAPE & REEL SPECIFICATIONS (Continued) REEL OUTLINE DIMENSIONS REEL PACKAGING DETAILS 30.4 [1.197] MAX# -Ø332 [13.071] MAX OR Ø180 [7.087] MAX Ø13.0^{+0.5}_{-0.2} [Ø0.512^{+0.020}_{-0.008}] LEADER SECTION 400 [15.748] MIN 0 100 [3.937] M**I**N 1.5 [0.059] MIN ## 0 GOODS ENCLOSURE SECTION Ø20.2 [Ø0.795] MIN 0 TRAILER SECTION 160 [6.299] MIN 0 Tape & Reel specifications shall conform with current EIA-481 standard Carrier tape pockets shown are Unless otherwise stated all dimensions in mm(inches) illustrative only - Refer to carrier tape Controlling dimension is mm diagram for actual pocket details. # Measured at hub Reel Quantity: 7" - 135 or 13" - 600 ## Six equi-spaced slots on 180mm/7" reel

Isolated 2W Single Output SM DC-DC Converters

DISCLAIMER

Unless otherwise stated in the datasheet, all products are designed for standard commercial and industrial applications and NOT for safety-critical and/or life-critical applications.

Particularly for safety-critical and/or life-critical applications, i.e. applications that may directly endanger or cause the loss of life, inflict bodily harm and/or loss or severe damage to equipment/property, and severely harm the environment, a prior explicit written approval from Murata is strictly required. Any use of Murata standard products for any safety-critical, life-critical or any related applications without any prior explicit written approval from Murata shall be deemed unauthorised use.

These applications include but are not limited to:

- Aircraft equipment
- Aerospace equipment
- Undersea equipment
- Power plant control equipment
- Medical equipment
- Transportation equipment (automobiles, trains, ships, etc.)
- Traffic signal equipment
- Disaster prevention / crime prevention equipment
- Data Processing equipment

Murata makes no express or implied warranty, representation, or guarantee of suitability, fitness for any particular use/purpose and/or compatibility with any application or device of the buyer, nor does Murata assume any liability whatsoever arising out of unauthorised use of any Murata product for the application of the buyer. The suitability, fitness for any particular use/purpose and/or compatibility of Murata product with any application or device of the buyer remain to be the responsibility and liability of the buyer.

Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm, and take appropriate remedial actions. Buyer will fully indemnify and hold Murata, its affiliated companies, and its representatives harmless against any damages arising out of unauthorised use of any Murata products in any safety-critical and/or life-critical applications.

Remark: Murata in this section refers to Murata Manufacturing Company and its affiliated companies worldwide including, but not limited to, Murata Power Solutions.

This product is subject to the following <u>operating requirements</u> and the <u>Life and Safety Critical Application Sales Policy</u>:

Refer to: https://www.murata.com/en-eu/products/power/requirements

Murata Power Solutions (Milton Keynes) Ltd. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein on timply the grandene therewith. Specifications are subject to change without notice.