

General Purpose Transistors

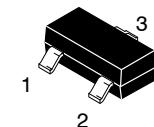
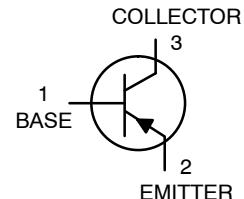
PNP Silicon

BC856ALT1G Series

Features

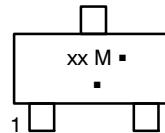
- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS ($T_A = 25^\circ\text{C}$ unless otherwise noted)



Rating	Symbol	Value	Unit
Collector-Emitter Voltage BC856, SBC856 BC857, SBC857 BC858, NSVBC858, BC859	V_{CEO}	-65 -45 -30	V
Collector-Base Voltage BC856, SBC856 BC857, SBC857 BC858, NSVBC858, BC859	V_{CBO}	-80 -50 -30	V
Emitter-Base Voltage	V_{EBO}	-5.0	V
Collector Current – Continuous	I_C	-100	mAdc
Collector Current – Peak	I_C	-200	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board, (Note 1) $T_A = 25^\circ\text{C}$ Derate above 25°C	P_D	225 1.8	mW mW/ $^\circ\text{C}$
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	556	$^\circ\text{C}/\text{W}$
Total Device Dissipation Alumina Substrate, (Note 2) $T_A = 25^\circ\text{C}$ Derate above 25°C	P_D	300 2.4	mW mW/ $^\circ\text{C}$
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	417	$^\circ\text{C}/\text{W}$
Junction and Storage Temperature	T_J, T_{stg}	-55 to +150	$^\circ\text{C}$


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. FR-5 = $1.0 \times 0.75 \times 0.062$ in.
2. Alumina = $0.4 \times 0.3 \times 0.024$ in 99.5% alumina.

**SOT-23 (TO-236)
CASE 318
STYLE 6**

MARKING DIAGRAM

xx = Device Code
xx = (Refer to page 6)
M = Date Code*
■ = Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation and/or overbar may vary depending upon manufacturing location.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

BC856ALT1G Series

ELECTRICAL CHARACTERISTICS ($T_A = 25^\circ\text{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage ($I_C = -10 \text{ mA}$)	$V_{(\text{BR})\text{CEO}}$	-65 -45 -30	-	-	V
Collector – Emitter Breakdown Voltage ($I_C = -10 \mu\text{A}$, $V_{EB} = 0$)	$V_{(\text{BR})\text{CES}}$	-80 -50 -30	-	-	V
Collector – Base Breakdown Voltage ($I_C = -10 \mu\text{A}$)	$V_{(\text{BR})\text{CBO}}$	-80 -50 -30	-	-	V
Emitter – Base Breakdown Voltage ($I_E = -1.0 \mu\text{A}$)	$V_{(\text{BR})\text{EBO}}$	-5.0 -5.0 -5.0	-	-	V
Collector Cutoff Current ($V_{CB} = -30 \text{ V}$) ($V_{CB} = -30 \text{ V}$, $T_A = 150^\circ\text{C}$)	I_{CBO}	-	-	-15 -4.0	nA μA
ON CHARACTERISTICS					
DC Current Gain ($I_C = -10 \mu\text{A}$, $V_{CE} = -5.0 \text{ V}$)	h_{FE}	- - -	90 150 270	-	-
($I_C = -2.0 \text{ mA}$, $V_{CE} = -5.0 \text{ V}$)		125	180	250	
BC856A, SBC856A, BC857A, SBC857A, BC858A BC856B, SBC856B, BC857B, SBC857B, BC858B, NSVBC858B BC857C, SBC857C BC858C		220	290	475	
BC856A, SBC856A, BC857A, SBC857A, BC858A BC856B, SBC856B, BC857B, SBC857B, BC858B, NSVBC858B, BC859B BC857C, SBC857C, BC858C, BC859C		420	520	800	
Collector – Emitter Saturation Voltage ($I_C = -10 \text{ mA}$, $I_B = -0.5 \text{ mA}$) ($I_C = -100 \text{ mA}$, $I_B = -5.0 \text{ mA}$)	$V_{CE(\text{sat})}$	- -	-	-0.3 -0.65	V
Base – Emitter Saturation Voltage ($I_C = -10 \text{ mA}$, $I_B = -0.5 \text{ mA}$) ($I_C = -100 \text{ mA}$, $I_B = -5.0 \text{ mA}$)	$V_{BE(\text{sat})}$	- -	-0.7 -0.9	-	V
Base – Emitter On Voltage ($I_C = -2.0 \text{ mA}$, $V_{CE} = -5.0 \text{ V}$) ($I_C = -10 \text{ mA}$, $V_{CE} = -5.0 \text{ V}$)	$V_{BE(\text{on})}$	-0.6 -	-	-0.75 -0.82	V
SMALL-SIGNAL CHARACTERISTICS					
Current – Gain – Bandwidth Product ($I_C = -10 \text{ mA}$, $V_{CE} = -5.0 \text{ Vdc}$, $f = 100 \text{ MHz}$)	f_T	100	-	-	MHz
Output Capacitance ($V_{CB} = -10 \text{ V}$, $f = 1.0 \text{ MHz}$)	C_{ob}	-	-	4.5	pF
Noise Figure ($I_C = -0.2 \text{ mA}$, $V_{CE} = -5.0 \text{ Vdc}$, $R_S = 2.0 \text{ k}\Omega$, $f = 1.0 \text{ kHz}$, $BW = 200 \text{ Hz}$) BC856, SBC856, BC857, SBC857, BC858, NSVBC858 Series BC859 Series	NF	- -	-	10 4.0	dB
SWITCHING CHARACTERISTICS					
Delay Time ($V_{CC} = -3.0 \text{ Vdc}$, $I_C = -10 \text{ mA}$, $I_E = -1 \text{ mA}$)	t_d	-	35	-	ns
Rise Time ($V_{CC} = -3.0 \text{ Vdc}$, $I_C = -10 \text{ mA}$, $I_E = -1 \text{ mA}$)	t_r	-	25	-	ns
Storage Time ($V_{CC} = -3.0 \text{ Vdc}$, $I_C = -10 \text{ mA}$, $I_E = -1 \text{ mA}$)	t_s	-	310	-	ns
Fall Time ($V_{CC} = -3.0 \text{ Vdc}$, $I_C = -10 \text{ mA}$, $I_E = -1 \text{ mA}$)	t_f	-	40	-	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

BC856ALT1G Series

BC857/BC858/BC859/SBC857/NSVBC858

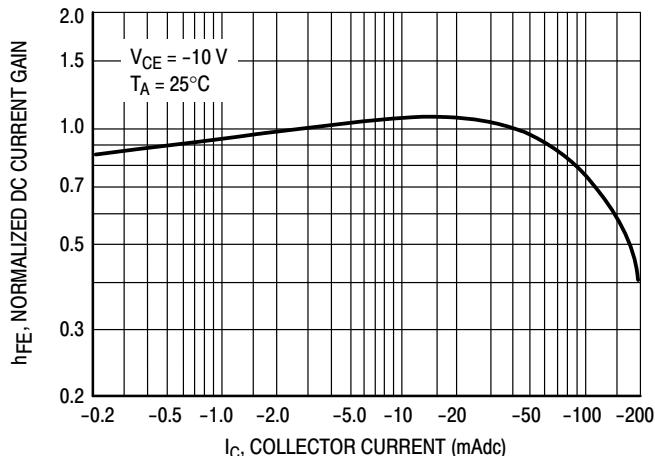


Figure 1. Normalized DC Current Gain

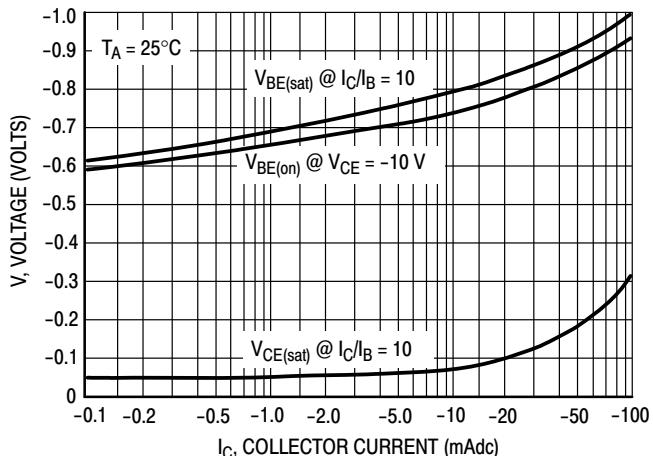


Figure 2. "Saturation" and "On" Voltages

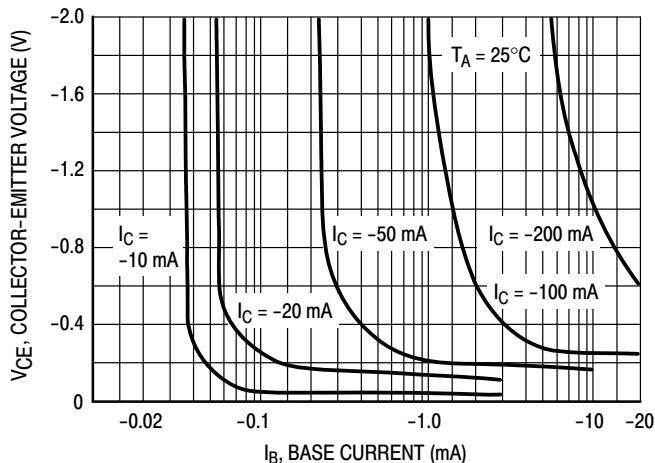


Figure 3. Collector Saturation Region

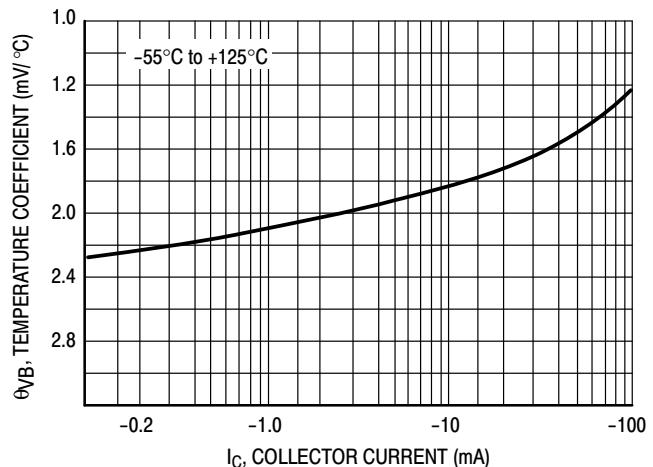


Figure 4. Base-Emitter Temperature Coefficient

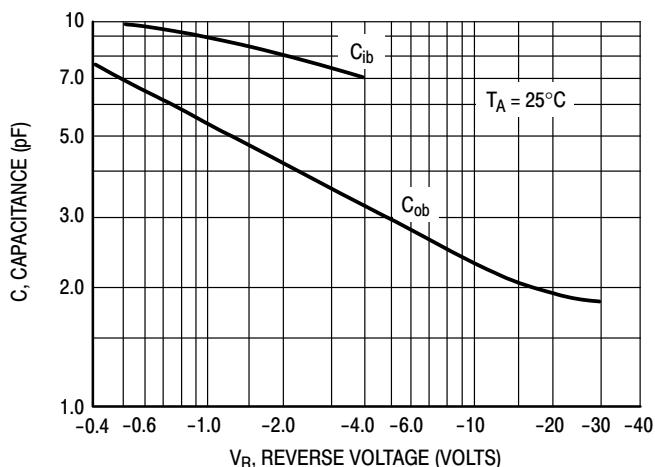


Figure 5. Capacitances

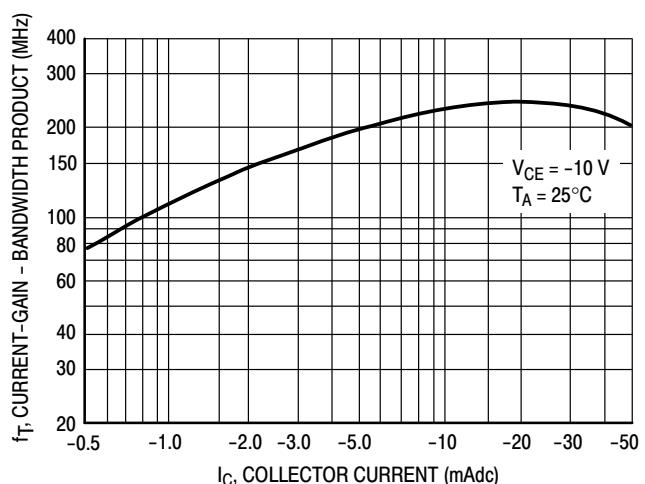
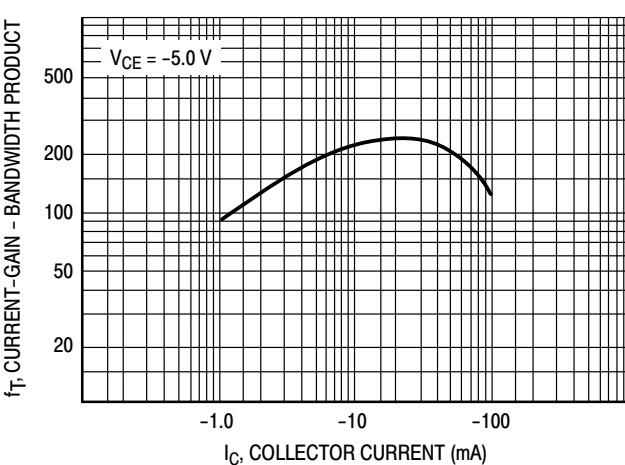
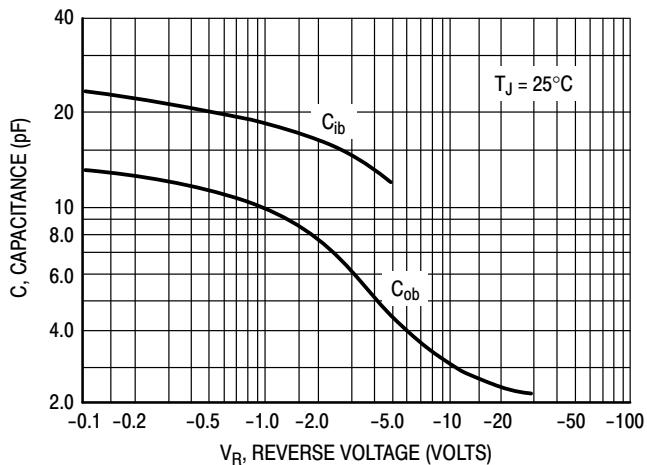
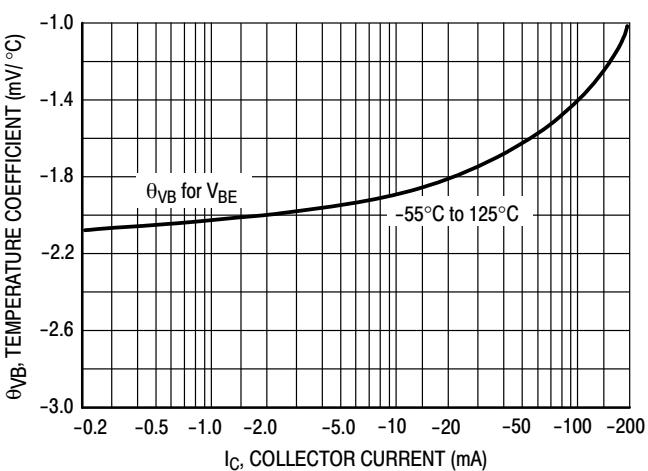
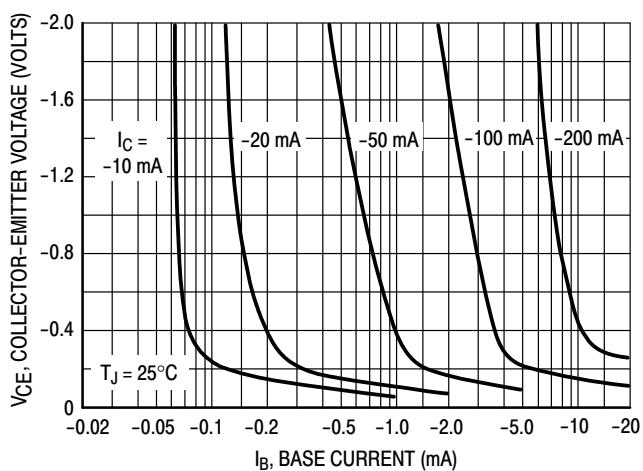
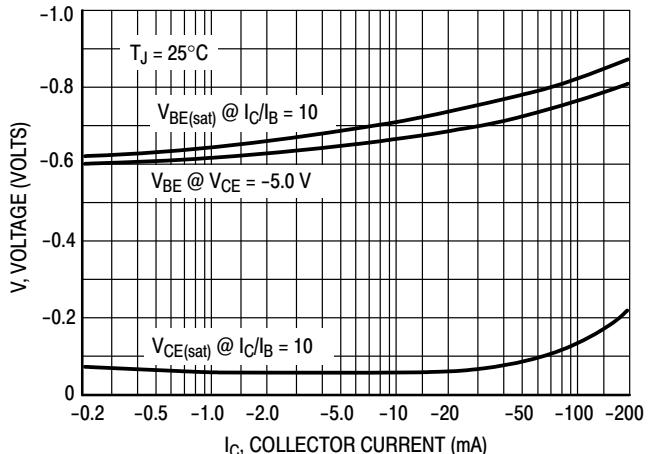
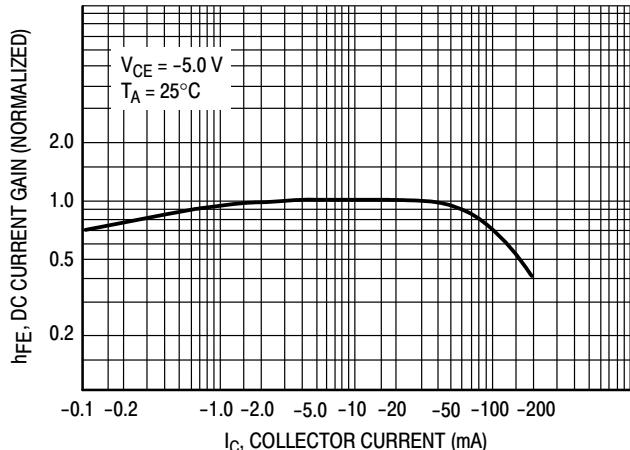








Figure 6. Current-Gain - Bandwidth Product

BC856ALT1G Series

BC856/SBC856

BC856ALT1G Series

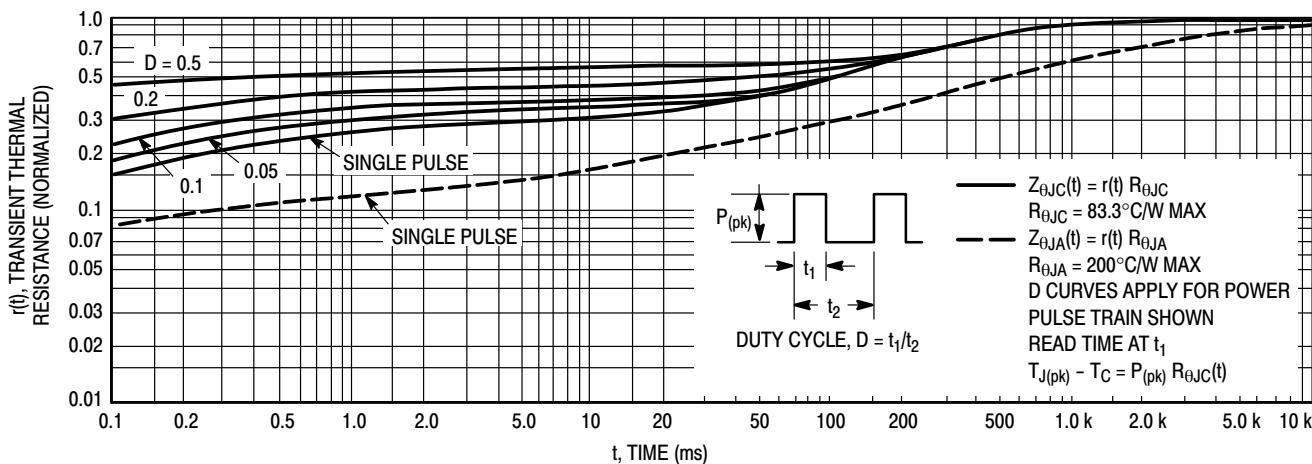


Figure 13. Thermal Response

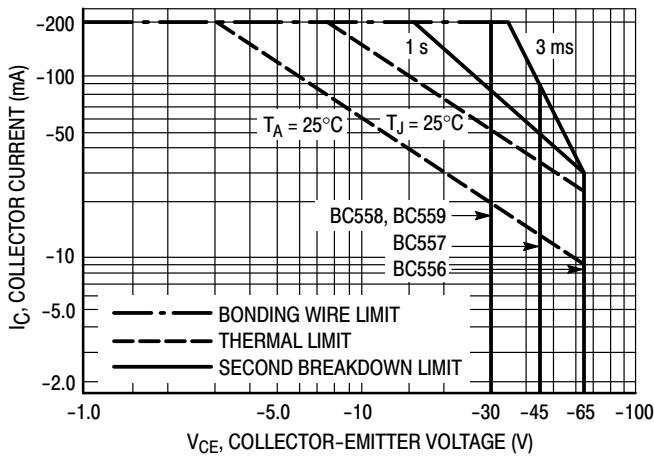
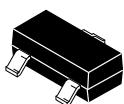


Figure 14. Active Region Safe Operating Area

The safe operating area curves indicate I_C - V_{CE} limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve.

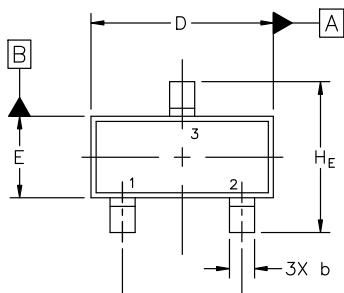
The data of Figure 14 is based upon $T_{J(pk)} = 150^{\circ}\text{C}$; T_C or T_A is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided $T_{J(pk)} \leq 150^{\circ}\text{C}$. $T_{J(pk)}$ may be calculated from the data in Figure 13. At high case or ambient temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by the secondary breakdown.


BC856ALT1G Series

ORDERING INFORMATION

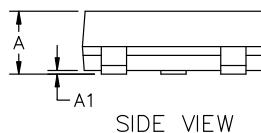
Device	Marking	Package	Shipping [†]
BC856ALT1G	3A	SOT-23 (Pb-Free)	3,000 / Tape & Reel
SBC856ALT1G*			10,000 / Tape & Reel
BC856ALT3G	3B	SOT-23 (Pb-Free)	3,000 / Tape & Reel
BC856BLT1G			10,000 / Tape & Reel
SBC856BLT1G*	3E	SOT-23 (Pb-Free)	3,000 / Tape & Reel
BC856BLT3G			10,000 / Tape & Reel
SBC856BLT3G*	3F	SOT-23 (Pb-Free)	3,000 / Tape & Reel
BC857BLT1G			10,000 / Tape & Reel
SBC857BLT1G*	3G	SOT-23 (Pb-Free)	3,000 / Tape & Reel
BC857BLT3G			10,000 / Tape & Reel
NSVBC857BLT3G*	3J	SOT-23 (Pb-Free)	3,000 / Tape & Reel
BC857CLT1G			10,000 / Tape & Reel
SBC857CLT1G*	3K	SOT-23 (Pb-Free)	3,000 / Tape & Reel
BC857CLT3G			10,000 / Tape & Reel
BC858ALT1G	3L	SOT-23 (Pb-Free)	3,000 / Tape & Reel
BC858BLT1G			10,000 / Tape & Reel
NSVBC858BLT1G*	4B	SOT-23 (Pb-Free)	3,000 / Tape & Reel
BC858BLT3G			10,000 / Tape & Reel
BC858CLT1G	4C	SOT-23 (Pb-Free)	3,000 / Tape & Reel
BC858CLT3G			10,000 / Tape & Reel
BC859BLT1G	4B	SOT-23 (Pb-Free)	3,000 / Tape & Reel
BC859BLT3G			10,000 / Tape & Reel
BC859CLT1G	4C	SOT-23 (Pb-Free)	3,000 / Tape & Reel
BC859CLT3G			10,000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


*S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

SCALE 4:1

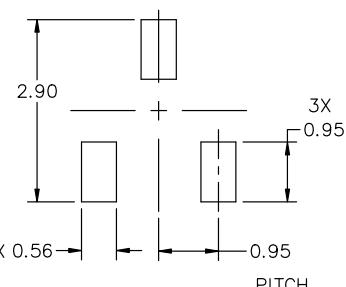
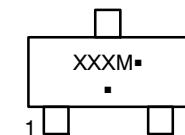
SOT-23 (TO-236) 2.90x1.30x1.00 1.90P
CASE 318
ISSUE AU


DATE 14 AUG 2024

TOP VIEW

DETAIL "A"

Scale 3:1

SIDE VIEW

DETAIL "A"

END VIEW

SEATING PLANE

GENERIC
MARKING DIAGRAM*

XXX = Specific Device Code
M = Date Code
■ = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

MILLIMETERS			
DIM	MIN	NOM	MAX
A	0.89	1.00	1.11
A1	0.01	0.06	0.10
b	0.37	0.44	0.50
c	0.08	0.14	0.20
D	2.80	2.90	3.04
E	1.20	1.30	1.40
e	1.78	1.90	2.04
L	0.30	0.43	0.55
L1	0.35	0.54	0.69
HE	2.10	2.40	2.64
T	0°	---	10°

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
2. CONTROLLING DIMENSIONS: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

RECOMMENDED
MOUNTING FOOTPRINT

* For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOT-23 (TO-236) 2.90x1.30x1.00 1.90P	PAGE 1 OF 2

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOT-23 (TO-236) 2.90x1.30x1.00 1.90P

CASE 318

ISSUE AU

DATE 14 AUG 2024

STYLE 1 THRU 5:
CANCELLEDSTYLE 6:
PIN 1. BASE
2. Emitter
3. CollectorSTYLE 7:
PIN 1. Emitter
2. Base
3. CollectorSTYLE 8:
PIN 1. Anode
2. No Connection
3. CathodeSTYLE 9:
PIN 1. Anode
2. Anode
3. CathodeSTYLE 10:
PIN 1. Drain
2. Source
3. GateSTYLE 11:
PIN 1. Anode
2. Cathode
3. Cathode-AnodeSTYLE 12:
PIN 1. Cathode
2. Cathode
3. AnodeSTYLE 13:
PIN 1. Source
2. Drain
3. GateSTYLE 14:
PIN 1. Cathode
2. Gate
3. AnodeSTYLE 15:
PIN 1. Gate
2. Cathode
3. AnodeSTYLE 16:
PIN 1. Anode
2. Cathode
3. CathodeSTYLE 17:
PIN 1. No Connection
2. Anode
3. CathodeSTYLE 18:
PIN 1. No Connection
2. Cathode
3. AnodeSTYLE 19:
PIN 1. Cathode
2. Anode
3. Cathode-AnodeSTYLE 20:
PIN 1. Cathode
2. Anode
3. GateSTYLE 21:
PIN 1. Gate
2. Source
3. DrainSTYLE 22:
PIN 1. Return
2. Output
3. InputSTYLE 23:
PIN 1. Anode
2. Anode
3. CathodeSTYLE 24:
PIN 1. Gate
2. Drain
3. SourceSTYLE 25:
PIN 1. Anode
2. Cathode
3. GateSTYLE 26:
PIN 1. Cathode
2. Anode
3. No ConnectionSTYLE 27:
PIN 1. Cathode
2. Cathode
3. CathodeSTYLE 28:
PIN 1. Anode
2. Anode
3. Anode

DOCUMENT NUMBER:	98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOT-23 (TO-236) 2.90x1.30x1.00 1.90P	PAGE 2 OF 2

onsemi and **ONSEMI** are trademarks of Semiconductor Components Industries, LLC dba **onsemi** or its subsidiaries in the United States and/or other countries. **onsemi** reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

onsemi, **ONSEMI**, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "**onsemi**" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation
onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at
www.onsemi.com/support/sales

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[onsemi](#):

[BC856ALT1](#) [BC856ALT1G](#) [BC856ALT3G](#) [BC856BLT1](#) [BC856BLT1G](#) [BC856BLT3G](#) [BC857ALT1](#) [BC857ALT1G](#)
[BC857BLT1](#) [BC857BLT1G](#) [BC857BLT3G](#) [BC857CLT1](#) [BC857CLT1G](#) [BC858ALT1](#) [BC858ALT1G](#) [BC858BLT1](#)
[BC858BLT1G](#) [BC858BLT3G](#) [BC858CLT1](#) [BC858CLT1G](#) [BC858CLT3G](#) [BC859BLT1](#) [BC859BLT1G](#) [BC859BLT3G](#)
[BC859CLT1](#) [BC859CLT1G](#) [SBC857BLT1G](#) [SBC856ALT1G](#) [NSVBC858BLT1G](#) [SBC857CLT1G](#) [SBC856BLT1G](#)
[SBC856BLT3G](#) [SBC857ALT1G](#) [BC857CLT3G](#) [NSVBC858CLT1G](#) [NSVBC857BLT3G](#)