

Low Quiescent Current, Programmable Delay Time, Supervisory Circuit

NCP308, NCV308

The NCP308 series is one of the **onsemi** Supervisory circuit IC families. It is optimized to monitor system voltages from 0.405 V to 5.5 V, asserting an active low open-drain RESET output, together with Manual Reset (MR) Input. The part comes with both fixed and externally adjustable versions.

Features

- Wide Supply Voltage Range 1.6 to 5.5 V
- Very Low Quiescent Current 1.6 μ A
- Fixed Threshold Voltage Versions for Standard Voltage Rails Including 0.9 V, 1.2 V, 1.25 V, 1.5 V, 1.8 V, 1.9 V, 2.5 V, 2.8 V, 3.0 V, 3.3 V, 5.0 V
- Adjustable Version with Low Threshold Voltage 0.405 V (min)
- High Threshold Voltage Accuracy: 0.31% typ
- Support Manual Reset Input (MR)
- Open-Drain RESET Output (Push-pull Output upon Request)
- Flexible Delay Time Programmability: 1.25 ms to 10 s
- Temperature Range: -40°C to $+125^{\circ}\text{C}$
- Small TSOP-6 and WDFN6 2 x 2 mm, Pb-Free packages
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These are Pb-Free Devices

Typical Applications

- DSP or Microcontroller Applications
- Notebook/Desktop Computers
- PDAs/Hand-Held Products
- Portable/Battery-Powered Products
- FPGA/ASIC Applications

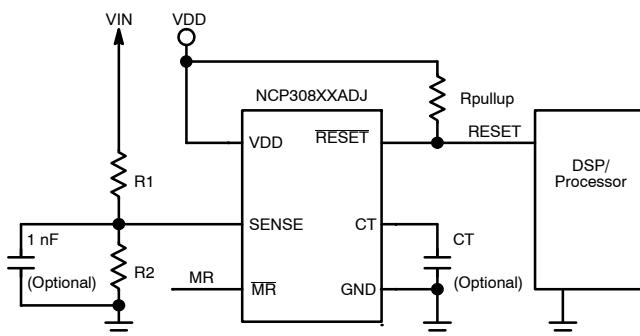
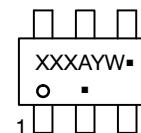



Figure 1. Typical Application Circuit for Adjustable Versions

MARKING DIAGRAMS

TSOP-6
CASE 318G

WDFN6
CASE 511BR

XXX, XX = Specific Device Code

A = Assembly Location

Y = Year

W = Work Week

M = Date Code

▪ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the ordering information section on page 9 of this data sheet.

NOTE: Some of the devices on this data sheet have been DISCONTINUED. Please refer to the table on page 9.

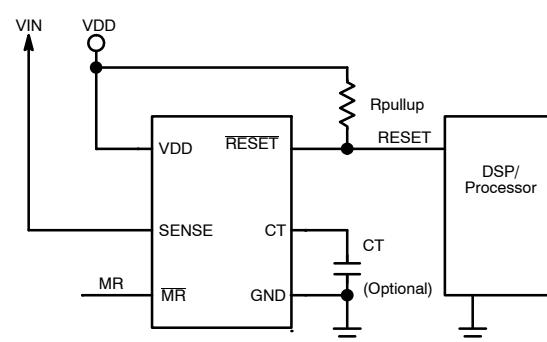


Figure 2. Typical Application Circuit for Fixed Versions

NCP308, NCV308

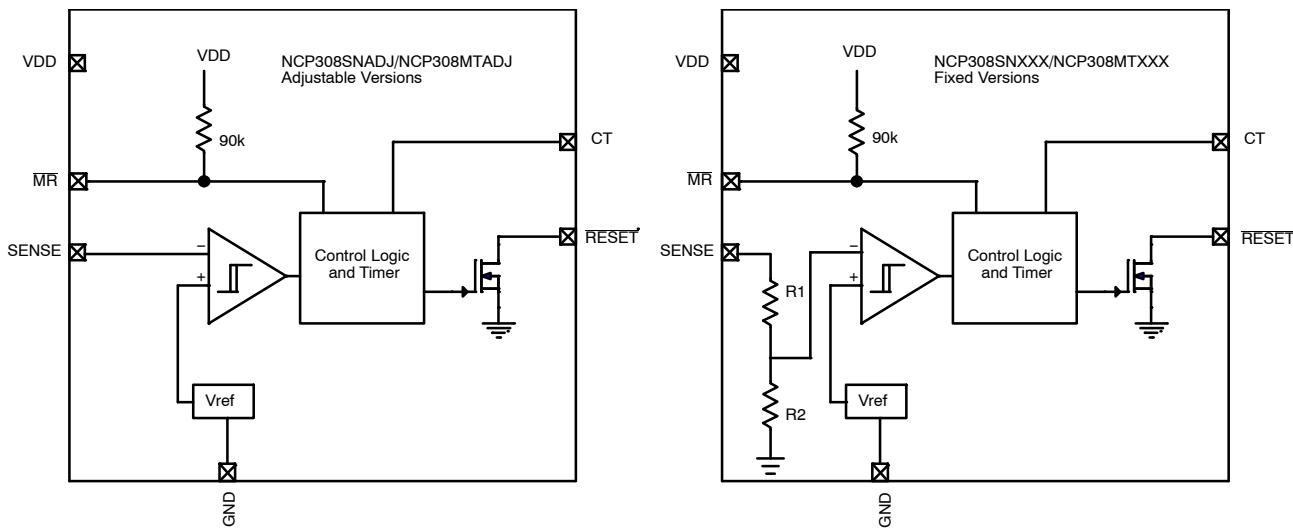


Figure 3. Functional Block Diagrams of Adjustable and Fixed Versions

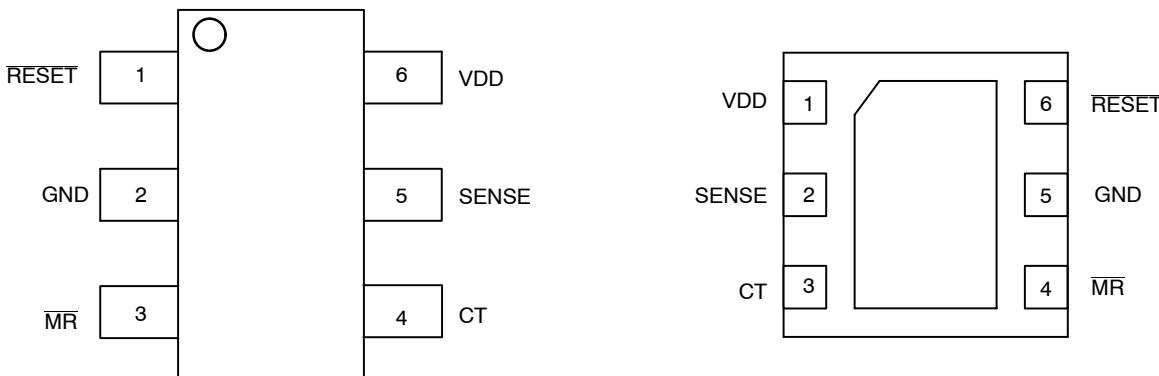


Figure 4. Pin Connections Diagram (Top View)

Table 1. PIN OUT DESCRIPTION

Name	Pin Number		Description
	TSOP-6	WDFN6	
VDD	6	1	Supply Voltage. A 0.1uF ceramic capacitor placed close to this pin is helpful for transient and parasitic.
SENSE	5	2	Sense Input, this is the voltage to be monitored. If the voltage at this terminal drops below the threshold voltage V_{IT} then RESET is asserted. SENSE does not necessary monitor VDD, it can monitor any voltage lower than VDD.
CT	4	3	Reset Delay Time Setting Pin. Connecting this pin to VDD through a 40 kΩ to 200 kΩ resistor or leaving it open results in fixed reset delay times. Connecting this pin to a ground referenced capacitor (≥ 100 pF) gives a user-programmable reset delay time. See the <i>Setting Reset Delay Time</i> section for more information.
MR	3	4	Manual Reset input, MR low asserts RESET . MR is internally tied to VDD by a 90 kΩ pull-up Resistor.
RESET	1	6	RESET Output, is an Active low open drain N-Channel MOSFET output, it is driven to a low impedance state when RESET is asserted (either the SENSE input is lower than the threshold voltage (V_{IT}) or the MR pin is set to a logic low). RESET will keep low (asserted) for the reset delay time after both SENSE is above V_{IT} and MR is set to a logic high. A pull-up resistor from 10kΩ to 1MΩ should be used on this pin. See Figure 5 for behavior of RESET depends on VDD, SENSE and MR conditions.
GND	2	5	Ground terminal. Should be connected to PCB ground reference
EXP PAD	–	Exposed Pad	Exposed pad, under WDFN6 package, connect it to ground plane for better thermal dissipation.

NCP308, NCV308

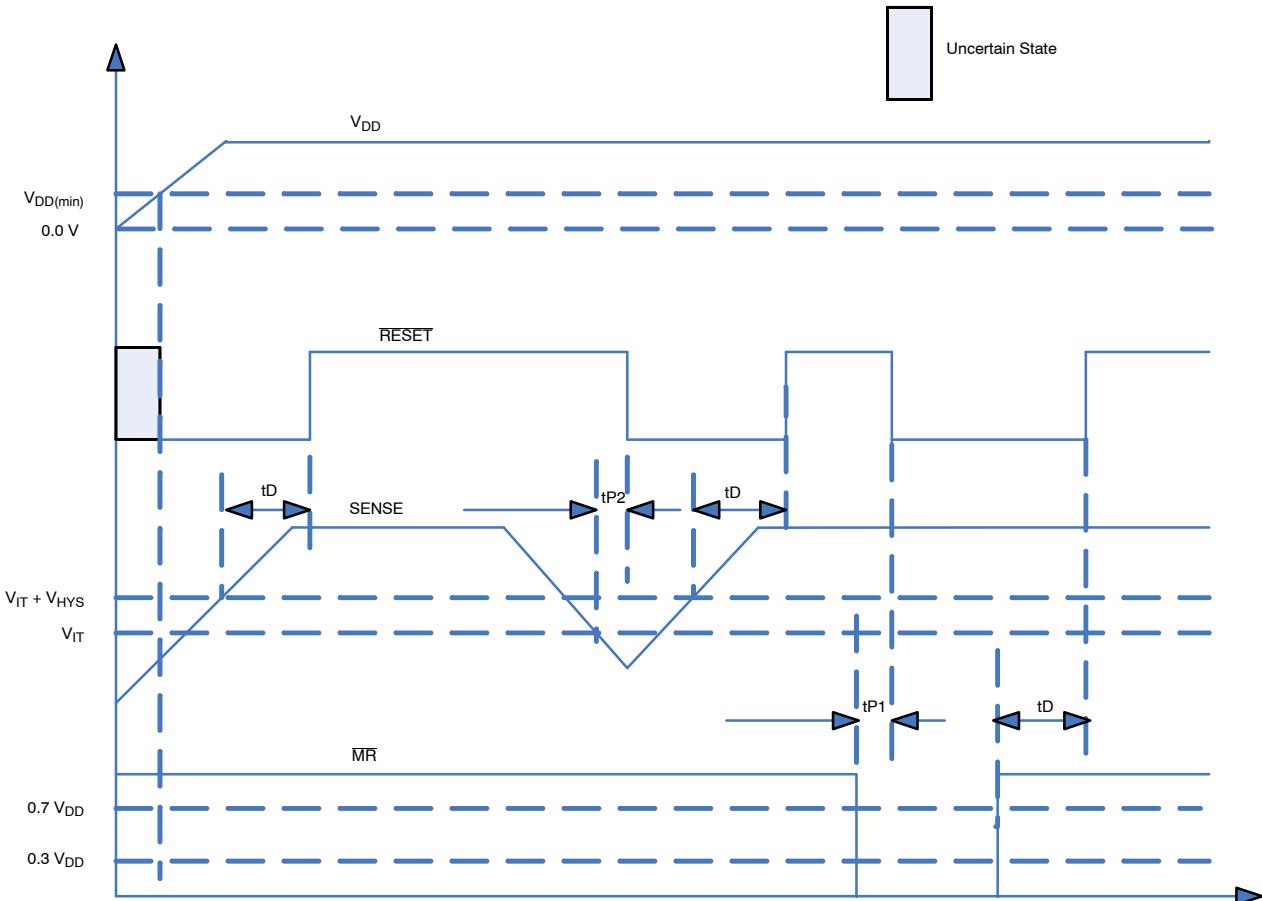


Figure 5. Timing Diagram Showing **MR** and **SENSE** Reset Timing

Table 2. TRUTH TABLE

MR	SENSE $>$ V_{IT}	RESET
L	N	L
L	Y	L
H	N	L
H	Y	H

NCP308, NCV308

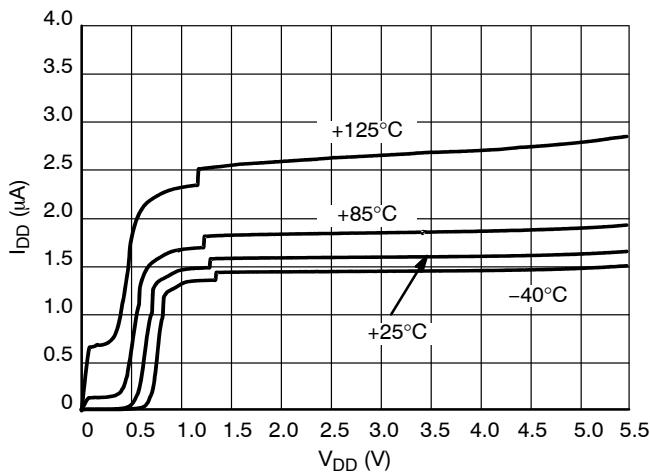
Table 3. MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input voltage range, V_{DD}	V_{DD}	–0.3 to + 6.0	V
CT voltage range V_{CT} , $\overline{\text{RESET}}$, $\overline{\text{MR}}$ Current through CT pin	I_{CT}	–0.3 to V_{DD} +0.3 ≤ 6.0 10	V mA
SENSE pin voltage		–0.3 to + 8.0	V
$\overline{\text{RESET}}$ pin current		5	mA
Thermal Resistance Junction-to-Air TSOP-6 WDFN6	$R_{\theta JA}$	305 220	°C/W
Human Body Model (HBM) ESD Rating (Note 1)	ESD HBM	2000	V
Machine Model (MM) ESD Rating (Note 1)	ESD MM	100	V
Charged Device Model (CDM) ESD Rating (Note 1)	ESD CDM	500	V
Latch up Current: (Note 2) All pins, except digital pins Digital pins ($\overline{\text{MR}}$)	I_{LU}	±100 ±10	mA
Storage Temperature Range	T_{STG}	–65 to + 150	°C
Maximum Junction Temperature	T_J	–40 to +150	°C
Moisture Sensitivity (Note 3)	MSL	Level 1	

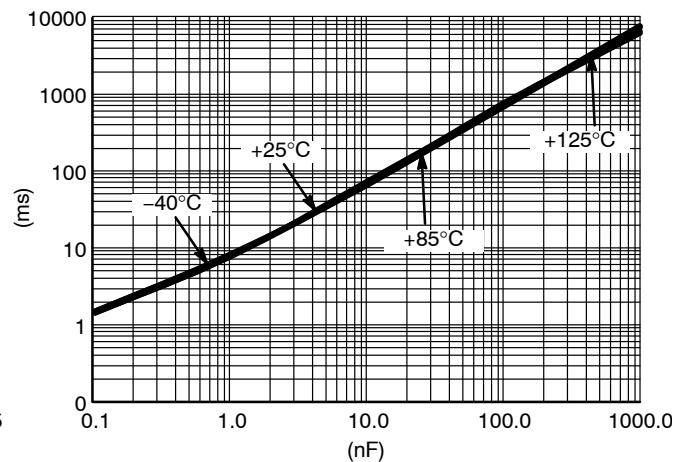
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. This device series contains ESD protection and passes the following tests:
Human Body Model (HBM) +/-2.0 kV per JEDEC standard: JESD22-A114
Machine Model (MM) +/-100 V per JEDEC standard: JESD22-A115
Charged Device Model (CDM) 500 V per JEDEC standard: JESD22-C101.
2. Latch up Current per JEDEC standard: JESD78 class II.
3. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J-STD-020A.

NCP308, NCV308

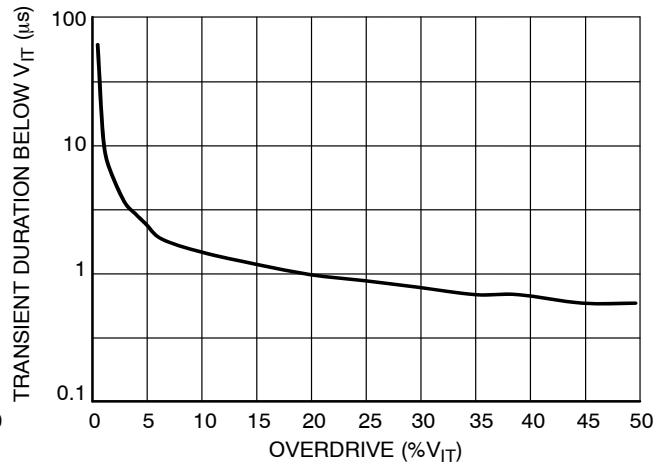

Table 4. ELECTRICAL CHARACTERISTICS $1.6 \leq V_{DD} \leq 5.5 \text{ V}$, $R_{pullup} = 100 \text{ k}\Omega$, $C_{LRESET} = 50 \text{ pF}$, over operating temperature range ($T_J = -40^\circ\text{C}$ to $+125^\circ\text{C}$), unless otherwise specified. Typical values are at $T_J = +25^\circ\text{C}$.

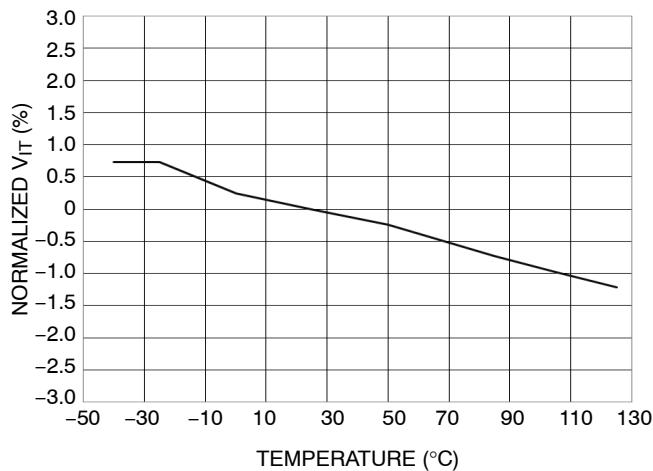
Symbol	Parameter		Conditions	Min	Typ	Max	Unit
V_{DD}	Supply Voltage Range		$-40^\circ\text{C} < T_J < +125^\circ\text{C}$	1.6		5.5	V
$V_{DD(\min)}$	Minimum V_{DD} Guaranteed RESET Output Valid (Note 4)				0.5	0.8	V
I_{DD}	Supply Current (Current into VDD pin)		$V_{DD} = 3.3\text{V}$, $\overline{\text{RESET}}$ not asserted $\overline{\text{MR}}$, $\overline{\text{RESET}}$, CT open		1.6	5.0	μA
			$V_{DD} = 5.5\text{V}$, $\overline{\text{RESET}}$ not asserted $\overline{\text{MR}}$, $\overline{\text{RESET}}$, CT open		1.6	6.0	
V_{OL}	Low-level output voltage of RESET		$1.3\text{V} \leq V_{DD} < 1.6\text{V}$, $I_{OL} = 0.4 \text{ mA}$			0.3	V
			$1.6\text{V} \leq V_{DD} \leq 5.5\text{V}$, $I_{OL} = 1.0 \text{ mA}$			0.4	
$V_{IT\%}$	Negative going SENSE threshold voltage accuracy			-1.75	± 0.75	+1.75	%
			$T_J = +25^\circ\text{C}$	-0.31	-	0.31	
			$-20^\circ\text{C} < T_J < +85^\circ\text{C}$	-1.0	± 0.5	+1.0	
V_{HYS}	Hysteresis on V_{IT}	$1.6\text{V} \leq V_{DD} \leq 4.2\text{V}$			1.0	3.0	$\%V_{IT}$
		$4.2\text{V} \leq V_{DD} \leq 5.5\text{V}$			1.75	3.75	
R_{MR}	$\overline{\text{MR}}$ Internal pull-up resistance				90		k Ω
I_{SENSE}	Input current at SENSE pin	NCP308XXADJ	$V_{SENSE} = V_{IT}$		10		nA
		Fixed versions	$V_{SENSE} = 5.5 \text{ V}$		110		
I_{OH}	$\overline{\text{RESET}}$ leakage Current		$V_{RESET} = 5.5 \text{ V}$, $\overline{\text{RESET}}$ not asserted			300	nA
C_{IN}	Input capacitance, any pin	CT pin	$V_{IN} = 0 \text{ V}$ to V_{DD}		5		pF
		Other pins	$V_{IN} = 0 \text{ V}$ to 5.5 V		5		
V_{IL}	$\overline{\text{MR}}$ logic low input			0		$0.3 V_{DD}$	V
V_{IH}	$\overline{\text{MR}}$ logic high input			0.7 V_{DD}		V_{DD}	V
t_w	Input pulse width to assert RESET	SENSE	$V_{IH} = 1.05 V_{IT}$, $V_{IL} = 0.95 V_{IT}$		20		μs
		$\overline{\text{MR}}$	$V_{IH} = 0.7 V_{DD}$, $V_{IL} = 0.3 V_{DD}$		150		ns
t_D	Reset delay time	$C_T = \text{Open}$ $C_T = V_{DD}$ $C_T = 100 \text{ pF}$ $C_T = 180 \text{ nF}$	(Guaranteed by design and characterization)		20 300 1.25 1200		ms
t_{P1}	Propagation delay from $\overline{\text{MR}}$	$\overline{\text{MR}}$ to $\overline{\text{RESET}}$	$V_{IH} = 0.7 V_{DD}$, $V_{IL} = 0.3 V_{DD}$		150		ns
t_{P2}	Propagation delay from SENSE	SENSE to $\overline{\text{RESET}}$	$V_{IH} = 1.05 V_{IT}$, $V_{IL} = 0.95 V_{IT}$		20		μs


4. The lowest supply voltage (V_{DD}) at which $\overline{\text{RESET}}$ becomes active.

5. NCP308XX: XX = MT (WDFN6 package) or SN (TSOP-6 package).

TYPICAL OPERATING CHARACTERISTICS


Figure 6. Supply Current vs. Input Voltage


Figure 7. RESET Timeout Period vs. CT

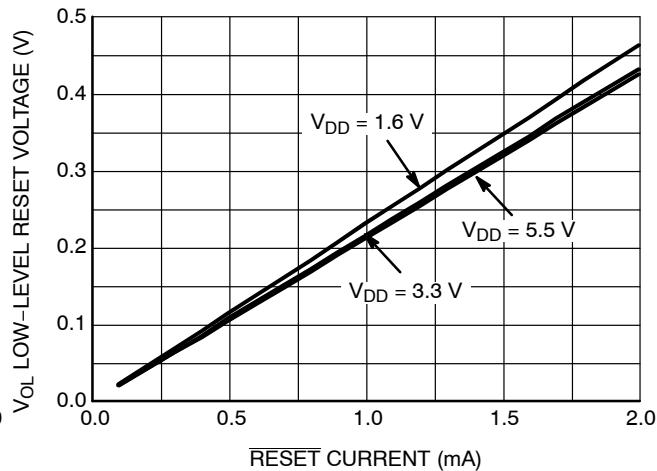

Figure 8. Normalized RESET Timeout Period vs. Temperature

Figure 9. Maximum Transient Duration at Sense vs. Sense Threshold Overdrive Voltage

Figure 10. Normalized Sense Threshold Voltage (V_{IT}) vs. Temperature

Figure 11. Low-Level RESET Voltage vs. RESET Current

DETAILED DESCRIPTION

The NCP308 microprocessor supervisory product family is designed to assert a RESET signal when either the SENSE pin voltage drops below V_{IT} or the Manual Reset input (\overline{MR}) is driven low. The RESET output remains asserted for a programmable delay time after both \overline{MR} and SENSE voltages return above the respective thresholds. A broad range of voltage threshold and reset delay time options are available, allowing NCP308 series to be used in a wide range of applications.

Reset threshold voltages can be factory-set from 0.82 V to 3.3 V or from 4.4 V to 5.0 V, while the NCP308XXADJ can be used for any voltage above 0.405 V using an external resistor divider.

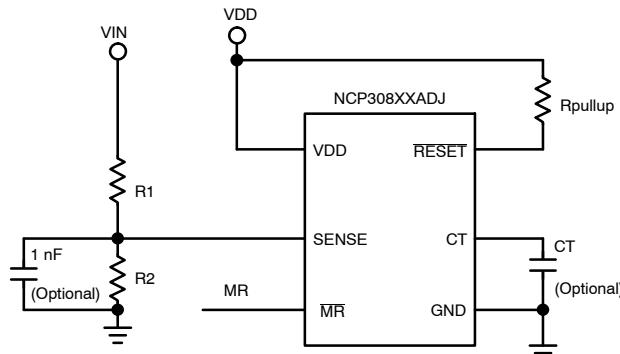
Flexible delay time can be easily got with CT pin according to Table 5:

Table 5. DELAY TIME SETTING TABLE

CT pin Configuration	Delay Time (tD)
CT = VDD	300 ms (fixed)
CT = Open	20 ms (fixed)
Connecting a capacitor between pin CT and GND (Capacitor CT value > 100 pF)	1.25 ms ~ 10 s, depends on capacitor value (Refer to the Setting Reset Delay Time Section)

Output

The RESET output is typically connected to the RESET control pin of a microprocessor. For Open-Drain output versions, a pull-up resistor must be used to hold this line high when RESET is not asserted. The RESET output is active once V_{DD} is over $V_{DD(\min)}$, this voltage is much lower than most microprocessors' functional voltage range. RESET remains high as long as SENSE is above its threshold (V_{IT}) and the Manual Reset input (\overline{MR}) is logic high. If either SENSE falls below V_{IT} or \overline{MR} is driven low, RESET is asserted.


Once \overline{MR} is again logic high and SENSE is above ($V_{IT} + V_{HYS}$), the RESET pin goes to a high impedance state after delay time (tD). The open-drain structure of RESET is capable to allow the reset signal for the microprocessor to have a voltage higher than V_{DD} (up to 5.5 V). The pull-up resistor should be no smaller than 10 k Ω as a result of the finite impedance of the RESET line.

SENSE Input

The SENSE input should be connected to the monitored voltage directly. If the voltage on this pin drops below V_{IT} , then RESET is asserted. The comparator has a built-in hysteresis to prevent erratic reset operation. It is good practice to put a 1 nF to 10 nF bypass capacitor on the SENSE input to reduce its sensitivity to transients and layout parasitic.

The NCP308XXADJ can be used to monitor any voltage rail down to 0.405 V by the circuit shown in Figure 12. The new $V_{IT'}$ can be derived from resistor divider network of R1 and R2 by:

$$V_{IT'} = \left(\frac{R1}{R2} + 1 \right) \times V_{IT} \quad (\text{eq. 1})$$

Figure 12. Using NCP308XXADJ to Monitor a User-Defined Threshold Voltage

Manual Reset Input (\overline{MR})

The Manual Reset input (\overline{MR}) allows a processor or other logic circuits to initiate a reset. A logic low on \overline{MR} causes RESET to assert. After \overline{MR} returns to a logic high and SENSE is above its reset threshold, RESET is de-asserted after the delay time set by CT pin. \overline{MR} is internally tied to V_{DD} by a 90 k Ω resistor so this pin can be left unconnected if \overline{MR} will not be used.

Figure 13 shows how \overline{MR} can be used to monitor multiple system voltages (e.g. I/O supply voltage of some DSP/processors should be setup before core voltage, and DSP/processor can only start after both I/O and core voltages setup).

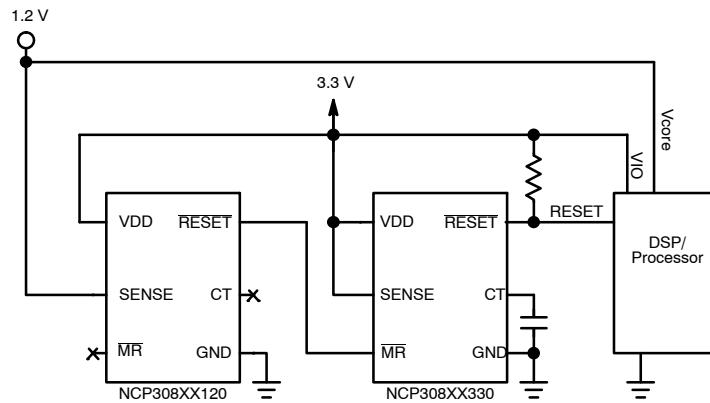


Figure 13. Using \overline{MR} to Monitor Multiple System Voltages

Setting Reset Delay Time

The NCP308 has three options for setting the reset delay time as shown in Table 5. Figure 14 shows the configuration for a fixed 300 ms typical delay time by tying CT to V_{DD}; a resistor from 40 k Ω to 200 k Ω must be used. Figure 15 shows a fixed 20 ms delay time by leaving the CT pin unconnected. Figure 16 shows a user-defined program time between 1.25 ms and 10 s by connecting a capacitor between CT pin and ground.

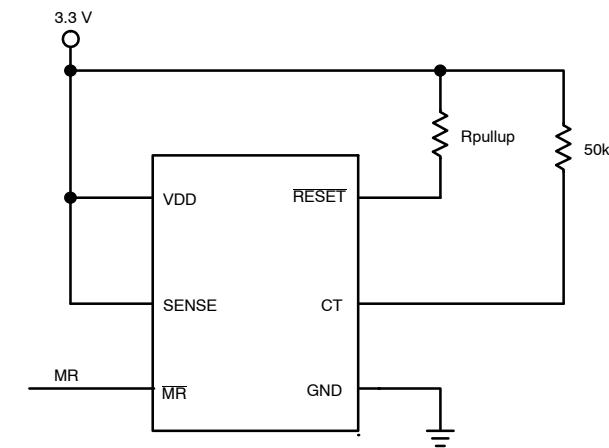


Figure 14. Delay Time Fixed to 300 ms when CT Connected to VDD by Resistor

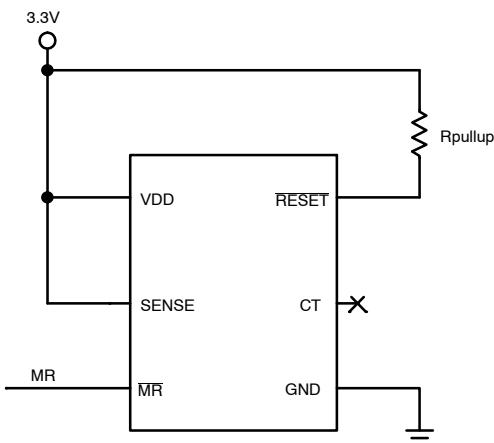


Figure 15. Delay Time Fixed to 20 ms when CT is Open

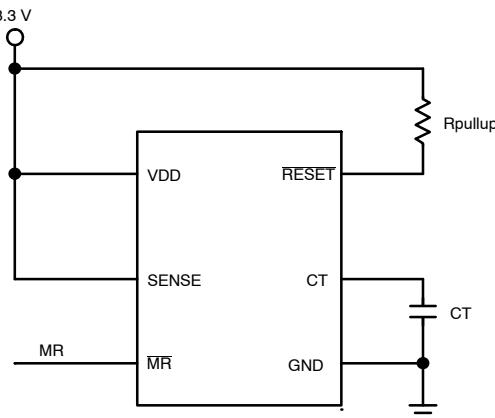


Figure 16. Delay Time Set by Capacitor

The capacitor CT should be ≥ 100 pF for NCP308 to recognize that the capacitor is present. The capacitor value for a given delay time can be calculated using the following equation:

NCP308, NCV308

$$CT(nF) = (tD(s) - 0.5 \times 10^{-3}(s)) \times 175 \quad (\text{eq. 2})$$

Parasitic capacitances of CT pin should be considered to avoid reset delay time deviation or error.

threshold overdrive, as shown in the Maximum Transient Duration at Sense vs. Sense Threshold Overdrive Voltage graph (Figure 9) in Typical Operating Characteristics section.

Immunity to Sense Pin Voltage Transients

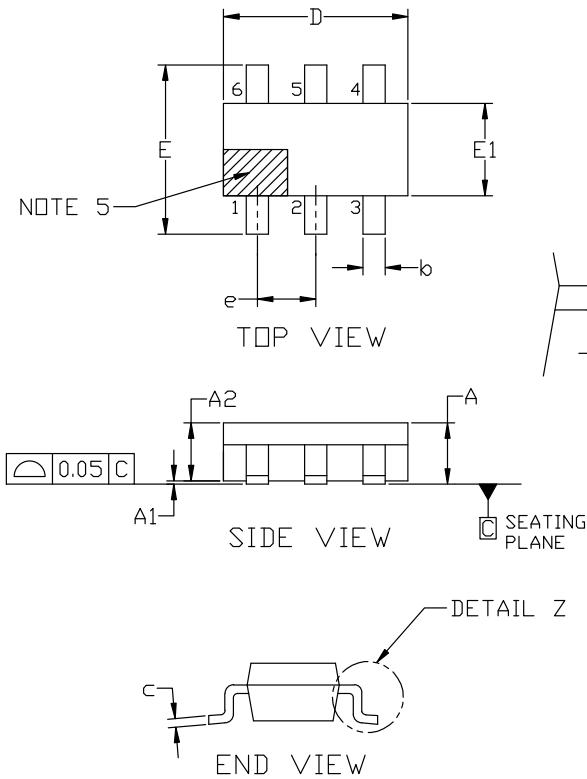
NCP308 is relatively immune to short negative transients on SENSE pin. Sensitivity to transients is dependent on

ORDERING INFORMATION

Device	Threshold Voltage (V _{IT})	Nominal Monitored Voltage	Marking	Package	Shipping [†]
NCV308SNADJT1G*	0.405 V	Adjustable Version	VDJ	TSOP-6 (Pb-Free)	3000 / Tape & Reel
NCV308SN330T1G*	3.07 V	3.3 V	33A		
NCP308MTADJTBG	0.405 V	Adjustable Version	AA		
NCP308MT090TBG	0.84 V	0.9 V	AC		
NCP308MT120TBG	1.12 V	1.2 V	AD		
NCP308MT125TBG	1.16 V	1.25 V	AE		
NCP308MT150TBG	1.40 V	1.5 V	AF		
NCP308MT180TBG	1.67 V	1.8 V	AG		
NCP308MT190TBG	1.77 V	1.9 V	AH		
NCP308MT250TBG	2.33 V	2.5 V	AJ		
NCP308MT280TBG	2.61 V	2.8 V	AK		
NCP308MT300TBG	2.79 V	3.0 V	AL		
NCP308MT330TBG	3.07 V	3.3 V	AM		
NCP308MT500TBG	4.65 V	5.0 V	AN		

DISCONTINUED (Note 6)

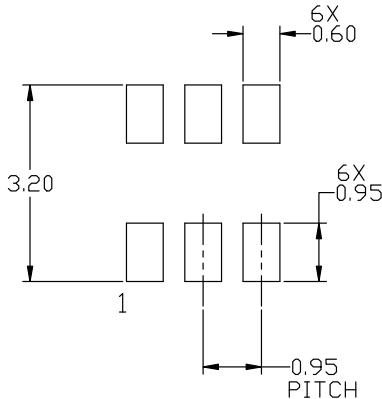
NCP308SNADJT1G	0.405 V	Adjustable Version	ADJ	TSOP-6 (Pb-Free)	3000 / Tape & Reel
NCP308SN090T1G	0.84 V	0.9 V	090		
NCP308SN120T1G	1.12 V	1.2 V	120		
NCP308SN125T1G	1.16 V	1.25 V	125		
NCP308SN150T1G	1.40 V	1.5 V	150		
NCP308SN180T1G	1.67 V	1.8 V	180		
NCP308SN190T1G	1.77 V	1.9 V	190		
NCP308SN250T1G	2.33 V	2.5 V	250		
NCP308SN280T1G	2.61 V	2.8 V	280		
NCP308SN300T1G	2.79 V	3.0 V	300		
NCP308SN330T1G	3.07 V	3.3 V	330		
NCP308SN500T1G	4.65 V	5.0 V	500		


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

6. **DISCONTINUED:** These devices are not recommended for new design. Please contact your **onsemi** representative for information. The most current information on these devices may be available on www.onsemi.com.

TSOP-6 3.00x1.50x0.90, 0.95P
CASE 318G
ISSUE W


DATE 26 FEB 2024

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D AND E1 ARE DETERMINED AT DATUM H.
5. PIN 1 INDICATOR MUST BE LOCATED IN THE INDICATED ZONE

MILLIMETERS			
DIM	MIN	NOM	MAX
A	0.90	1.00	1.10
A1	0.01	0.06	0.10
A2	0.80	0.90	1.00
b	0.25	0.38	0.50
c	0.10	0.18	0.26
D	2.90	3.00	3.10
E	2.50	2.75	3.00
E1	1.30	1.50	1.70
e	0.85	0.95	1.05
L	0.20	0.40	0.60
L2	0.25 BSC		
M	0°	---	10°

RECOMMENDED MOUNTING FOOTPRINT

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference manual, SOLDERMM/D.

DOCUMENT NUMBER:	98ASB14888C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	TSOP-6 3.00x1.50x0.90, 0.95P	PAGE 1 OF 2

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

TSOP-6 3.00x1.50x0.90, 0.95P

CASE 318G

ISSUE W

DATE 26 FEB 2024

**GENERIC
MARKING DIAGRAM***

IC

XXX = Specific Device Code
 A = Assembly Location
 Y = Year
 W = Work Week
 ▪ = Pb-Free Package

STANDARD

XXX = Specific Device Code
 M = Date Code
 ▪ = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "▪", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:
 PIN 1. DRAIN
 2. DRAIN
 3. GATE
 4. SOURCE
 5. DRAIN
 6. DRAIN

STYLE 2:
 PIN 1. Emitter 2
 2. Base 1
 3. Collector 1
 4. Emitter 1
 5. Base 2
 6. Collector 2

STYLE 3:
 PIN 1. ENABLE
 2. N/C
 3. R BOOST
 4. Vz
 5. Vin
 6. Vout

STYLE 4:
 PIN 1. N/C
 2. Vin
 3. NOT USED
 4. GROUND
 5. ENABLE
 6. LOAD

STYLE 5:
 PIN 1. Emitter 2
 2. Base 2
 3. Collector 1
 4. Emitter 1
 5. Base 1
 6. Collector 2

STYLE 6:
 PIN 1. COLLECTOR
 2. COLLECTOR
 3. BASE
 4. Emitter
 5. COLLECTOR
 6. COLLECTOR

STYLE 7:
 PIN 1. COLLECTOR
 2. COLLECTOR
 3. BASE
 4. N/C
 5. COLLECTOR
 6. Emitter

STYLE 8:
 PIN 1. Vbus
 2. D(in)
 3. D(in)+
 4. D(out)+
 5. D(out)
 6. GND

STYLE 9:
 PIN 1. LOW VOLTAGE GATE
 2. DRAIN
 3. SOURCE
 4. DRAIN
 5. DRAIN
 6. HIGH VOLTAGE GATE

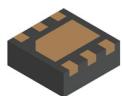
STYLE 10:
 PIN 1. D(OUT)+
 2. GND
 3. D(OUT)-
 4. D(IN)-
 5. VBUS
 6. D(IN)+

STYLE 11:
 PIN 1. SOURCE 1
 2. DRAIN 2
 3. DRAIN 2
 4. SOURCE 2
 5. GATE 1
 6. DRAIN 1/GATE 2

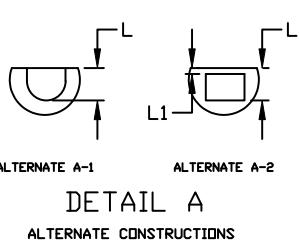
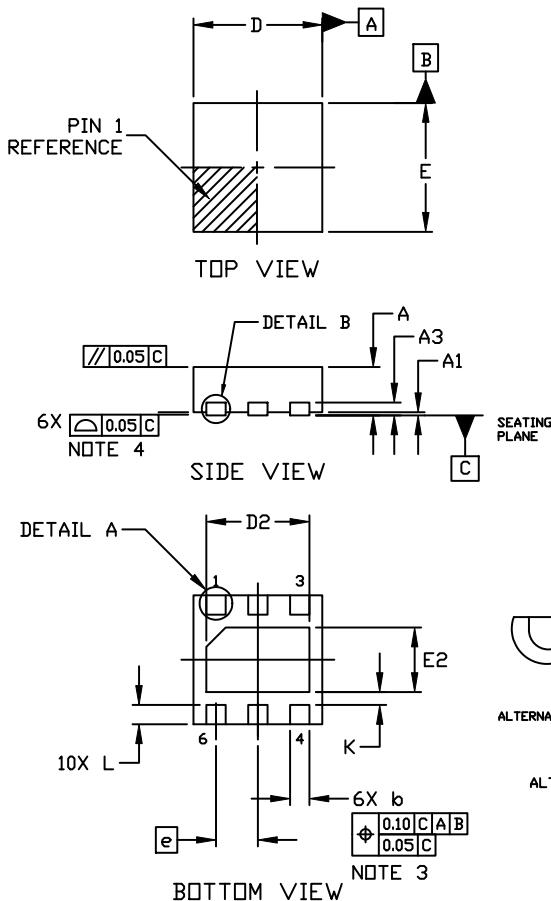
STYLE 12:
 PIN 1. I/O
 2. GROUND
 3. I/O
 4. I/O
 5. VCC
 6. I/O

STYLE 13:
 PIN 1. GATE 1
 2. SOURCE 2
 3. GATE 2
 4. DRAIN 2
 5. SOURCE 1
 6. DRAIN 1

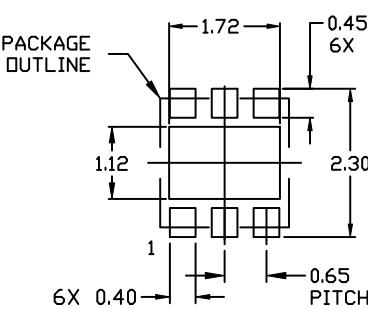
STYLE 14:
 PIN 1. ANODE
 2. SOURCE
 3. GATE
 4. CATHODE/DRAIN
 5. CATHODE/DRAIN
 6. CATHODE/DRAIN


STYLE 15:
 PIN 1. ANODE
 2. SOURCE
 3. GATE
 4. DRAIN
 5. N/C
 6. CATHODE

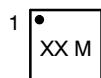
STYLE 16:
 PIN 1. ANODE/CATHODE
 2. BASE
 3. Emitter
 4. COLLECTOR
 5. ANODE
 6. CATHODE



STYLE 17:
 PIN 1. Emitter
 2. BASE
 3. ANODE/CATHODE
 4. ANODE
 5. CATHODE
 6. COLLECTOR

DOCUMENT NUMBER:	98ASB14888C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	TSOP-6 3.00x1.50x0.90, 0.95P	PAGE 2 OF 2


onsemi and **ONSEMI** are trademarks of Semiconductor Components Industries, LLC dba **onsemi** or its subsidiaries in the United States and/or other countries. **onsemi** reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

WDFN6 2x2, 0.65P
CASE 511BR
ISSUE C


DATE 01 DEC 2021

DIM	MILLIMETERS		
	MIN.	NOM.	MAX.
A	0.70	0.75	0.80
A1	0.00	---	0.05
A3	0.20	REF	
b	0.25	0.30	0.35
D	1.90	2.00	2.10
D2	1.50	1.60	1.70
E	1.90	2.00	2.10
E2	0.90	1.00	1.10
e	0.65 BSC		
K	0.20 REF		
L	0.20	0.30	0.40
L1	---	---	0.15

For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

**GENERIC
MARKING DIAGRAM***

XX = Specific Device Code
M = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON55829E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	WDFN6 2X2, 0.65P	PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, **ONSEMI**, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "**onsemi**" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation
onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at
www.onsemi.com/support/sales

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[onsemi](#):

[NCP308MTADJTBG](#) [NCP308MT180TBG](#) [NCP308MT090TBG](#) [NCV308SN330T1G](#) [NCP308MT300TBG](#)

[NCP308MT125TBG](#) [NCP308MT330TBG](#) [NCP308MT250TBG](#) [NCV308SNADJT1G](#)