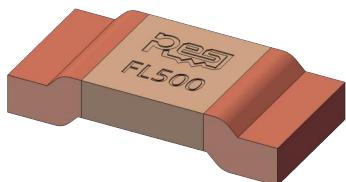


PEWM3920

High-Precision Low-Inductance Alloy Current Sensing Resistor

Resistance	0.2mΩ~1.0mΩ
Tolerance	±0.5%
TCR	±100~±150ppm/°C
Rated Current	89A~244A


Applications

Automotive Electronics
Precision Power Supply
Formation & Sorting of Battery
Electric Tools
Medical Equipment

Better Solution for Sustainable
High End Manufacturing

Low-Inductance Alloy Current Sensing Resistor “Trimming Free” Technology, High Precision, Reliability

Introduction

High-precision, low-inductance pure alloy current-sensing resistors use precision resistor alloys independently developed by Kaibu Electronics. After precision processing, they are welded using specialized electron beam welding equipment independently designed and manufactured by Kaibu Electronics. By perfectly combining the control capability over resistor alloy consistency, precision processing capability, and efficient welding level, the product can achieve a target accuracy of up to $\pm 0.5\%$ without resistance trimming after stamping. This series of $0.3\text{--}1\text{ m}\Omega$ products has a temperature coefficient within $\pm 100\text{ ppm}/^\circ\text{C}$ over a range of 20°C to 170°C , and $0.2\text{ m}\Omega$ products can achieve within $\pm 150\text{ ppm}/^\circ\text{C}$, with inductance less than 3 nH .

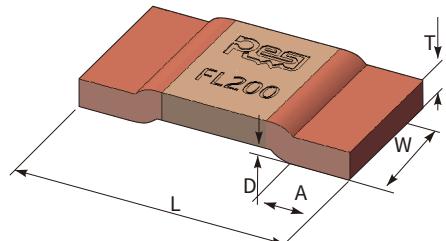
The “Trimming Free” technology avoids rated current loss caused by resistance trimming and also prevents current concentration hotspots caused by trimming gaps, significantly enhancing product reliability. At the same time, due to improved welding quality, the product's thermoelectric potential is significantly reduced, improving long-term stability.

This series of products achieves independent and controllable manufacturing, stable quality, and timely delivery from raw materials to core equipment and core processes. If standard specifications cannot meet your needs, please contact our sales team for consultation. Reesi is committed to providing users with the best precision resistor solutions, meeting the needs of customers in instruments, medical equipment, automotive electronics, precision power supplies, chemical component measurement, and test and measurement equipment.

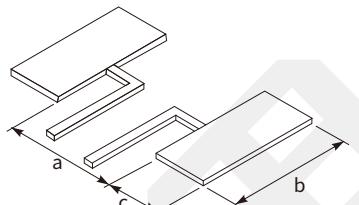
Electrical Parameters

Size	Resistance	Rated Power ($+70^\circ\text{C}$)	Max. Operating Current	Operating Temperature	TCR ppm/ $^\circ\text{C}$ ($+20^\circ\text{C}$ Ref)	Thermal Resistance ¹ $^\circ\text{C}/\text{W}$	Tolerance %
PEWM3920	0.2m Ω	12W	244A	-55 $^\circ\text{C}$ ~+170 $^\circ\text{C}$	$\pm 150(+20^\circ\text{C} \sim +170^\circ\text{C})$	3.6	± 0.5 ± 1.0 ± 5.0
PEWM3920	0.3m Ω	10W	182A	-55 $^\circ\text{C}$ ~+170 $^\circ\text{C}$	$\pm 100(+20^\circ\text{C} \sim +170^\circ\text{C})$	3.8	± 0.5 ± 1.0 ± 5.0
PEWM3920	0.5m Ω	9W	134A	-55 $^\circ\text{C}$ ~+170 $^\circ\text{C}$	$\pm 100(+20^\circ\text{C} \sim +170^\circ\text{C})$	6.3	± 0.5 ± 1.0 ± 5.0
PEWM3920	0.7m Ω	8W	107A	-55 $^\circ\text{C}$ ~+170 $^\circ\text{C}$	$\pm 100(+20^\circ\text{C} \sim +170^\circ\text{C})$	8.7	± 0.5 ± 1.0 ± 5.0
PEWM3920	1.0m Ω	8W	89A	-55 $^\circ\text{C}$ ~+170 $^\circ\text{C}$	$\pm 100(+20^\circ\text{C} \sim +170^\circ\text{C})$	12.6	± 0.5 ± 1.0 ± 5.0

1. Thermal Resistance (Internal): It represents the internal thermal resistance between the center of the resistance alloy and the copper electrode. Since the heat dissipation power of the product is largely affected by comprehensive factors such as the heat dissipation environment, connecting copper busbars, and PCB design, this parameter is for reference only.


Applications

Inductance of PEWM3920 current sensing resistors is less than 3 nH , suitable for AC, DC low and high frequency sampling circuits.


Dimensions

Unit:mm

Resistor

Land Pattern

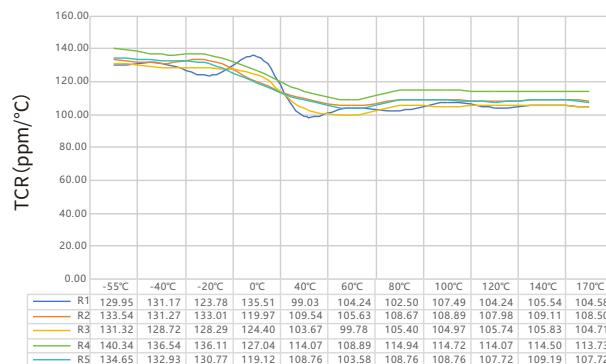
Not following the recommended land pattern design can seriously affect the temperature coefficient measurement results and current sensing accuracy!

Resistance	L	W	A	T	D	a	b	c	Packaging	Quantity	Net Weight
0.2mΩ	10.0±0.3	5.2±0.3	2.0±0.3	1.4±0.2	0.5±0.2	5.6±0.1	6.2±0.2	2.7±0.1	Tape&Reel	2000pcs	0.65±0.1g
0.3mΩ	10.0±0.3	5.2±0.3	2.0±0.3	1.3±0.2	0.5±0.2	5.6±0.1	6.2±0.2	2.7±0.1	Tape&Reel	2000pcs	0.59±0.1g
0.5mΩ	10.0±0.3	5.2±0.3	2.0±0.3	0.8±0.2	0.5±0.2	5.6±0.1	6.2±0.2	2.7±0.1	Tape&Reel	2000pcs	0.36±0.1g
0.7mΩ	10.0±0.3	5.2±0.3	2.0±0.3	0.6±0.2	0.5±0.2	5.6±0.1	6.2±0.2	2.7±0.1	Tape&Reel	2000pcs	0.27±0.1g
1.0mΩ	10.0±0.3	5.2±0.3	2.0±0.3	0.4±0.2	0.5±0.2	5.6±0.1	6.2±0.2	2.7±0.1	Tape&Reel	2000pcs	0.18±0.05g

Part Number Information

Example: PEWM3920FL500K9 (PEWM 3920 ±1.0% 0.5mΩ ±100ppm/°C Standard)

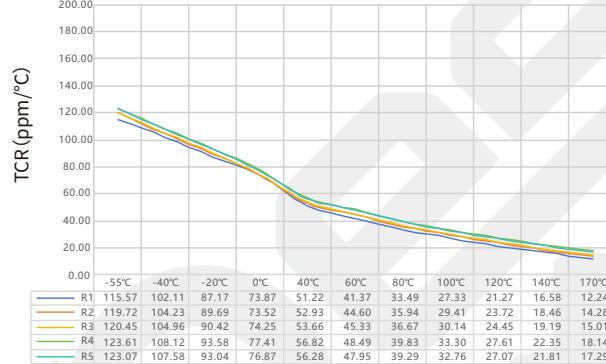
P	E	W	M	3	9	2	0	F	L	5	0	K	9
Series		Size		Tolerance		Resistance		TCR		Code			
PEWM		3920		D=±0.5% F=±1.0% J=±5.0%		L200=0.2mΩ L300=0.3mΩ L500=0.5mΩ L700=0.7mΩ 1L00=1.0mΩ		K=±100ppm/°C R=±150ppm/°C		9=Standard			

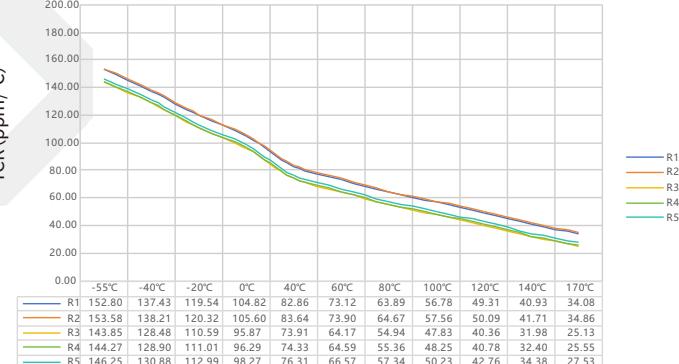

For higher/lower resistance, tighter tolerance, higher power, lower TCR and larger size, please contact us.

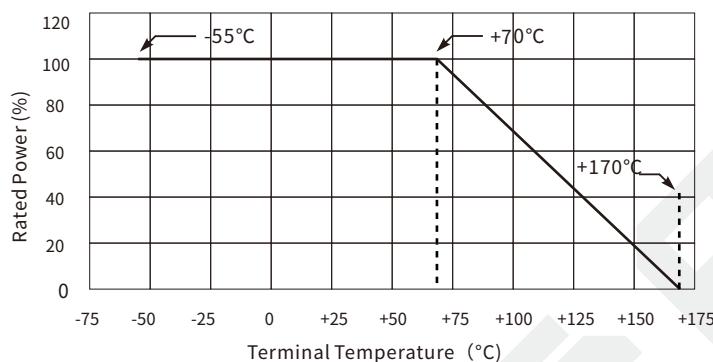
Performance

Test	Test Method	Standards	Typical	Max.
High Temperature Storage	1000h@+170°C, unpowered	AEC-Q200 TEST 3 MIL-STD-202 Method 108	△R≤±0.5%	△R≤±1.0%
Thermal Shock	-55°C, 15min~ambient temperature<20s~+155°C, 15min, 1000 cycles	MIL-STD-202 Method 107	△R≤±0.1%	△R≤±0.5%
Bias Humidity	+85°C, 85%RH, powered 10% rated power for 1000h	AEC-Q200 TEST 7 MIL-STD-202 Method 103	△R≤±0.2%	△R≤±0.5%
Load Life	2000h @ +70°C, rated power, 90min on, 30min off +70°C refers to terminal temperature	AEC-Q200 TEST 8 MIL-STD-202 Method 108	△R≤±0.5%	△R≤±1.0%
Resistance to Solvent	Immerse in solvent for 3 min and wipe 10 times. Three cycles of three solvents. Dry at ambient temperature after cleaning	AEC-Q200 TEST 12 MIL-STD-202 Method 215	Clear marking. No visible damage	
Mechanical Shock	Half Sine Wave, peak acceleration 100g's, pulse duration 6ms, 3 times in each of six directions, on three different axes	AEC-Q200 TEST 13 MIL-STD-202 Method 213	△R≤±0.05%	△R≤±0.2%
Vibration	10-2KHz, 5g's, 20min/cycle, 12 cycles in each directions of X Y Z	AEC-Q200 TEST 14 MIL-STD-202 Method 204	△R≤±0.05%	△R≤±0.2%
Resistance to Solder Heat	Keep at +260°C on the heating platform for 10 seconds.	AEC-Q200 TEST 15 MIL-STD-202 Method 210	△R≤±0.2%	△R≤±0.5%
Solderability	+245°C tin bath for 3s	AEC-Q200 TEST 18 IEC 60115-1 4.17	No visible damage. 95% minimum coverage	
TCR	Measurement points: +20°C and +170°C, reference point: +20°C	AEC-Q200 TEST 19 IEC 60115-1 4.8	Refer to the measured curve. The maximum temperature coefficient is within ±200ppm/°C for 0.1mΩ and within ±100ppm/°C for resistances from 0.2 to 1.0mΩ.	
Board Flex	2mm. Duration: 60s.	AEC-Q200 TEST 21 AEC-Q200-005	△R≤±0.1%	△R≤±0.5%
Short Time Overload	5x rated power, 5s	IEC 60115-1 4.13	△R≤±0.1%	△R≤±0.5%
Low Temperature Storage	-55°C for 96h, unpowered	IEC 60068-2-1	△R≤±0.1%	△R≤±0.5%
Moisture Resistance	Apply T=24 h/cycle, zero power, method 7a and 7b are not required	MIL-STD-202 Method 106	△R≤±0.1%	△R≤±0.5%

Temperature Coefficient of Resistance Test Curve

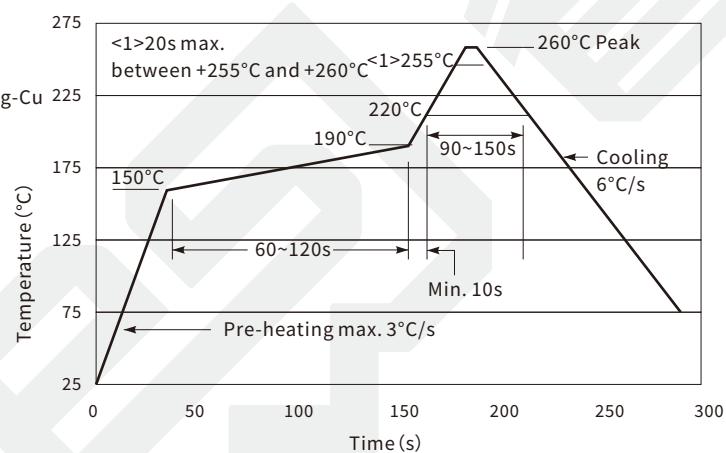

TCR Test Curve - PEWM3920 0.2mΩ


TCR Test Curve - PEWM5930 0.3mΩ

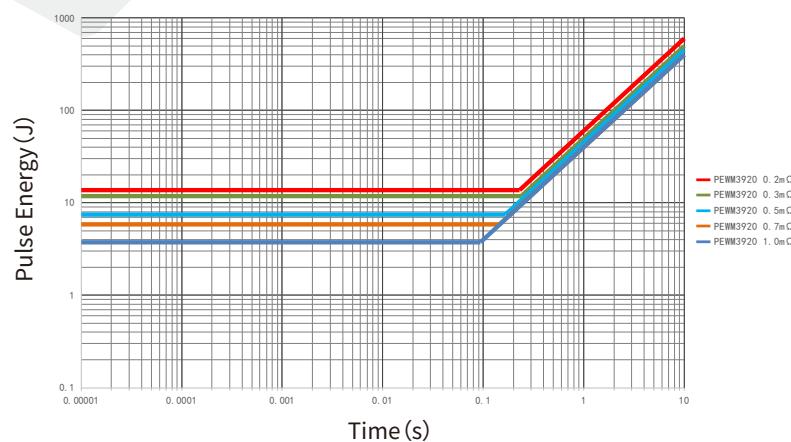

TCR Test Curve - PEWM5930 0.5mΩ

TCR Test Curve - PEWM5930 1.0mΩ

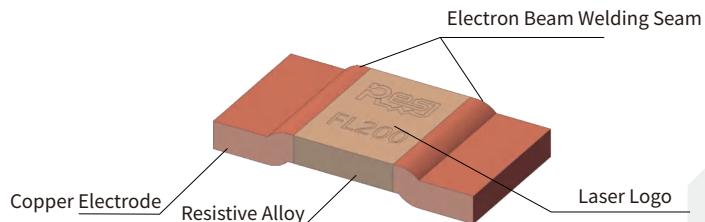
Derating Curve


Reflow Soldering Profile

Resistor Surface Temperature:


Pre-Heat: +150°C~+190°C, 60~120sec.

Reflow: Above +220°C, 90~150sec.


Applicable Solder Composition: Sn-Ag-Cu

Maximum Pulse Energy Curve

Construction

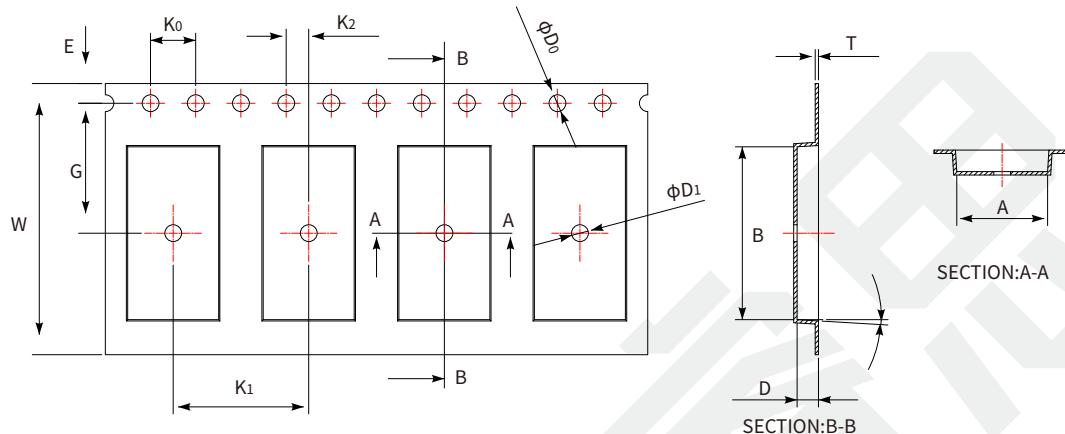
Marking

The first line (four digits) represents brand. The second line (five digits) represents tolerance and resistance.

Size	Illustration	Demonstration
3920		RESI:Brand F:Tolerance L200:Resistance

Storage Instructions

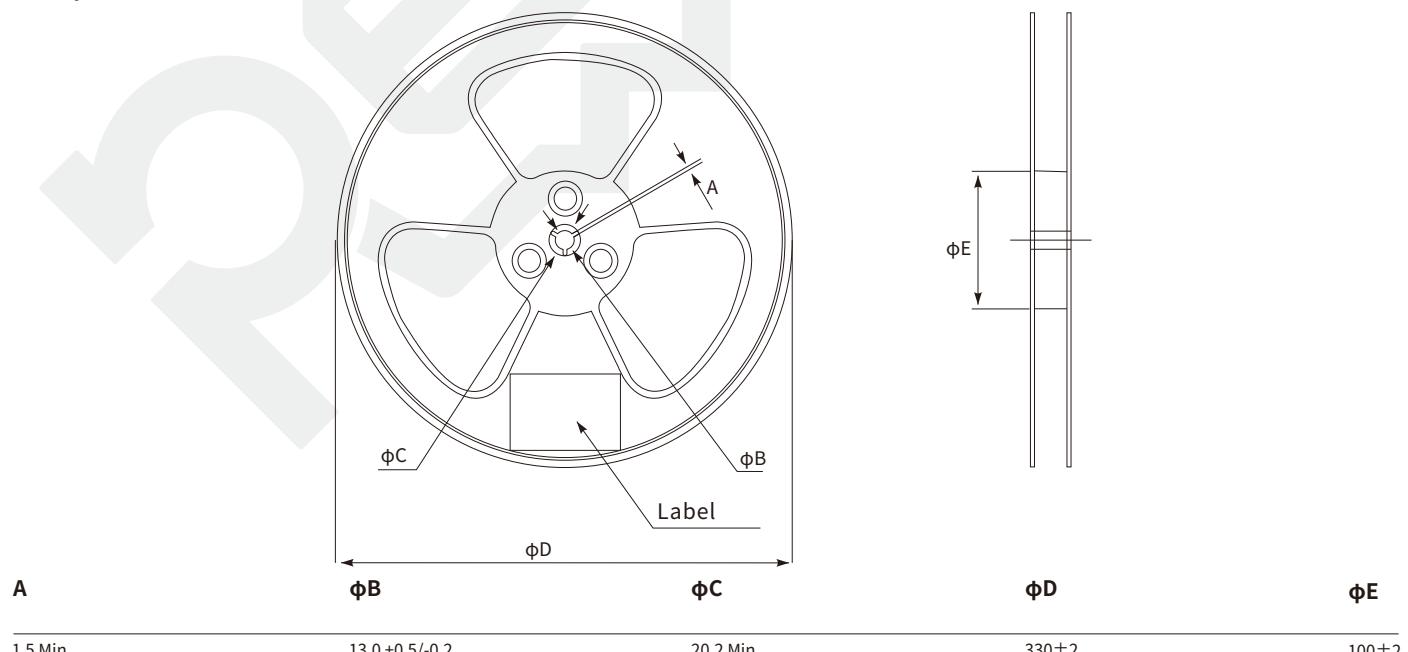
- (1) Resistors should be stored at a temperature of 5 to 35 °C, with a humidity of <60% RH. The humidity should be kept as low as possible.
- (2) Resistors should be protected from direct sunlight.
- (3) Resistors should be stored in a clean and dry environment free of harmful gases (HCl, Sulfuric acid, H₂S, etc.)
- (4) Do not move the resistor from the packaging unless use it.
- (5) Under the above storage conditions, the resistor can be stored for at least 1 year.


Usage Suggestions

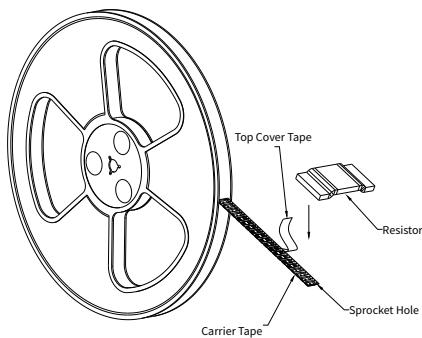
- (1) Please protect the surface of the resistor during use. Prevent defects such as scratches, bumps, and oil stains on the surface.
- (2) Do not use sharp tweezers to move the resistor. Scratches on the surface can cause resistance drift and resistor failure.
- (3) When installing and using resistors, avoid the impact of mechanical stress on the resistor.
- (4) The long-term operating power of resistors should be less than the rated power to avoid resistance drift caused by long-term overload.
- (5) Please refer to the derating curve when operating under high temperature conditions or poor heat dissipation environment.
- (6) If the operating conditions exceed the pulse specified in the pulse curve, a systematic evaluation is required.
- (7) If the resistor is not used after being moved from the packaging, it should be stored under vacuum to avoid risks such as poor solderability caused by oxidation of the resistor.

Packaging

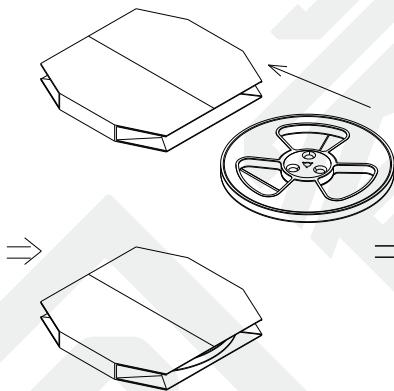
Tape Specifications


Unit:mm

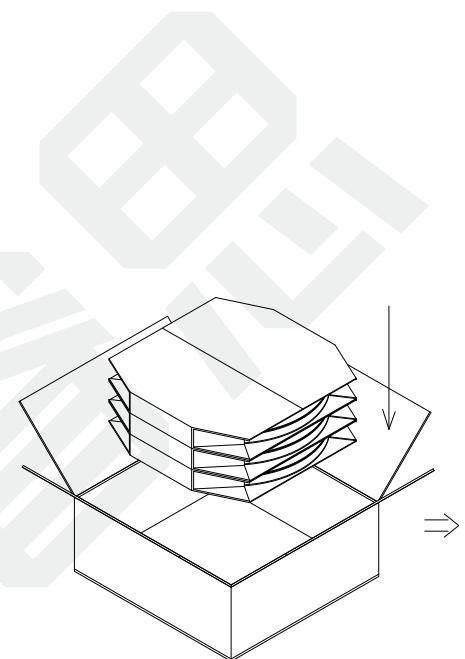
Resistance	A	B	ϕD_0	ϕD_1	K ₀	K ₁	K ₂	E	G	W	D	T
0.2mΩ	5.5 ± 0.2	10.5 ± 0.2	1.5 ± 0.1	1.5 ± 0.1	4.0 ± 0.1	8.0 ± 0.1	2.0 ± 0.1	1.75 ± 0.1	7.5 ± 0.1	16.0 ± 0.3	2.7 ± 0.1	0.3 ± 0.05
0.3mΩ	5.5 ± 0.2	10.5 ± 0.2	1.5 ± 0.1	1.5 ± 0.1	4.0 ± 0.1	8.0 ± 0.1	2.0 ± 0.1	1.75 ± 0.1	7.5 ± 0.1	160 ± 0.3	2.1 ± 0.1	0.3 ± 0.05
0.5mΩ	5.5 ± 0.2	10.5 ± 0.2	1.5 ± 0.1	1.5 ± 0.1	4.0 ± 0.1	8.0 ± 0.1	2.0 ± 0.1	1.75 ± 0.1	7.5 ± 0.1	16.0 ± 0.3	1.5 ± 0.1	0.3 ± 0.05
0.7mΩ	5.5 ± 0.2	10.5 ± 0.2	1.5 ± 0.1	1.5 ± 0.1	4.0 ± 0.1	8.0 ± 0.1	2.0 ± 0.1	1.75 ± 0.1	7.5 ± 0.1	16.0 ± 0.3	1.5 ± 0.1	0.3 ± 0.05
1.0mΩ	5.5 ± 0.2	10.5 ± 0.2	1.5 ± 0.1	1.5 ± 0.1	4.0 ± 0.1	8.0 ± 0.1	2.0 ± 0.1	1.75 ± 0.1	7.5 ± 0.1	16.0 ± 0.3	1.5 ± 0.1	0.3 ± 0.05

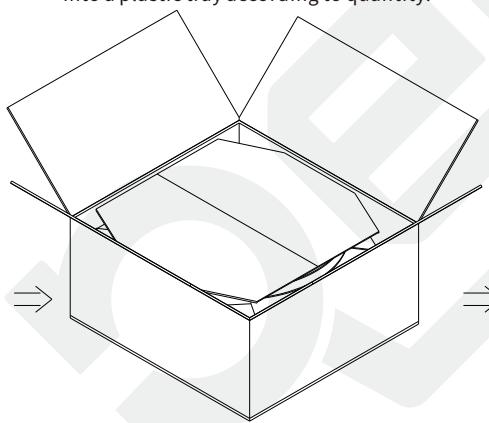

Reel Specifications

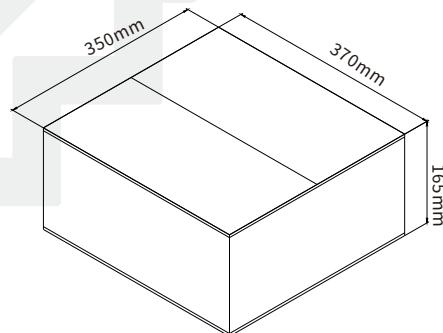
Unit:mm



Packaging


- (1) Tape and reel the PEWM 3920 series resistors into a single plastic tray according to quantity.
- (2) Secure each plastic tray with a paper splint, with the paper splint dimensions approximately 335mm × 340mm × 37mm.
- (3) Place every three paper splints into an outer carton for packaging.
- (4) The standard outer carton dimensions are approximately 350mm × 370mm × 165mm.


1. Tape the PEWM 3920 series resistors into a plastic tray according to quantity.


2. Fix each plastic tray with a paper splint, and the size of the paper splint is approximately 335mm × 340mm × 37mm.

3. Place every three paper splints into an outer carton for packaging.

4. Before and after placing the paper splints, fill the space with bubble wrap or pearl cotton to prevent the products from shaking inside the carton.

5. The standard outer carton dimensions are approximately 350mm × 370mm × 165mm.

Popular Part Numbers

Part Number	Size	Tolerance	Resistance	TCR	Power	Max. Operating Current
PEWM3920DL200R9	3920	±0.5%	0.2mΩ	±150ppm/°C	12W	244A
PEWM3920FL200R9	3920	±1.0%	0.2mΩ	±150ppm/°C	12W	244A
PEWM3920JL200R9	3920	±5.0%	0.2mΩ	±150ppm/°C	12W	244A
PEWM3920DL300K9	3920	±0.5%	0.3mΩ	±100ppm/°C	10W	182A
PEWM3920FL300K9	3920	±1.0%	0.3mΩ	±100ppm/°C	10W	182A
PEWM3920JL300K9	3920	±5.0%	0.3mΩ	±100ppm/°C	10W	182A
PEWM3920DL500K9	3920	±0.5%	0.5mΩ	±100ppm/°C	9W	134A
PEWM3920FL500K9	3920	±1.0%	0.5mΩ	±100ppm/°C	9W	134A
PEWM3920JL500K9	3920	±5.0%	0.5mΩ	±100ppm/°C	9W	134A
PEWM3920DL700K9	3920	±0.5%	0.7mΩ	±100ppm/°C	8W	107A
PEWM3920FL700K9	3920	±1.0%	0.7mΩ	±100ppm/°C	8W	107A
PEWM3920JL700K9	3920	±5.0%	0.7mΩ	±100ppm/°C	8W	107A
PEWM3920D1L00K9	3920	±0.5%	1.0mΩ	±100ppm/°C	8W	89A
PEWM3920F1L00K9	3920	±1.0%	1.0mΩ	±100ppm/°C	8W	89A
PEWM3920J1L00K9	3920	±5.0%	1.0mΩ	±100ppm/°C	8W	89A

Revision

Version	Revised Content	Date	Approver
V0	Initial Issue	2022.07.28	LWW
V1	Increase the measured data curve of the temperature coefficient	2022.12.28	LWW
V2	Add 0.3mΩ product specifications and improve the description of material information for each specification.	2023.08.06	LWW
V3	Add 0.2mΩ product specifications and improve the description of material information for each specification. Add pad design guidelines; update vibration and mechanical shock parameter values; add packaging specification instructions	2024.03.17	LWW
V4	Add 0.7mΩ product specifications and improve the description of material information for each specification.	2025.09.25	LWW

Disclaimer

All products, datasheets and data can be changed without prior notice.

C&B Electronics Shenzhen CO., LTD., its affiliates, distributors, employees, and any other person acting on its behalf (collectively referred to as "C&B Electronics") shall not bear any legal responsibility for any errors, inaccuracies, or incompleteness of information related to the product disclosed under this agreement or other disclosures.

Product datasheet does not constitute an extension or revision of the purchase terms and conditions in C&B Electronics, including but not limited to the warranties under this agreement.

Unless specified in the purchase terms and conditions, C&B Electronics makes no guarantees, representations or warranties.

To the maximum extent permitted by applicable laws, C&B Electronics hereby makes the following disclaimer:

- (1) All liabilities arising from the use of the product;**
- (2) Including but not limited to all liabilities arising from special, indirect or incidental damages;**
- (3) All implied warranties, including warranties of suitability for special purposes, non infringement possibility, and marketability.**

The information provided in the datasheet and parameter tables may vary in different applications, and the performance of the product may change over time. The recommended application instructions for the product are based on C&B Electronics' understanding and experience of typical requirements. Customers are obligated to verify whether the product is suitable for a specific application based on the parameters provided in the datasheet. Before officially installing or using the product, you should ensure that you have obtained the latest version of relevant information, which can be obtained through the website: resistor.today.

The signing of this agreement does not constitute an express, implied or other form of license related to all intellectual property rights of C&B Electronic Products.

Unless explicitly stated, the products listed in this agreement are not applicable to lifesaving or life sustaining products. In the absence of a clear indication, the customer shall bear all risks caused by unauthorized use of the above products and agree to fully compensate C&B Electronics for all losses caused by such sales or use. For written product terms for such special applications, please contact authorized personnel from C&B Electronics to obtain.

The names and markings on the listed products may be trademarks owned by others.